
HMC CS Technical Report CS-2011-1: Faster
Dynamic Programming Algorithms for the

Cophylogeny Reconstruction Problem

A. Yodpinyanee B. Cousins J. Peebles T. Schramm
R. Libeskind-Hadas

Abstract

The cophylogeny reconstruction problem is fundamental in the study of
coevolution. Although the problem is known to be NP-complete (Libeskind-
Hadas & Charleston 2009, Ovadia, Fielder, Conow & Libeskind-Hadas 2011),
several software tools have been developed that solve small instances optimally
(e.g. TreeMap) or use heuristics to efficiently find good, but not necessarily
optimal, solutions (e.g. TreeFitter, Tarzan, Jane, CoRe-PA). The latter ap-
proaches generally use dynamic programming (DP) algorithms that, while not
identical, are fundamentally similar. In this paper we describe a new general
“edge-based” dynamic programming approach that is substantially more effi-
cient than existing approaches. The new edge-based approach can be used in
lieu of the DP steps in existing systems, improving running time and obtaining
equally good solutions. For example, the O(n3) DP in the CoRe-PA system
can be replaced by a O(n2) edge-based DP and the O(n7) DP step in the Jane
1 cophylogeny tool has been replaced by O(n3) “edge-based” DP in Jane 2
(Jane n.d.), where n is the number of nodes in each tree.

1 Introduction

The cophylogeny reconstruction problem seeks to reconcile pairs of phylogenetic trees
in order to understand the evolutionary history of two groups. The problem arises
in parasitology (hosts and parasites), molecular systematics (genes and species), and
biosystematics (areas and organisms). In this problem, we are given two phylogenetic
trees and the mappings between their tips, representing associations of extant species.
The objective is to map one tree onto the other, minimizing a weighted sum of four

1



Harvey Mudd College Computer Science Technical Report CS-2011-1

types of biologically plausible events – called cospeciation, duplication, host switch,
and loss – that are induced by the mapping.

Since the underlying computational problem is NP-complete (Libeskind-Hadas
& Charleston 2009, Ovadia et al. 2011), existing approaches either find optimal
solutions in exponential worst-case time or use fast heuristics that find good, but not
necessarily optimal, solutions. An example of the former approach is the “jungles”
method employed in TreeMap (Charleston 1998, Charleston & Page n.d.). Heuristics
are used in TreeFitter (Ronquist 1998, Ronquist n.d.), Tarzan (Merkle & Middendorf
2005, Merkle & Middendorf n.d.), Jane (Conow, Fielder, Ovadia & Libeskind-Hadas
2010, Jane n.d.), and CoRe-PA (Merkle, Middendorf & Wieseke 2010, CoRe-PA n.d.).

A common feature of many heuristics is that they either relax the constraints of
the problem or impose additional constraints. Under certain changes in constraints,
the reconstruction problem can be solved optimally in polynomial time using dynamic
programming techniques. For example, Tarzan and CoRe-PA relax the constraint on
where host switch events can occur and this variant of the problem is solved using
a O(n3) dynamic program, where n denotes the number of nodes in each of the two
trees. This approach generally finds good solutions very quickly. However, such
unconstrained host switches may lead to invalid solutions such as solutions in which
one speciation event occurs before an ancestral event. In contrast, Jane ensures that
all solutions found are valid solutions by imposing a relative ordering (or “timing”)
of the speciation events in the host tree and forcing host switch events to comply
with this timing information. Under this constraint, Jane’s dynamic programming
algorithm finds an optimal solution in time O(n7). However, there are an exponential
number of possible timings and thus Jane can only explore a subset of the solution
space. Other similar dynamic programming ideas were described even earlier by
Ronquist (Ronquist 1995, Ronquist 1998) and used in TreeFitter (Ronquist n.d.).
Interestingly, all of these dynamic programming algorithms work in fundamentally
the same way, with small variations due to the nature of the differences in constraints.

