
Clean Code
A Handbook of Agile

Software Craftsmanship

The Object Mentors:
Robert C. Martin

Michael C. Feathers Timothy R. Ottinger
Jeffrey J. Langr Brett L. Schuchert

James W. Grenning Kevin Dean Wampler
Object Mentor Inc.

Writing clean code is what you must do in order to call yourself a professional.
There is no reasonable excuse for doing anything less than your best.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Christopher A. Stone

17

2

Meaningful Names
by Tim Ottinger

Introduction

Names are everywhere in software. We name our variables, our functions, our arguments,
classes, and packages. We name our source files and the directories that contain them. We
name our jar files and war files and ear files. We name and name and name. Because we do

18 Chapter 2: Meaningful Names

so much of it, we’d better do it well. What follows are some simple rules for creating
good names.

Use Intention-Revealing Names

It is easy to say that names should reveal intent. What we want to impress upon you is that
we are serious about this. Choosing good names takes time but saves more than it takes.
So take care with your names and change them when you find better ones. Everyone who
reads your code (including you) will be happier if you do.

The name of a variable, function, or class, should answer all the big questions. It
should tell you why it exists, what it does, and how it is used. If a name requires a com-
ment, then the name does not reveal its intent.

int d; // elapsed time in days

The name d reveals nothing. It does not evoke a sense of elapsed time, nor of days. We
should choose a name that specifies what is being measured and the unit of that measure-
ment:

int elapsedTimeInDays;
int daysSinceCreation;
int daysSinceModification;
int fileAgeInDays;

Choosing names that reveal intent can make it much easier to understand and change
code. What is the purpose of this code?

 public List<int[]> getThem() {
 List<int[]> list1 = new ArrayList<int[]>();
 for (int[] x : theList)
 if (x[0] == 4)
 list1.add(x);
 return list1;
 }

Why is it hard to tell what this code is doing? There are no complex expressions.
Spacing and indentation are reasonable. There are only three variables and two constants
mentioned. There aren’t even any fancy classes or polymorphic methods, just a list of
arrays (or so it seems).

The problem isn’t the simplicity of the code but the implicity of the code (to coin a
phrase): the degree to which the context is not explicit in the code itself. The code implic-
itly requires that we know the answers to questions such as:

1. What kinds of things are in theList?

2. What is the significance of the zeroth subscript of an item in theList?

3. What is the significance of the value 4?

4. How would I use the list being returned?

19Avoid Disinformation

The answers to these questions are not present in the code sample, but they could have
been. Say that we’re working in a mine sweeper game. We find that the board is a list of
cells called theList. Let’s rename that to gameBoard.

Each cell on the board is represented by a simple array. We further find that the zeroth
subscript is the location of a status value and that a status value of 4 means “flagged.” Just
by giving these concepts names we can improve the code considerably:

 public List<int[]> getFlaggedCells() {
 List<int[]> flaggedCells = new ArrayList<int[]>();
 for (int[] cell : gameBoard)
 if (cell[STATUS_VALUE] == FLAGGED)
 flaggedCells.add(cell);
 return flaggedCells;
 }

Notice that the simplicity of the code has not changed. It still has exactly the same number
of operators and constants, with exactly the same number of nesting levels. But the code
has become much more explicit.

We can go further and write a simple class for cells instead of using an array of ints.
It can include an intention-revealing function (call it isFlagged) to hide the magic num-
bers. It results in a new version of the function:

 public List<Cell> getFlaggedCells() {
 List<Cell> flaggedCells = new ArrayList<Cell>();
 for (Cell cell : gameBoard)
 if (cell.isFlagged())
 flaggedCells.add(cell);
 return flaggedCells;
 }

With these simple name changes, it’s not difficult to understand what’s going on. This is
the power of choosing good names.

Avoid Disinformation

Programmers must avoid leaving false clues that obscure the meaning of code. We should
avoid words whose entrenched meanings vary from our intended meaning. For example,
hp, aix, and sco would be poor variable names because they are the names of Unix plat-
forms or variants. Even if you are coding a hypotenuse and hp looks like a good abbrevia-
tion, it could be disinformative.

Do not refer to a grouping of accounts as an accountList unless it’s actually a List.
The word list means something specific to programmers. If the container holding the
accounts is not actually a List, it may lead to false conclusions.1 So accountGroup or
bunchOfAccounts or just plain accounts would be better.

1. As we’ll see later on, even if the container is a List, it’s probably better not to encode the container type into the name.

