Worksheet Activity: More on Binary Numbers

1. Another interesting property of binary numbers is what happens when a zero is put on the right hand side of the number. If we are working in base 10 (decimal), when you put a zero on the right hand side of the number, it is multiplied by 10 . For example, 9 becomes 90, 30 becomes 300 .

But what happens when you put a 0 on the right of a binary number? Try this:

$1001 \rightarrow 10010$

(9)
(?)
Make up some others to test your hypothesis. What is the rule? Why do you think this happens?
2. Each of the cards we have used so far represents a 'bit' on the computer ('bit' is short for 'binary digit'). So our alphabet code we have used so far can be represented using just five cards, or 'bits'. However a computer has to know whether letters are capitals or not, and also recognise digits, punctuation and special symbols such as $\$$ or \sim.

Go and look at a keyboard and work out how many characters a computer has to represent. So how many bits does a computer need to store all the characters?

Most computers today use a representation called ASCII (American Standard Code for Information Interchange), which is based on using this number of bits per character, but some non-English speaking countries have to use longer codes.