In this paper, we describe a more efficient general dynamic programming (DP)
technique for cophylogeny reconstruction that can be used in place of the DPs used in
existing heuristics. For example, the O(n3) DP used in CoRe-PA can be replaced by
a O(n2) DP and the O(n7) DP used in Jane can be replaced by a O(n3) DP.1 Finally,
this approach can be easily adapted to add functionality such as preferential host
switching, among others, indicating that it is may be of utility in future cophylogeny
tools.

1The new DP is used in Jane 2.



Harvey Mudd College Computer Science Technical Report CS-2011-1

2 Preliminaries

Let H = (VH , EH) and P = (VP , EP ) denote two phylogenetic trees, henceforth
referred to as the host and parasite trees, respectively. Each of these trees has an
extra node connected by an edge to what would normally be the root of the tree. In
the host tree, this node and edge are denoted vH and eH , respectively, whereas in
the parasite tree they are denoted vP and eP . These node/edge pairs are referred to
as “handles” of their respective trees. A handle is required in the host tree in order
to account for evolutionary events that predate the most recent common ancestor in
the phylogenetic tree. A handle is required in the parasite tree due to the particular
nature of our dynamic programming approach. A host tree and parasite tree with
their respective handles are shown in Figure 1(a).

The internal vertices, other than the handle vertices vH and vP , represent speci-
ation events and edges represent the historical “lifetimes” of the taxa. The leaves,
or “tips”, represent the current (extant) taxa and a mapping φ from the tips of P to
the tips of H represents the occurrence of the current parasites on the current host
species. For simplicity of exposition, we assume that the two trees have the same
number of tips – and thus the same number of total nodes, henceforth denoted n –
and that φ is a bijection (and thus maps each extant parasite species to a unique
extant host species). These assumptions can be relaxed with only modest changes
required to the algorithms described here. Figure 1(a) uses dashed lines to illustrate
a tip mapping between a host and parasite tree.

The objective of the Cophylogeny Reconstruction Problem is to find a mapping
Φ of the vertices of P to the vertices and edges of H such that Φ extends φ (i.e. is
consistent with the observed current tip mapping) and can be constructed from four
biologically plausible types of “events”: cospeciation, duplication, host switch, and
loss. Cospeciation maps a node of the parasite tree onto a node of the host tree
while duplication maps a node of the parasite tree onto an edge of the host tree. A
duplication event may also be paired with a contemporaneous host switch event in
which exactly one of the children of the parasite node “switches” hosts and is mapped
to a different subtree in the host tree. The point at which the duplication occurs is
called the takeoff site and the point at which the switched child is mapped is called
the landing site. Finally, a loss event arises when a parasite p and its child p′ are
mapped to two locations in the host tree and the edge from p to p′ passes through a
host node. For the host/parasite pair and tip mapping shown in Figure 1(a), these
events are illustrated in two different possible mappings in Figures 1(b) and (c).
Each of the four event types is assigned a numerical cost and the objective is to find
a mapping of the parasite tree onto the host tree that minimizes the total cost of the



Harvey Mudd College Computer Science Technical Report CS-2011-1

a

b

c
d

f

a

b

c

d

f

cospeciation

loss

duplication
with host switch

f

d

b

c

a

duplication

loss

cospeciation

loss

loss

vH

eH

vP

e P

(a)

(b) (c)

Figure 1: (a) A host tree (black) and parasite tree (gray) with the tip mapping shown
with dotted lines. (b) and (c) Two different mappings of the parasite tree onto the
host tree with event labeled by type.

events in that mapping.2

The Cophylogeny Reconstruction Problem is solvable by a greedy algorithm in
time O(n) if host switches are not permitted. However, host switch events are biologi-
cally important and cannot be disregarded. Unfortunately, the problem becomes NP-
complete in the presence of host switches (Libeskind-Hadas & Charleston 2009, Ova-
dia et al. 2011). Host switch events can lead to complex timing relationships between
events. Figure 2(a) shows how a set of host switch events can result in a solution
that is not valid because the times of the events are not reconcilable. In effect, the

2Several slightly different schemes are used in the literature and software tools for accounting
for event costs.. For simplicity of exposition, and without loss of generality, we use a scheme in
which the cost of a host switch includes the cost of the concomitant duplication event.