20 Chapter 2: Meaningful Names

Beware of using names which vary in small ways. How long does it take to spot the
subtle difference between a XYZControllerForEfficientHandlingOfStrings in one module
and, somewhere a little more distant, XYZControllerForEfficientStorageOfStrings? The
words have frightfully similar shapes.

Spelling similar concepts similarly is information. Using inconsistent spellings is dis-
information. With modern Java environments we enjoy automatic code completion. We

write a few characters of a name and press some hotkey combination (if that) and are

rewarded with a list of possible completions for that name. It is very helpful if names for

very similar things sort together alphabetically and if the differences are very obvious,

because the developer is likely to pick an object by name without seeing your copious

comments or even the list of methods supplied by that class.

A truly awful example of disinformative names would be the use of lower-case L or
uppercase O as variable names, especially in combination. The problem, of course, is that
they look almost entirely like the constants one and zero, respectively.

int a = l;
if (O == l)
 a = O1;
else
 l = 01;

The reader may think this a contrivance, but we have examined code where such
things were abundant. In one case the author of the code suggested using a different font
so that the differences were more obvious, a solution that would have to be passed down to
all future developers as oral tradition or in a written document. The problem is conquered
with finality and without creating new work products by a simple renaming.

Make Meaningful
Distinctions

Programmers create problems for them-
selves when they write code solely to sat-
isfy a compiler or interpreter. For example,
because you can’t use the same name to refer
to two different things in the same scope,
you might be tempted to change one name
in an arbitrary way. Sometimes this is done by misspelling one, leading to the surprising
situation where correcting spelling errors leads to an inability to compile.2

It is not sufficient to add number series or noise words, even though the compiler is
satisfied. If names must be different, then they should also mean something different.

2. Consider, for example, the truly hideous practice of creating a variable named klass just because the name class was used
for something else.

21Use Pronounceable Names

Number-series naming (a1, a2, .. aN) is the opposite of intentional naming. Such
names are not disinformative—they are noninformative; they provide no clue to the
author’s intention. Consider:

 public static void copyChars(char a1[], char a2[]) {
 for (int i = 0; i < a1.length; i++) {
 a2[i] = a1[i];
 }
 }

This function reads much better when source and destination are used for the argument
names.

Noise words are another meaningless distinction. Imagine that you have a Product
class. If you have another called ProductInfo or ProductData, you have made the names dif-
ferent without making them mean anything different. Info and Data are indistinct noise
words like a, an, and the.

Note that there is nothing wrong with using prefix conventions like a and the so long
as they make a meaningful distinction. For example you might use a for all local variables
and the for all function arguments.3 The problem comes in when you decide to call a vari-
able theZork because you already have another variable named zork.

Noise words are redundant. The word variable should never appear in a variable
name. The word table should never appear in a table name. How is NameString better than
Name? Would a Name ever be a floating point number? If so, it breaks an earlier rule about
disinformation. Imagine finding one class named Customer and another named
CustomerObject. What should you understand as the distinction? Which one will represent
the best path to a customer’s payment history?

There is an application we know of where this is illustrated. we’ve changed the names
to protect the guilty, but here’s the exact form of the error:

getActiveAccount();
getActiveAccounts();
getActiveAccountInfo();

How are the programmers in this project supposed to know which of these functions to call?

In the absence of specific conventions, the variable moneyAmount is indistinguishable
from money, customerInfo is indistinguishable from customer, accountData is indistinguish-
able from account, and theMessage is indistinguishable from message. Distinguish names in
such a way that the reader knows what the differences offer.

Use Pronounceable Names

Humans are good at words. A significant part of our brains is dedicated to the concept of
words. And words are, by definition, pronounceable. It would be a shame not to take

3. Uncle Bob used to do this in C++ but has given up the practice because modern IDEs make it unnecessary.

22 Chapter 2: Meaningful Names

advantage of that huge portion of our brains that has evolved to deal with spoken lan-
guage. So make your names pronounceable.

If you can’t pronounce it, you can’t discuss it without sounding like an idiot. “Well,
over here on the bee cee arr three cee enn tee we have a pee ess zee kyew int, see?” This
matters because programming is a social activity.

