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Abstract

This work considers the problem of model-learning (system identification) for planning (control synthesis). When an
agent cannot represent a perfectly accurate model of its environment’s dynamics, planning based on a learned model can
catastrophically fail. Planning involves composing the predictions of the model; when flawed predictions are composed,
even minor errors can compound and render the model useless for making control decisions. This work presents a novel
measure of model quality that accounts for the model’s ability to “self correct” after making an error, thus mitigating the
compounding error effect. Under some conditions this measure can be shown to be more tightly related to the quality
of policies derived from the model than the standard measure of accuracy (one-step prediction error). This observation
inspires an MBRL algorithm for deterministic MDPs that offers performance guarantees that are agnostic to the model
class and that is empirically shown to generate good policies in the face of model class limitations that stymie the more
standard approach.
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1 Introduction

The model-based reinforcement learning (MBRL) approach to decision making in an unknown enviornment is to learn
a predictive model of the environment’s dynamics (the model learning/system identification problem) and then to use
that model to make decisions (the planning/optimal control problem). In most problems of interest, limitations of the
agent prevent it from learning a perfectly accurate model. In system identification this is called the unrealizable setting,
where the true system is not contained within the class of models being considered. One might hope that the practical
impact of model class limitations would be related to the severety of the limitations, but, in practice, even seemingly
minor limitations can prove disastrous for planning/control sythesis.

Figure 1: a) Example of Shooter dynamics. b)
Propagating errors (in red) in a model optimized
for one-step error. c) A self-correcting model.

To illustrate, consider the “Shooter” domain pictured in Figure 1a. The
agent moves a spaceship left and right at the bottom of the screen. It
can fire bullets upward, but each one has a cost (-1 reward). If a bullet
hits a target, the agent receives 10 reward. Each target has a “bullseye”
(the white dots). If a bullet hits the same column as a bullseye, the
agent receives an additional 10 reward.

The typical approach is to train the model by minimizing one-step
prediction error, the error in the predictions of the next image, given
the current image. That said, note that the bullseyes move back and
forth across the targets. As such, the problem is second-order Markov;
when the bullseye is in the center, one cannot predict its next position
without knowing its previous position. The agent, however, will use
a factored Markov model, predicting each pixel independently, condi-
tioned on the current image. It cannot accurately predict the bullseyes’
movement, though it can predict everything else perfectly.

One might imagine that this limitation would be fairly minor; the agent can still obtain reward even if it cannot reliably
hit the bullseyes. However, consider the sample rollout pictured in Figure 1b. Here each image is sampled from a
model’s one-step predictions, and is then given as input for the next predictions. This model has the lowest one-step
prediction error amongst the models in the class of factored Markov models. As anticipated, it does not correctly predict
the movement of the bullseyes in the second image. Due to the resulting errors, the sampled image is unlike any the
environment would generate, and thus unlike any the model has trained on. The model’s uninformed predictions based
on this unfamiliar image cause more errors in the third image, and so on. In the model a target is unlikely to persist long
enough to be hit, making it useless for planning.

Note, however, that there are factored Markov models that are useful for planning in this problem. Consider the sample
rollout pictured in Figure 1c. The model that generated this rollout makes the same one-step errors as the previous model
when given an image from the environment. However, when it encounters an unreasonable sampled image it still makes
reasonable predictions, effectively “self-correcting.” Thus we see that models with similar one-step prediction error can
vary wildly in their usefulness for planning. A better distinguisher is the accuracy of predictions far into the future.

This work presents a novel measure of model quality that captures a model’s ability to “self correct” in this way. Under
some conditions this measure can be proven to be more tightly related to control performance than the standard one-
step prediction error. These results allow the derivation of a novel MBRL algorithm that provides strong performance
guarantees that are agnostic to the model class and that is empirically robust to model class limitations.

1.1 Background and Notation

The analysis is focused on Markov decision processes (MDP). The environment’s initial state s1 is drawn from a distribution
µ. At each step t the environment is in a state st. The agent selects an action at which causes the environment to transition
to a new state sampled from the transition distribution: st+1 ∼ P atst . The environment also emits a reward, R(st, at). For
simplicity, assume that the reward function is known and is bounded within [0,M ].

A policy π specifies a way to behave in the MDP. Let π(a | s) = πs(a) be the probability that π chooses action a in state
s. For a sequence of actions a1:t let P (s′ | s, a1:t) = P a1:ts (s′) be the probability of reaching s′ by starting in s and taking
the actions in the sequence. For any state s, action a, and policy π, let Dt

s,a,π be the state-action distribution obtained
after t steps, starting with state s and action a and thereafter following policy π. For a state action distribution ξ, let
Dt
ξ,π = E(s,a)∼ξD

t
s,a,π . For a state distribution µ let Dt

µ,π = Es∼µ,a∼πs D
t
s,a,π . For some discount factor γ ∈ [0, 1), let

Dµ,π = (1− γ)
∑∞
t=1 γ

t−1Dt
µ,π be the infinite-horizon discounted state-action distribution under policy π.