Harvey Mudd College Computer Science Technical Report CS-2011-1

precedence relationships of the host switches contains a cycle, implying that some
event occurs before itself. In this example, event a involves a host switch to b, and
thus b occurs at the same time or after a. Event c occurs strictly after b and event d
occurs at the same time or after c. Finally, event a occurs strictly after d, and thus
by transitivity event a occurs after itself. Such a set of host switch events is called
“strongly incompatible.” In other cases, a set of host switch events may cause timing
inconsistencies that can be resolved by moving the landing sites of one or more host
switches to an earlier time at the expense of adding extra loss events. Such a set of
switching events is called “weakly incompatible.” Figure 2(b) shows a set of associa-
tions with weakly incompatible host switches and Figure 2(c) shows how these host
switches can be modified to construct a valid mapping. Unfortunately, the problem
of finding the optimal way to repair a weakly incompatible solution by moving the
landing sites is also known to be NP-complete (Merkle & Middendorf 2005).

The CoRe-PA and Jane tools differ in the way that they deal with host switching
and the concomitant incompatibilities that can arise. CoRe-PA uses an “optimistic”
approach that allows any host switches to be made. By relaxing the time com-
patibility constraints on host switches, a dynamic programming algorithm can find
an optimal solution in time O(n3). After the dynamic programming algorithm has
found a solution, CoRe-PA tests to see if the solution has timing incompatibilities,
in which case it can either discard the solution or attempt to repair it by moving
landing sites if it is a weak incompatibility. Since the problem of optimally moving
landing sites is NP-compelte, a heuristic must be used for that step, resulting in
potentially suboptimal solutions.

In contrast, Jane adds additional constraints to the problem to ensure that no
timing incompatibilities can occur. Specifically, Jane imposes an ordering on the
relative times of the internal nodes of the host tree. Such an ordering is called a
timing. Figure 3 shows two different timings for the same host tree. For a given
timing we can enforce that a host switch that takes off from one edge of the host
tree must land at another edge that is present at the same time, thus ensuring that
no timing incompatibilities arise. For a given timing, a O(n7) dynamic programming
algorithm is used to find an optimal solution (Conow et al. 2010). Since there are
an exponential number of possible timings, Jane uses a metaheuristic that searches
through a sample of timings and finds the optimal solution for each one. Thus, Jane
constructs valid, but not necessarily optimal, solutions.

The dynamic programming algorithms employed by TreeFitter, CoRe-PA, and
Jane are very similar and are documented in detail in earlier papers (Conow et al.
2010, Merkle et al. 2010, Ronquist 1998). For completeness, however, we sketch the
common basic idea here. For simplicity, consider the case that no timing information



Harvey Mudd College Computer Science Technical Report CS-2011-1

a

bc

d

t

u

v

a

b c

d

t

u

v

a

bc

d

t

u

v

(a)

(b) (c)

w

x

y

z

w

x

y

z

w

x

y

z

Figure 2: (a) A strongly incompatible set of host switches. (b) A weakly incompatible
set of host switches. (c) A modification of the solution in (b) that eliminates the
timing incompatibility.



Harvey Mudd College Computer Science Technical Report CS-2011-1

1 2 3 4 5 6

A

B

D

E

C

1 2 3 4 5 6

A

B

D

E

C

Figure 3: Two different orderings of the same host tree.

is used for the host tree. Let vp denote a node in the parasite tree. Let eh denote
an edge in the host tree and let vh denote the end node of that edge (the node
representing the end of that lineage). Let C(vp, vh) and C(vp, eh) denote the cost of
an optimal solution for the subproblem comprising the subtree of the parasite tree
rooted at node vp under the assumption that vp is associated with node vh or with
edge eh, respectively. The cost function C is, in practice, a dynamic programming
table.

