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Meaningful Names
by Tim Ottinger

Introduction

Names are everywhere in software. We name our variables, our functions, our arguments,
classes, and packages. We name our source files and the directories that contain them. We
name our jar files and war files and ear files. We name and name and name. Because we do
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so much of it, we’d better do it well. What follows are some simple rules for creating
good names.

Use Intention-Revealing Names

It is easy to say that names should reveal intent. What we want to impress upon you is that
we are serious about this. Choosing good names takes time but saves more than it takes.
So take care with your names and change them when you find better ones. Everyone who
reads your code (including you) will be happier if you do.

The name of a variable, function, or class, should answer all the big questions. It
should tell you why it exists, what it does, and how it is used. If a name requires a com-
ment, then the name does not reveal its intent. 

int d; // elapsed time in days

The name d reveals nothing. It does not evoke a sense of elapsed time, nor of days. We
should choose a name that specifies what is being measured and the unit of that measure-
ment:

int elapsedTimeInDays;
int daysSinceCreation;
int daysSinceModification;
int fileAgeInDays;

Choosing names that reveal intent can make it much easier to understand and change
code. What is the purpose of this code?

  public List<int[]> getThem() {
    List<int[]> list1 = new ArrayList<int[]>();
    for (int[] x : theList)
      if (x[0] == 4) 
        list1.add(x);
    return list1;
  }

Why is it hard to tell what this code is doing? There are no complex expressions.
Spacing and indentation are reasonable. There are only three variables and two constants
mentioned. There aren’t even any fancy classes or polymorphic methods, just a list of
arrays (or so it seems).

The problem isn’t the simplicity of the code but the implicity of the code (to coin a
phrase): the degree to which the context is not explicit in the code itself. The code implic-
itly requires that we know the answers to questions such as:

1. What kinds of things are in theList?

2. What is the significance of the zeroth subscript of an item in theList?

3. What is the significance of the value 4?

4. How would I use the list being returned?
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The answers to these questions are not present in the code sample, but they could have
been. Say that we’re working in a mine sweeper game. We find that the board is a list of
cells called theList. Let’s rename that to gameBoard.

Each cell on the board is represented by a simple array. We further find that the zeroth
subscript is the location of a status value and that a status value of 4 means “flagged.” Just
by giving these concepts names we can improve the code considerably:

  public List<int[]> getFlaggedCells() {
    List<int[]> flaggedCells = new ArrayList<int[]>();
    for (int[] cell : gameBoard)
      if (cell[STATUS_VALUE] == FLAGGED)
        flaggedCells.add(cell);
    return flaggedCells;
  }

Notice that the simplicity of the code has not changed. It still has exactly the same number
of operators and constants, with exactly the same number of nesting levels. But the code
has become much more explicit.

We can go further and write a simple class for cells instead of using an array of ints.
It can include an intention-revealing function (call it isFlagged) to hide the magic num-
bers. It results in a new version of the function:

  public List<Cell> getFlaggedCells() {
    List<Cell> flaggedCells = new ArrayList<Cell>();
    for (Cell cell : gameBoard)
      if (cell.isFlagged())
        flaggedCells.add(cell);
    return flaggedCells;
  }

With these simple name changes, it’s not difficult to understand what’s going on. This is
the power of choosing good names.

Avoid Disinformation

Programmers must avoid leaving false clues that obscure the meaning of code. We should
avoid words whose entrenched meanings vary from our intended meaning. For example,
hp, aix, and sco would be poor variable names because they are the names of Unix plat-
forms or variants. Even if you are coding a hypotenuse and hp looks like a good abbrevia-
tion, it could be disinformative.

Do not refer to a grouping of accounts as an accountList unless it’s actually a List.
The word list means something specific to programmers. If the container holding the
accounts is not actually a List, it may lead to false conclusions.1 So accountGroup or
bunchOfAccounts or just plain accounts would be better.