The T -step state-action value of a policy, QπT (s, a) represents the expected discounted sum of rewards obtained by taking
action a in state s and executing π for an additional T − 1 steps: QπT (s, a) =

∑T
t=1 γ

t−1 E(s′,a′)∼Dts,a,π R(s′, a′). Let the
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T -step state value V πT (s) = Ea∼πs [Q
π
T (s, a)]. For infinite horizons we write Qπ = Qπ∞, and V π = V π∞. The agent’s goal

will be to learn a policy π that maximizes Es∼µ[V π(s)]. The MBRL approach is to learn a model P̂ , approximating P , and
then to produce a policy by apply some planning algorithm to P̂ . Let C represent the model class, the set of models the
learning algorithm could possibly produce. Critically, it is not assumed that P ∈ C.

For the sake of this analysis, the agent is assumed to use the simple one-ply Monte Carlo planning algorithm (one-ply
MC). For every state-action pair (s, a), the planner executes N T -step “rollouts” in P̂ , starting at s, taking action a, and
then following a rollout policy ρ. Let Q̄(s, a) be the average discounted return of the rollouts. For large N , Q̄ will closely
approximate Q̂ρT (Kakade, 2003). The agent selects its actions greedily with respect to Q̄.

2 Bounding Value Error

Talvitie (2015) bounds the performance of one-ply MC in terms of model quality. For a policy π and state-action distribu-
tion ξ, let εξ,π,Tval = E(s,a)∼ξ

[
|QπT (s, a) − Q̂πT (s, a)|

]
be the error in the T -step state-action values the model assigns to the

policy under the given distribution. Then the following result can be straightforwardly adapted from Talvitie (2015).

Lemma 1. Let Q̄ be the state-action value function returned by applying one-ply Monte Carlo to the model P̂ with
rollout policy ρ and rollout depth T . Let π̂ be greedy w.r.t. Q̄. Let ξ(s, a) = 1

2Dµ,π̂(s, a) + 1
4Dµ,π(s, a) +

1
4

(
(1− γ)µ(s)π̂s(a) + γ

∑
z,bDµ,π(z, b)P bz (s)π̂s(a)

)
. Let εmc = 4

1−γ ‖Q̄ − Q̂
ρ
T ‖∞ + 4

1−γ ‖Q̂
ρ
T − Q̂ρ‖∞ + 2

1−γ ‖BV
ρ − V ρ‖∞

(here B is the Bellman operator). Then for any policy π and state-distribution µ, Es∼µ
[
V π(s)− V π̂(s)

]
≤ 4

1−γ ε
ξ,ρ,T
val + εmc.

The εmc term represents error due to limitations of the planning algorithm: error due to the sample average Q̄, the limited
rollout depth T , and the sub-optimality of ρ. The εξ,ρ,Tval term represents error due to the model parameters. The key factor
in the model’s usefulness for planning is the accuracy of the value it assigns to the rollout policy in state-actions visited
by π and π̂. This section presents bounds on εξ,ρ,Tval in terms of measures of model quality.

First, we can adapt a result from Ross and Bagnell (2012), bounding εξ,ρ,Tval in terms of the one-step prediction error.

Lemma 2. For any policy π and state-action distribution ξ, εξ,π,Tval ≤ M
1−γ

∑T−1
t=1 (γt − γT )E(s,a)∼Dtξ,π

[
‖P as − P̂ as ‖1

]
.

Combining Lemmas 1 and 2 yields an overall bound on control performance but, as the Shooter example demonstrates,
when one cannot obtain a model with low one-step prediction error, this bound can be quite loose.

2.1 Hallucinated one-step prediction error

s1 s2 s3 s4 ...

Training example:
s ,3 s 4a 3

a) Standard

s1 s2 s3 s4 ...

Training example:
z ,3 s 4a 3

b) Self-correcting

z2

z3

z4
...