The dynamic program begins by computing and storing the base case costs
C(vp, vh) for all pairs of tips vp and vh. If parasite tip vp is associated with host
tip vh, that is φ(vp) = vh, then the cost is 0 and otherwise it is ∞. Now, the DP
moves up the parasite tree, considering a node vp only after the costs have been
computed for all descendants of vp. The algorithm computes C(vp, vh) and C(vp, eh)
as follows: C(vp, vh) implies a cospeciation event and is computed as the sum of the
cospeciation event cost added to the least cost of placing each of the two children
of vp on descendant vertices or edges of host node vh. To this end, we examine all
of the possible pairs of locations in the subtree of vh where the two children of vp

could be mapped. For each such placement, the costs of mapping the subtrees of
the children of vp can be found by examining previously computed values of the DP
table C since the costs C have already been computed for all descendants of vp. In
addition, some number of losses may be induced by the paths from vp to each of its
two children for this candidate mapping. By iterating over each possible mapping,



Harvey Mudd College Computer Science Technical Report CS-2011-1

the optimal value is found and stored.
Similarly, C(vp, eh) corresponds to placing parasite node vp on host edge eh,

implying that either a duplication or a duplication with host switch occurs at this
point. These costs are computed analogously to the cospeciation case: The algorithm
examines each possible combination of locations where the two children of vp could
be placed under either a duplication or a duplication with host switch. For each such
placement, the costs of those placements are found in the DP table C and the costs
of a duplication (or duplication with host switch) are added along with the costs of
any losses induced by this placement. By iterating over all possible valid placements,
the optimal value of C(vp, eh) is computed.

When the DP is complete, we look at all of the cells in the DP table corresponding
to placing the root of the parasite tree at all possible locations (vertices and edges)
of the host tree. The best of these costs is the optimal cost (although, as mentioned
earlier, this solution may have timing incompatibilities).

There are O(n) parasite nodes and O(n) host nodes and edges. Thus, the DP
table C has O(n2) entries to be completed. As each entry is computed, we may
need to consider all possible placements of the two parasite children vertices on the
host tree. Since the host tree has O(n) vertices and edges, this amounts to checking
O(
(

n
2

)
) = O(n2) table entries, for a total of O(n4) time. A clever optimization

proposed in (Merkle et al. 2010) reduces the running time to O(n3).
We call this a vertex-based dynamic program since it maps vertices of the parasite

tree onto the host tree. In contrast, the new faster approach described in the next
section is edge-based : It operates exclusively on edges, mapping edges of the parasite
tree onto edges of the host tree. By operating on edges rather than vertices, optimal
solutions can be found much more efficiently. In the next section we describe the
edge-based approach for untimed trees, reducing the running time from O(n3) to
O(n2). In Section 4 we show how this method can be extended to the situation
when the host tree has a given timing, reducing the running time to find an optimal
mapping from O(n7) to O(n3).

3 Edge-Based Dynamic Programming

The edge-based dynamic programming approach seeks to map edges of the parasite
tree onto edges of the host tree. Let costco, costdup, costswitch, and costloss denote
the non-negative costs associated with cospeciation, duplication, host switch, and
loss, respectively. (Since a host switch takes place with a duplication, we assume
that costswitch is the total cost of both the duplication and the switch and thus
costswitch ≥ costdup.) Let ep denote an edge of the parasite tree. Let vp denote



Harvey Mudd College Computer Science Technical Report CS-2011-1

!"# $"#$"#

!%#$%# $%#

!"# $"#$"#

!%#$%# $%#

!"# $"#$"#

!%#$%# $%#

!"#$ !%#$ !&#$

Figure 4: Three ways in which edge parasite edge ep can be placed on host edge eh.
Time goes from left to right. In placements (b) and (c), edge ep is alive at vh. In
placement (c), edge ep continues on some edge beginning at vh.

the start node of that edge and let vp denote the end node of that edge. Similarly,
let eh denote an edge of the host tree and let vh and vh denote its start and end
vertices, respectively. Henceforth, we denote the children edges of ep (those with
start vertex vp) by ep1 and ep2 and the children edges of eh (those with start vertex
vh) by eh1 and eh2 . The tree rooted at ep is defined to be the subtree of the parasite
tree comprising edge ep and all descendant vertices and edges. Note that ep can be
viewed as a handle of the binary tree rooted at the end node of ep.