A company I know has genymdhms (generation date, year, month, day, hour, minute,
and second) so they walked around saying “gen why emm dee aich emm ess”. I have an
annoying habit of pronouncing everything as written, so I started saying “gen-yah-mudda-
hims.” It later was being called this by a host of designers and analysts, and we still
sounded silly. But we were in on the joke, so it was fun. Fun or not, we were tolerating
poor naming. New developers had to have the variables explained to them, and then they
spoke about it in silly made-up words instead of using proper English terms. Compare

class DtaRcrd102 {
private Date genymdhms;
private Date modymdhms;
private final String pszqint = "102";
/* ... */

};

to

class Customer {
private Date generationTimestamp;
private Date modificationTimestamp;;
private final String recordId = "102";
/* ... */

};

Intelligent conversation is now possible: “Hey, Mikey, take a look at this record! The gen-
eration timestamp is set to tomorrow’s date! How can that be?”

Use Searchable Names

Single-letter names and numeric constants have a particular problem in that they are not
easy to locate across a body of text.

One might easily grep for MAX_CLASSES_PER_STUDENT, but the number 7 could be more
troublesome. Searches may turn up the digit as part of file names, other constant defini-
tions, and in various expressions where the value is used with different intent. It is even
worse when a constant is a long number and someone might have transposed digits,
thereby creating a bug while simultaneously evading the programmer’s search.

Likewise, the name e is a poor choice for any variable for which a programmer might
need to search. It is the most common letter in the English language and likely to show up
in every passage of text in every program. In this regard, longer names trump shorter
names, and any searchable name trumps a constant in code.

My personal preference is that single-letter names can ONLY be used as local vari-
ables inside short methods. The length of a name should correspond to the size of its scope

23Avoid Encodings

[N5]. If a variable or constant might be seen or used in multiple places in a body of code,
it is imperative to give it a search-friendly name. Once again compare

for (int j=0; j<34; j++) {
s += (t[j]*4)/5;

}

to

int realDaysPerIdealDay = 4;
const int WORK_DAYS_PER_WEEK = 5;
int sum = 0;
for (int j=0; j < NUMBER_OF_TASKS; j++) {

int realTaskDays = taskEstimate[j] * realDaysPerIdealDay;
int realTaskWeeks = (realdays / WORK_DAYS_PER_WEEK);
sum += realTaskWeeks;

}

Note that sum, above, is not a particularly useful name but at least is searchable. The

intentionally named code makes for a longer function, but consider how much easier it

will be to find WORK_DAYS_PER_WEEK than to find all the places where 5 was used and filter

the list down to just the instances with the intended meaning.

Avoid Encodings

We have enough encodings to deal with without adding more to our burden. Encoding
type or scope information into names simply adds an extra burden of deciphering. It
hardly seems reasonable to require each new employee to learn yet another encoding “lan-
guage” in addition to learning the (usually considerable) body of code that they’ll be work-
ing in. It is an unnecessary mental burden when trying to solve a problem. Encoded names
are seldom pronounceable and are easy to mis-type.

Hungarian Notation

In days of old, when we worked in name-length-challenged languages, we violated this
rule out of necessity, and with regret. Fortran forced encodings by making the first letter a
code for the type. Early versions of BASIC allowed only a letter plus one digit. Hungarian
Notation (HN) took this to a whole new level.

HN was considered to be pretty important back in the Windows C API, when every-
thing was an integer handle or a long pointer or a void pointer, or one of several implemen-
tations of “string” (with different uses and attributes). The compiler did not check types in
those days, so the programmers needed a crutch to help them remember the types.

In modern languages we have much richer type systems, and the compilers remember
and enforce the types. What’s more, there is a trend toward smaller classes and shorter
functions so that people can usually see the point of declaration of each variable they’re
using.

Christopher A. Stone

	Clean Code
	Contents
	Foreword
	Introduction
	On the Cover
	Chapter 1: Clean Code
	There Will Be Code
	Bad Code
	The Total Cost of Owning a Mess
	The Grand Redesign in the Sky
	Attitude
	The Primal Conundrum
	The Art of Clean Code?
	What Is Clean Code?

	Schools of Thought
	We Are Authors
	The Boy Scout Rule
	Prequel and Principles
	Conclusion
	Bibliography

	Chapter 2: Meaningful Names
	Introduction
	Use Intention-Revealing Names
	Avoid Disinformation
	Make Meaningful Distinctions
	Use Pronounceable Names
	Use Searchable Names
	Avoid Encodings
	Hungarian Notation
	Member Prefixes
	Interfaces and Implementations

	Avoid Mental Mapping
	Class Names
	Method Names
	Don't Be Cute
	Pick One Word per Concept
	Don't Pun
	Use Solution Domain Names
	Use Problem Domain Names
	Add Meaningful Context
	Don't Add Gratuitous Context
	Final Words