1. As we’ll see later on, even if the container is a List, it’s probably better not to encode the container type into the name. 
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Beware of using names which vary in small ways. How long does it take to spot the
subtle difference between a XYZControllerForEfficientHandlingOfStrings in one module
and, somewhere a little more distant, XYZControllerForEfficientStorageOfStrings? The
words have frightfully similar shapes.

Spelling similar concepts similarly is information. Using inconsistent spellings is dis-
information. With modern Java environments we enjoy automatic code completion. We

write a few characters of a name and press some hotkey combination (if that) and are

rewarded with a list of possible completions for that name. It is very helpful if names for

very similar things sort together alphabetically and if the differences are very obvious,

because the developer is likely to pick an object by name without seeing your copious

comments or even the list of methods supplied by that class.

A truly awful example of disinformative names would be the use of lower-case L or
uppercase O as variable names, especially in combination. The problem, of course, is that
they look almost entirely like the constants one and zero, respectively.

int a = l;
if ( O == l )
  a = O1;
else
  l = 01;

The reader may think this a contrivance, but we have examined code where such
things were abundant. In one case the author of the code suggested using a different font
so that the differences were more obvious, a solution that would have to be passed down to
all future developers as oral tradition or in a written document. The problem is conquered
with finality and without creating new work products by a simple renaming.

Make Meaningful 
Distinctions

Programmers create problems for them-
selves when they write code solely to sat-
isfy a compiler or interpreter. For example,
because you can’t use the same name to refer
to two different things in the same scope,
you might be tempted to change one name
in an arbitrary way. Sometimes this is done by misspelling one, leading to the surprising
situation where correcting spelling errors leads to an inability to compile.2

It is not sufficient to add number series or noise words, even though the compiler is
satisfied. If names must be different, then they should also mean something different.

2. Consider, for example, the truly hideous practice of creating a variable named klass just because the name class was used 
for something else.
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Number-series naming (a1, a2, .. aN) is the opposite of intentional naming. Such
names are not disinformative—they are noninformative; they provide no clue to the
author’s intention. Consider:

  public static void copyChars(char a1[], char a2[]) {
    for (int i = 0; i < a1.length; i++) {
      a2[i] = a1[i]; 
    }
  }

This function reads much better when source and destination are used for the argument
names.

Noise words are another meaningless distinction. Imagine that you have a Product
class. If you have another called ProductInfo or ProductData, you have made the names dif-
ferent without making them mean anything different. Info and Data are indistinct noise
words like a, an, and the.

Note that there is nothing wrong with using prefix conventions like a and the so long
as they make a meaningful distinction. For example you might use a for all local variables
and the for all function arguments.3 The problem comes in when you decide to call a vari-
able theZork because you already have another variable named zork.

Noise words are redundant. The word variable should never appear in a variable
name. The word table should never appear in a table name. How is NameString better than
Name? Would a Name ever be a floating point number? If so, it breaks an earlier rule about
disinformation. Imagine finding one class named Customer and another named
CustomerObject. What should you understand as the distinction? Which one will represent
the best path to a customer’s payment history?

There is an application we know of where this is illustrated. we’ve changed the names
to protect the guilty, but here’s the exact form of the error:

getActiveAccount();
getActiveAccounts();
getActiveAccountInfo();

How are the programmers in this project supposed to know which of these functions to call?

In the absence of specific conventions, the variable moneyAmount is indistinguishable
from money, customerInfo is indistinguishable from customer, accountData is indistinguish-
able from account, and theMessage is indistinguishable from message. Distinguish names in
such a way that the reader knows what the differences offer.

Use Pronounceable Names

Humans are good at words. A significant part of our brains is dedicated to the concept of
words. And words are, by definition, pronounceable. It would be a shame not to take

3. Uncle Bob used to do this in C++ but has given up the practice because modern IDEs make it unnecessary.
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advantage of that huge portion of our brains that has evolved to deal with spoken lan-
guage. So make your names pronounceable.