We say that parasite edge ep is placed on host edge eh if vp is mapped onto edge
eh at or after vh but not at the end node vh. In this case, edge ep may terminate
on edge eh or may terminate later on some other edge. We say that edge ep is alive
at vh if ep and vh overlap. In other words, parasite lineage ep is present at the time
of the host speciation event vh. In this case, edge ep may terminate at vh or may
terminate later on some other edge. These scenarios are depicted in Figure 4.

Let C(ep, eh) denote the optimal cost of a mapping of the subtree of the parasite
tree rooted at ep such that ep is placed on eh. Let A(ep, eh) denote the optimal cost
of a mapping of the subtree of the parasite tree rooted at ep such that ep is placed
on eh and edge ep is alive at vh. (The name A is intended to indicate the “aliveness”
property.) Unlike the vertex-based approach, the edge-based approach uses two DP
tables, one for C and one for A. Computing entries for one table requires previously
computed entries in the other.

By definition, the cost of an optimal solution is mineh∈EH
C(eP , eh). In other

words, we wish to find the least expensive mapping of the subtree of the parasite
tree rooted at its handle, eP , over all possible edges eh.

The algorithm computes the C and A tables by considering edges in the parasite
tree bottom-up (henceforth referred to as postorder): An edge ep is considered if



Harvey Mudd College Computer Science Technical Report CS-2011-1

!"# $"#$"#

!%#$%# $%#

!"# $"#$"#

!%#$%#

!"#$ !%#$

Figure 5: (a) vp cospeciates with vh. (b) vp continues beyond vh and incurs a loss at
vh.

either vp is a tip or the children edges ep1 and ep2 have already been considered (and
thus all C(epi

, ·) and A(epi
, ·) values have been previously computed for i ∈ {1, 2}).

For each edge ep under consideration, we now consider each edge eh in the host tree
in postorder, so that eh is considered if either vh is a tip or the children edges eh1

and eh2 have already been considered.
The values A(ep, eh) are computed as follows. If vh is a tip then

A(ep, eh) =

{
0 if vp is a tip and φ(vp) = vh

∞ otherwise

Next, consider the case that vh is not a tip. If ep is alive at vh then either ep

terminates at vh, and thus vp cospeciates with vh, or ep continues beyond vh and
incurs a loss at vh. These scenarios are illustrated in Figure 5. Therefore,

A(ep, eh) = min{Co(ep, eh),Loss(ep, eh)}

where

Co(ep, eh) =

 costco + min

{
C(ep1 , eh1) + C(ep2 , eh2),
C(ep1 , eh2) + C(ep2 , eh1)

}
if vp is not a tip

∞ otherwise

and

Loss(ep, eh) =

{
costloss + min{C(ep, eh1), C(ep, eh2)} ep 6= eP

0 otherwise



Harvey Mudd College Computer Science Technical Report CS-2011-1

!"# $"#$"#

!%#$%#

!"#$

!"# $"#$"#

!%#$%#

!%#$

!"# $"#$"#

!&#$

!%#$%#

Figure 6: (a) ep reaches vh. (b) ep duplicates on eh. (c) ep duplicates with host
switch on eh.

The cospeciation term considers both ways in which the children edges of ep can be
mapped onto the children edges of eh in a cospeciation event, unless vp is a tip in
which case cospeciation is not possible. The loss term considers both ways in which
edge ep can continue, either on one child of eh or the other. However, in the special
case that ep is the handle of the parasite tree, eP , no losses should be incurred since
vP does not correspond to a speciation event.