Sampled from
environment

Sampled from model

Sampled from
environment a 3a 2a 1

a 3a 2a1

a 3

a 2

a 1

Figure 2: a) Predict next state from environment
state b) Predict next state from model state

We now seek to define a measure of a model’s ability to “self correct”
and then to bound the value error using that quantity. Specifically,
we shall derive a bound based on a model’s ability to predict the
next environment state, given a state sampled from the model’s own
predictions. For a policy π and state-action distribution ξ let J tξ,π
represent the joint distribution over environment and model state-
action pairs if π is executed in both simultaneously. That is, let
J tξ,π(s, a, z, b) = E(s′,a′)∼ξ[D

t
s′,a′,π(s, a)D̂t

s′,a′,π(z, b)].
Lemma 3. For any policy π and state-action distribution ξ,
εξ,π,Tval ≤M

∑T−1
t=1 γtE(s,a,z,b)∼Jtξ,π

[
‖P as − P̂ bz ‖1

]
.

This bound suggests an alternative approach to training the model.
In Figure 2a, the typical approach is illustrated: train the model to
predict the next state, given the current environment state. In contrast, as illustrated in Figure 2b, this bound suggests
rolling the model and the environment out in parallel, and then training the model to predict the next state (s4), given
the current, incorrect model state (z3). Multiple recent results indicate that training models in this way can significantly
improve long-range predictions (Venkatraman et al., 2015; Oh et al., 2015) and control performance (Talvitie, 2014; Venka-
traman et al., 2016). This work adds to the theoretical understanding of those observations. Inspired by the “Hallucinated
Replay” meta-algorithm (Talvitie, 2014), we call the quantity on the right the hallucinated one-step error.

2.2 Limitations of Hallucinated Error

Having formalized hallucinated one-step error, we can now see that Lemma 3 is loose in some cases. Note that, regardless
of the policy, the multi-step and one-step error of a perfect model is 0. This is not always so for hallucinated error. The
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hallucinated one-step error of a perfect model may be non-zero if P is non-deterministic. Consider a simple MDP with
three states {s0, sh, st} and a single action a. In the initial state s0, a fair coin is flipped, transitioning to sh or st with equal
probability, where it stays forever. Consider a perfect model P̂ = P . Then J1

s0,a(sh, a, st, a) = P as0(sh)P as0(st) = 0.25.
However, |P ash(sh)− P ast(sh)| = 1− 0 = 1. Thus, the hallucinated one-step error of a perfect model is non-zero.

Here the environment samples heads and the model samples tails. Given its own state, the model rightly predicts
tails, but incurs hallucinated error nevertheless since the environment’s next state is heads. Because the model and
environment dynamics are uncoupled, one cannot distinguish between model error and legitimately different stochastic
outcomes. As such, the hallucinated error is misleading when the true dynamics are stochastic.

While it may seem limiting to restrict our attention to deterministic environments, this is still a large, rich class of prob-
lems. For instance, Oh et al. (2015) learned models of Atari 2600 games, which are fully deterministic; human players
often perceive them as stochastic due to their complexity. Similarly, we shall assume that the environment is deterministic
but complex, so a limited agent will learn an imperfect, stochastic model.

That said, even specialized to deterministic environments, the bound in Lemma 3 is loose for arbitrary policies. To see
this, alter the coin MDP, giving the agent two actions which fully determine the coin’s orientation. The original dynamics
can be recovered via a stochastic policy that randomly selects sh or st and then leaves the coin alone.

2.3 A Tighter Bound

In the remainder of the paper we assume that the environment is deterministic. Let σa1:ts be the unique state that results
from starting in state s and taking the action sequence a1:t. The agent’s model will still be stochastic.

Recall that our goal is to bound the value error under the one-ply MC rollout policy. The previous section argued that
hallucinated error gives a loose bound under arbitrary policies. We now focus on blind rollout policies (Bowling et al.,
2006). A blind policy depends only on the action history, i.e. π(at | st, a1:t−1) = π(at | a1:t−1). This class of policies ranges
from stateless policies to open-loop action sequences. It includes the uniform random policy, a common rollout policy.

Under these assumptions we can develop an alternative form for the hallucinated error that does provide a tight bound.
For any blind policy π and state-action distribution ξ, let Ht

ξ,π be the distribution over environment state, model state,
and action if a single action sequence is sampled from π and then executed in both the model and the environment. So,
H1
ξ,π(s1, z1, a1) = ξ(s1, a1) when z1 = s1 (0 otherwise); H2

ξ,π(s2, z2, a2) = E(s1,a1)∼ξ[π(a2 | a1)P a1s1 (s2)P̂ a1s1 (zs)]; and for

t > 2, Ht
ξ,π(st, zt, at) = E(s1,a1)∼ξ

[∑
a2:t−1

π(a2:t | a1)P
a1:t−1
s1 (st)P̂

a1:t−1
s1 (zt)

]
.