If you can’t pronounce it, you can’t discuss it without sounding like an idiot. “Well,
over here on the bee cee arr three cee enn tee we have a pee ess zee kyew int, see?” This
matters because programming is a social activity.

A company I know has genymdhms (generation date, year, month, day, hour, minute,
and second) so they walked around saying “gen why emm dee aich emm ess”. I have an
annoying habit of pronouncing everything as written, so I started saying “gen-yah-mudda-
hims.” It later was being called this by a host of designers and analysts, and we still
sounded silly. But we were in on the joke, so it was fun. Fun or not, we were tolerating
poor naming. New developers had to have the variables explained to them, and then they
spoke about it in silly made-up words instead of using proper English terms. Compare

class DtaRcrd102 {
private Date genymdhms; 
private Date modymdhms;
private final String pszqint = "102";
/* ... */

};

to

class Customer {
private Date generationTimestamp; 
private Date modificationTimestamp;;
private final String recordId = "102";
/* ... */

};

Intelligent conversation is now possible: “Hey, Mikey, take a look at this record! The gen-
eration timestamp is set to tomorrow’s date! How can that be?”

Use Searchable Names

Single-letter names and numeric constants have a particular problem in that they are not
easy to locate across a body of text.

One might easily grep for MAX_CLASSES_PER_STUDENT, but the number 7 could be more
troublesome. Searches may turn up the digit as part of file names, other constant defini-
tions, and in various expressions where the value is used with different intent. It is even
worse when a constant is a long number and someone might have transposed digits,
thereby creating a bug while simultaneously evading the programmer’s search.

Likewise, the name e is a poor choice for any variable for which a programmer might
need to search. It is the most common letter in the English language and likely to show up
in every passage of text in every program. In this regard, longer names trump shorter
names, and any searchable name trumps a constant in code.

My personal preference is that single-letter names can ONLY be used as local vari-
ables inside short methods. The length of a name should correspond to the size of its scope
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[N5]. If a variable or constant might be seen or used in multiple places in a body of code,
it is imperative to give it a search-friendly name. Once again compare

for (int j=0; j<34; j++) {
s += (t[j]*4)/5;

}

to

int realDaysPerIdealDay = 4;
const int WORK_DAYS_PER_WEEK = 5;
int sum = 0;
for (int j=0; j < NUMBER_OF_TASKS; j++) {

int realTaskDays = taskEstimate[j] * realDaysPerIdealDay;
int realTaskWeeks = (realdays / WORK_DAYS_PER_WEEK);
sum += realTaskWeeks;

}

Note that sum, above, is not a particularly useful name but at least is searchable. The

intentionally named code makes for a longer function, but consider how much easier it

will be to find WORK_DAYS_PER_WEEK than to find all the places where 5 was used and filter

the list down to just the instances with the intended meaning.

Avoid Encodings

We have enough encodings to deal with without adding more to our burden. Encoding
type or scope information into names simply adds an extra burden of deciphering. It
hardly seems reasonable to require each new employee to learn yet another encoding “lan-
guage” in addition to learning the (usually considerable) body of code that they’ll be work-
ing in. It is an unnecessary mental burden when trying to solve a problem. Encoded names
are seldom pronounceable and are easy to mis-type.

Hungarian Notation

In days of old, when we worked in name-length-challenged languages, we violated this
rule out of necessity, and with regret. Fortran forced encodings by making the first letter a
code for the type. Early versions of BASIC allowed only a letter plus one digit. Hungarian
Notation (HN) took this to a whole new level.

HN was considered to be pretty important back in the Windows C API, when every-
thing was an integer handle or a long pointer or a void pointer, or one of several implemen-
tations of “string” (with different uses and attributes). The compiler did not check types in
those days, so the programmers needed a crutch to help them remember the types. 

In modern languages we have much richer type systems, and the compilers remember
and enforce the types. What’s more, there is a trend toward smaller classes and shorter
functions so that people can usually see the point of declaration of each variable they’re
using.

Christopher A. Stone
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