The values C(ep, eh) are computed as follows. If ep is placed on eh then ep may
reach vh, it may duplicate on eh, or it may duplicate and host switch on eh. The three
cases are illustrated in Figure 6. The best solution in the first case is, by definition,
A(ep, eh). Thus,

C(ep, eh) = min{A(ep, eh),Dup(ep, eh),Switch(ep, eh)}

where

Dup(ep, eh) =

{
costdup + C(ep1 , eh) + C(ep2 , eh) if vp is not a tip
∞ otherwise

and

Switch(ep, eh) =

 costswitch + min

{
C(ep1 , eh) + Best(ep2),
C(ep2 , eh) + Best(ep1)

}
if vp is not a tip

∞ otherwise

where
Best(e) = min

eh∈EH

C(e, eh)

The host switch term accounts for one of the two child edges of ep remaining in the
subtree rooted at eh while the other child edge switches to the best possible host



Harvey Mudd College Computer Science Technical Report CS-2011-1

edge; the host edge that incurs the least cost, indicated by the function Best. Since
C(ep1 , eh) and C(ep2 , eh) were computed for every eh in a previous iteration of the
dynamic program, we can compute Best(ep1) and Best(ep2) during those iterations.

The algorithm is summarized in Algorithm 1, where the edges in each of the two
trees are visited in postorder to satisfy the requirement that an edge is considered only
after its children edges have been considered. The worst-case asymptotic running

for each parasite edge ep ∈ EP in postorder do
Best(ep) =∞
for each host edge eh ∈ EH in postorder do

Compute A(ep, eh)
Compute C(ep, eh)
Best(ep) = min{Best(ep), C(ep, eh)}

end

end

Algorithm 1: The edge-based DP algorithm.

time of this algorithm is O(n2) since each of the two loops is performed O(n) times
and each computation in the inner loop can be performed in constant time by looking
up precomputed entries in the DP tables. Once the algorithm is complete, we can
find the cost of an optimal solution by computing mineh∈EH

C(eP , eh) in O(n) time.
If we wish to reconstruct an optimal solution, the DP tables can be annotated in
the standard way, allowing the solutions to be reconstructed by tracing through the
table. Note that if we wish only to compute the optimal cost then table A need
not be stored in its entirety since A(ep, eh) is only used when computing C(ep, eh).
Thus, we can discard each entry of A immediately after using it to compute the
corresponding entry of C.

4 Edge-Based Dynamic Programming for Host Trees

with Timings

In this section we extend the edge-based dynamic program for timed host trees (e.g.
as used in Jane). Recall that n denotes the total number of nodes in each of the two
trees. Thus, there are n − 1 nodes in the host tree excluding the handle node vH .
Therefore, there are n/2− 1 internal nodes in the host tree, excluding vH . A timing
of the host tree is a one-to-one mapping of the integers 1, . . . , n/2− 1 to the n/2− 1
internal nodes of the host tree such that each node is assigned a smaller number (i.e.



Harvey Mudd College Computer Science Technical Report CS-2011-1

an earlier “time”) than all of its descendants. Thus, a timing represents a possible
ordering of the speciation events in the host tree. All of the tips are assumed to
occur at current time and thus they all receive time n/2. The handle node vH is
assigned time 0.

The objective of the cophylogeny problem with timing is to find a mapping of
the parasite tree onto the timed host tree such that for each host switch event, the
takeoff and landing sites of the host switch are contemporaneous. In this way, the
mapping is assured to contain no timing incompatibilities. Specifically, for each node
in the parasite tree, the mapping must specify both its location in the host tree and
the integer time t or an open interval (t − 1, t) where that node is placed, where
t ≥ 1. While cospeciation events necessarily occur at integer times t (since these
are the times associated with host speciation events), without loss of generality all
duplications and host switches occur on edges and thus in open intervals (t − 1, t).
For a host switch with takeoff site in interval (t − 1, t) the landing site must be on
another edge in the same interval.