Theorem 4. If P is deterministic, then for any blind policy π and any state-action distribution ξ,
εξ,π,Tval ≤ 2M

∑T−1
t=1 γtE(s,z,a)∼Htξ,π

[
1− P̂ az (σas )

]
≤ 2M

1−γ
∑T−1
t=1 (γt − γT )E(s,a)∼Dtξ,π

[
1− P̂ as (σas )

]
.

The far right quantity is the bound from Lemma 2, specialized to the deterministic setting. Thus, under these assump-
tions, the hallucinated one-step error is more tightly related to MBRL performance than the standard one-step error.

3 Hallucinated DAgger-MC

The “Data Aggregator” (DAgger) algorithm (Ross and Bagnell, 2012) was the first practically implementable MBRL
algorithm with performance guarantees agnostic to the model class. It did, however, require that the planner be near
optimal. DAgger-MC (Talvitie, 2015) relaxed this assumption, accounting for the limitations of the planner that uses the
model (one-ply MC). This section reports the results of augmenting DAgger-MC to optimize hallucinated one-step error,
rather than one-step prediction error, resulting in the Hallucinated DAgger-MC algorithm, or H-DAgger-MC.

In addition to assuming a particular form for the planner (one-ply MC with a blind rollout policy), H-DAgger-MC
assumes that the model will be “unrolled” (similar to, e.g. Abbeel et al. 2006). Rather than learning a single model P̂ ,
H-DAgger-MC learns a set of models {P̂ 1, . . . , P̂T−1} ⊆ C, where model P̂ i predicts the outcome of step i of a rollout,
given the state sampled from P̂ i−1 as input. The importance of learning an unrolled model will be discussed below.

H-DAgger-MC inherits the agnostic guarantees of DAgger-MC, and, due to Theorem 4, gives a tighter performance
bound. In brief, if 1) the model-learning algorithm is no-regret, 2) the exploration policy visits states that a good policy
would visit, 3) the model class contains a model for each rollout depth with low hallucinated error, and 4) one-ply MC
would perform well with a perfect model, then H-DAgger-MC will yield a good policy. It is important to note, however,
that this result does not promise that H-DAgger-MC will eventually learn the best performing set of models in the class.
The model at each rollout depth is trained to minimize prediction error given the input distribution provided by the
shallower models. Note, however, that changing the parameters of a model at one depth alters the training distribution
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for deeper models. It is possible that better overall error could be achieved by increasing the prediction error at one depth
in exchange for a favorable state distribution for deeper models. This effect is not taken into account by H-DAgger-MC.

3.1 Empirical Illustration
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Figure 3: Empirical results with H-
DAgger-MC.

In this section we illustrate the practical impact of optimizing hallucinated error by
comparing DAgger, DAgger-MC, and H-DAgger-MC in the Shooter example. The
experimental setup matches that of Talvitie (2015) for comparison’s sake, though
the qualitative comparison is robust to the parameter settings.

In Figure 3a the bullseyes move so C does not contain a perfect model. Both DAg-
ger and DAgger-MC fail to learn a model useful for planning while H-DAgger-
MC is able to perform well. In Figure 3b the bullseyes have fixed positions, so C
does contain a perfect model. DAgger still performs poorly due to the suboptimal
planner. DAgger-MC outperforms H-DAgger-MC; the noisy training examples
in H-DAgger-MC slow down learning. Theoretically the model should become
perfectly accurate in the limit, though in practice it may do so very slowly.

Figure 3c shows results using H-DAgger-MC with a single model across time-
steps (rather than an “unrolled” model) in Shooter with fixed bullseyes. Train-
ing rollouts have been truncated to various depths. We see that in this case good
performance cannot be guaranteed, even though the model class contains a per-
fect model. Recall from Section 3 that changing the model parameters impacts
both prediction error and the future training distribution. Furthermore, training
examples generated by deep rollouts may contain highly flawed samples as in-
puts. Sometimes attempting to “correct” a large error (i.e. reduce prediction error)
causes additional, even worse errors in the next iteration (i.e. harms the training
distribution). With a single model across timesteps, a feedback loop can emerge:
the model parameters change to attempt to correct errors, thereby causing larger
errors, and so on. This feedback loop causes the observed performance crash.
With an unrolled model the parameters of each sub-model cannot impact that sub-
model’s own training distribution, ensuring stability. That said, this experiment
also shows that truncating training rollouts can mitigate the negative feedback
loop, though there is no theoretical guidance for rollout depth at this time.

4 Conclusion

In order to use learned models for planning/control in large, complex problems, it is critical to be able to learn models
that are inaccurate and also useful for planning. This work introduces hallucinated one-step error which, under some
conditions, is a better measure of a model’s usefulness for planning than one-step prediction error. By optimizing the
hallucinated error, the Hallucinated DAgger-MC algorithm is able to succeed even in the face of model limitations.
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