Binary Numbers

Introduction

Before giving out the worksheet on page 5, it can be helpful to demonstrate the principles to the whole group.

For this activity, you will need a set of five cards, as shown below, with dots on one side and nothing on the other. Choose five children to hold the demonstration cards at the front of the class. The cards should be in the following order:

Discussion

What do you notice about the number of dots on the cards? (Each card has twice as many as the card to its right.)

How many dots would the next card have if we carried on to the left? (32) The next...?
We can use these cards to make numbers by turning some of them face down and adding up the dots that are showing. Ask the children to make 6 (4-dot and 2-dot cards), then 15 (8-, 4-, 2- and 1-dot cards), then 21 (16, 4 and 1)...

Now try counting from zero onwards.
The rest of the class needs to look closely at how the cards change to see if they can see a pattern in how the cards flip (each card flips half as often as the one to its right). You may like to try this with more than one group.

When a binary number card is not showing, it is represented by a zero. When it is showing, it is represented by a one. This is the binary number system.

Ask the children to make 01001 . What number is this in decimal? (9) What would 17 be in binary? (10001)

Try a few more until they understand the concept.
There are five optional follow-up extension activities, to be used for reinforcement. The children should do as many of them as they can.

What's it all about?

Computers today use the binary system to represent information. It is called binary because only two different digits are used. It is also known as base two (humans normally use base 10). Each zero or one is called a bit (binary digit). A bit is usually represented in a computer's main memory by a transistor that is switched on or off, or a capacitor that is charged or discharged.

When data must be transmitted over a telephone line or radio link, high and low-pitched tones are used for the ones and zeros. On magnetic disks (floppy disks and hard disks) and tapes, bits are represented by the direction of a magnetic field on a coated surface, either North-South or South-North.

N N SISNMSISMISNMS

Audio CDs, CD-ROMs and DVDs store bits optically-the part of the surface corresponding to a bit either does or does not reflect light.

One bit on its own can't represent much, so they are usually grouped together in groups of eight, which can represent numbers from 0 to 255 . A group of eight bits is called a byte.

The speed of a computer depends on the number of bits it can process at once. For example, a 32 -bit computer can process 32 -bit numbers in one operation, while a 16 -bit computer must break 32 -bit numbers down into smaller pieces, making it slower.

Ultimately bits and bytes are all that a computer uses to store and transmit numbers, text, and all other information. In some of the later activities we will see how other kinds of information can be represented on a computer.

BEWARE!
Miss flexi-Toes is a trained professional!
Not everyone's toes
bend so essily!