We say that a host edge eh spans the time interval (t− 1, t) if its starting vertex
vh occurs at or before time t − 1 and its ending vertex occurs at or after time t. A
parasite edge ep is said to be placed on host edge eh just prior to time t if edge eh

spans the time interval (t − 1, t) and the start node vp of edge ep is mapped onto
edge eh at time t − 1 or in the time interval (t − 1, t) as depicted in Figure 7. Let
C(ep, eh, t) denote the optimal cost of a mapping of the subtree of the parasite tree
rooted at ep such that ep is placed on eh just prior to time t. Let A(ep, eh, t) denote
the optimal cost of a mapping of the subtree of the parasite tree rooted at ep such
that ep is placed on eh just prior to time t and edge ep is alive at time t.

By definition, the cost of an optimal solution is mineh∈EH ,t∈[1,n/2]C(eP , eh, t). In
other words, we wish to find the least expensive mapping of the subtree of the parasite
tree rooted at its handle, eP , over all possible edges eh at all possible times.

We compute the entries of C and A similarly to the untimed case, but now
using three nested loops: The outer loop iterates over time in decreasing order. The
next loop iterates over parasite edges from bottom-up (postorder). The innermost
loop iterates over host edges in postorder. The structure of the algorithm is shown
in Algorithm 2 where Best(ep, t) represents the best possible cost of a solution in
which edge ep is placed on a host edge just prior to time t.

We now examine the computations in detail. The first time t that must be
considered is n/2, the time associated with tip events. At time n/2, the values of A
are computed as

A(ep, eh, n/2) =

{
0 if vh and vp are tips and φ(vp) = vh

∞ otherwise



Harvey Mudd College Computer Science Technical Report CS-2011-1

!"#

!"#$

!$#

!%#$

&'($%&'# &'($%#

!"#

!$#

&'($%&'# &'($%#

Figure 7: The two ways that parasite edge ep can be placed on host edge eh just
prior to time t. (a) The edge begins at time t− 1. (b) The edge begins in the open
interval (t− 1, t).

for each time t in descending order do
for each parasite edge ep ∈ EP in postorder do

Best(ep, t) =∞
for each host edge eh ∈ EH in postorder do

Compute A(ep, eh, t)
Compute C(ep, eh, t)
Best(ep, t) = min{Best(ep, t), C(ep, eh, t)}

end

end

end

Algorithm 2: The edge-based DP algorithm for timed host trees.



Harvey Mudd College Computer Science Technical Report CS-2011-1

In general, A(ep, eh, t) is computed using one of two cases, depending on whether vh

occurs at time t or not. If vh occurs at time t then either vp occurs at time t (inducing
a cospeciation event if vp is not a tip) or vp occurs at a later time (inducing a loss at
vh). Thus,

A(ep, eh, t) = min(Co(ep, eh, t),Loss(ep, eh, t))

where

Co(ep, eh, t) =

 costco + min

{
C(ep1 , eh1 , t+ 1) + C(ep2 , eh2 , t+ 1),
C(ep1 , eh2 , t+ 1) + C(ep2 , eh1 , t+ 1)

}
if vp is not a tip

∞ otherwise

and

Loss(ep, eh, t) =

{
costloss + min{C(ep, eh1 , t+ 1), C(ep, eh2 , t+ 1)} ep 6= eP

0 otherwise

If vh does not occur at time t then A(ep, eh, t) = C(ep, eh, t+ 1).
Next, we compute C(ep, eh, t). Edge ep may pass through the interval (t − 1, t)

or may be involved in either a duplication or duplication with host switch in this
interval. Thus,

C(ep, eh, t) = min{A(ep, eh, t),Dup(ep, eh, t),Switch(ep, eh, t)}

where

Dup(ep, eh, t) =

{
costdup + C(ep1 , eh, t) + C(ep2 , eh, t) if vp is not a tip
∞ otherwise

and

Switch(ep, eh) =

 costswitch + min

{
C(ep1 , eh, t) + Best(ep2 , t)
C(ep2 , eh, t) + Best(ep1 , t)

}
if vp is not a tip

∞ otherwise

where
Best(e, t) = min

eh∈EH

C(e, eh, t).

The worst-case asymptotic running time of this algorithm is O(n3) since each of the
loops is performed O(n) times and each computation in the body of the inner loop
can be performed in constant time by looking up precomputed entries in the DP
tables. As in the untimed case, the table can be annotated to reconstruct optimal
solutions. If only the cost of an optimal solution is desired then table A requires only
O(1) space since the value A(ep, eh, t) is only used when computing C(ep, eh, t).



Harvey Mudd College Computer Science Technical Report CS-2011-1

5 Conclusions

In this paper we have described a new dynamic programming formulation for cophy-
logeny reconstruction. The approach differs from previous DP solutions by examining
the placement of edges of the parasite tree onto the host tree rather than placement
of vertices of the parasite tree onto the host tree. In the case of untimed trees, the
running time improves from O(n3) to O(n2). In the case of timed trees, the running
time improves from O(n7) to O(n3). This approach is evidently quite general and
can be used in lieu of vertex-based dynamic programming in a number of different
heuristics for the cophylogeny reconstruction problem.

Acknowledgements

This work was supported by the U.S. National Science Foundation under grant
0753306 to Harvey Mudd College and by the Howard Hughes Medical Institute under
grant 52006301 to Harvey Mudd College. RLH thanks Dr. Michael Charleston for
many fruitful discussions on the cophylogeny problem.

References

Charleston, M. (1998), ‘Jungles: A new solution to the hostparasite phylogeny rec-
onciliation problem’, Mathematical Biosciences 149, 191–223.

Charleston, M. & Page, R. D. M. (n.d.), ‘TreeMap’. http://www.it.usyd.edu.au/

~mcharles/software/treemap/treemap.html.

Conow, C., Fielder, D., Ovadia, Y. & Libeskind-Hadas, R. (2010), ‘Jane: A new
tool for cophylogeny reconstruction problem’, Algorithms for Molecular Biology
5(16). http://www.almob.org/content/5/1/16.

CoRe-PA (n.d.). http://pacosy.informatik.uni-leipzig.de/pv/Software/

CoRe-PA/CoRe-PA-index.engl.html.

Jane (n.d.). http://www.cs.hmc.edu/~hadas/jane.

Libeskind-Hadas, R. & Charleston, M. (2009), ‘On the computational complexity of
the reticulate cophylogeny reconstruction problem’, Journal of Computational
Biology 16(1), 105–117.



Harvey Mudd College Computer Science Technical Report CS-2011-1

Merkle, D. & Middendorf, M. (2005), ‘Reconstruction of the cophylogenetic history
of related phylogenetic trees with divergence timing information’, Theory of
Biosciences 123(4), 277–299.

Merkle, D. & Middendorf, M. (n.d.), ‘Tarzan’. http://pacosy.informatik.

uni-leipzig.de/pv/Software/Tarzan/PV-Tarzan.engl.html.

Merkle, D., Middendorf, M. & Wieseke, N. (2010), ‘A parameter-adaptive dynamic
programming approach for inferring cophylogenies’, BMC Bioinformatics 11.

Ovadia, Y., Fielder, D., Conow, C. & Libeskind-Hadas, R. (2011), ‘The cophy-
logeny reconstruction problem is NP-complete’, Journal of Computational Bi-
ology 18(1), 59–65.

Ronquist, F. (1995), ‘Reconstructing the history of host-parasite associations using
generalized parsimony’, Cladistics 11, 73–89.

Ronquist, F. (1998), ‘Three-dimensional cost matrix optimisation and maximum
cospeciation’, Cladistics 14, 167–172.

Ronquist, F. (n.d.), ‘TreeFitter’. http://www.ebc.uu.se/systzoo/research/

treefitter/treefitter.html.