	Chapter 3: Functions
	Small!
	Blocks and Indenting

	Do One Thing
	Sections within Functions

	One Level of Abstraction per Function
	Reading Code from Top to Bottom: The Stepdown Rule

	Switch Statements
	Use Descriptive Names
	Function Arguments
	Common Monadic Forms
	Flag Arguments
	Dyadic Functions
	Triads
	Argument Objects
	Argument Lists
	Verbs and Keywords

	Have No Side Effects
	Output Arguments

	Command Query Separation
	Prefer Exceptions to Returning Error Codes
	Extract Try/Catch Blocks
	Error Handling Is One Thing
	The Error.java Dependency Magnet

	Don't Repeat Yourself
	Structured Programming
	How Do You Write Functions Like This?
	Conclusion
	SetupTeardownIncluder
	Bibliography

	Chapter 4: Comments
	Comments Do Not Make Up for Bad Code
	Explain Yourself in Code
	Good Comments
	Legal Comments
	Informative Comments
	Explanation of Intent
	Clarification
	Warning of Consequences
	TODO Comments
	Amplification
	Javadocs in Public APIs

	Bad Comments
	Mumbling
	Redundant Comments
	Misleading Comments
	Mandated Comments
	Journal Comments
	Noise Comments
	Scary Noise
	Don't Use a Comment When You Can Use a Function or a Variable
	Position Markers
	Closing Brace Comments
	Attributions and Bylines
	Commented-Out Code
	HTML Comments
	Nonlocal Information
	Too Much Information
	Inobvious Connection
	Function Headers
	Javadocs in Nonpublic Code
	Example

	Bibliography

	Chapter 5: Formatting
	The Purpose of Formatting
	Vertical Formatting
	The Newspaper Metaphor
	Vertical Openness Between Concepts
	Vertical Density
	Vertical Distance
	Vertical Ordering

	Horizontal Formatting
	Horizontal Openness and Density
	Horizontal Alignment
	Indentation
	Dummy Scopes

	Team Rules
	Uncle Bob's Formatting Rules

	Chapter 6: Objects and Data Structures
	Data Abstraction
	Data/Object Anti-Symmetry
	The Law of Demeter
	Train Wrecks
	Hybrids
	Hiding Structure

	Data Transfer Objects
	Active Record

	Conclusion
	Bibliography

	Chapter 7: Error Handling
	Use Exceptions Rather Than Return Codes
	Write Your Try-Catch-Finally Statement First
	Use Unchecked Exceptions
	Provide Context with Exceptions
	Define Exception Classes in Terms of a Caller's Needs
	Define the Normal Flow
	Don't Return Null
	Don't Pass Null
	Conclusion
	Bibliography

	Chapter 8: Boundaries
	Using Third-Party Code
	Exploring and Learning Boundaries
	Learning log4j
	Learning Tests Are Better Than Free
	Using Code That Does Not Yet Exist
	Clean Boundaries
	Bibliography

	Chapter 9: Unit Tests
	The Three Laws of TDD
	Keeping Tests Clean
	Tests Enable the -ilities

	Clean Tests
	Domain-Specific Testing Language
	A Dual Standard

	One Assert per Test
	Single Concept per Test

	F.I.R.S.T.
	Conclusion
	Bibliography

	Chapter 10: Classes
	Class Organization
	Encapsulation

	Classes Should Be Small!
	The Single Responsibility Principle
	Cohesion
	Maintaining Cohesion Results in Many Small Classes

	Organizing for Change
	Isolating from Change

	Bibliography

	Chapter 11: Systems
	How Would You Build a City?
	Separate Constructing a System from Using It
	Separation of Main
	Factories
	Dependency Injection

	Scaling Up
	Cross-Cutting Concerns

	Java Proxies
	Pure Java AOP Frameworks
	AspectJ Aspects
	Test Drive the System Architecture
	Optimize Decision Making
	Use Standards Wisely, When They Add Demonstrable Value
	Systems Need Domain-Specific Languages
	Conclusion
	Bibliography

	Chapter 12: Emergence
	Getting Clean via Emergent Design
	Simple Design Rule 1: Runs All the Tests
	Simple Design Rules 2–4: Refactoring
	No Duplication
	Expressive
	Minimal Classes and Methods
	Conclusion
	Bibliography

	Chapter 13: Concurrency
	Why Concurrency?
	Myths and Misconceptions

	Challenges
	Concurrency Defense Principles
	Single Responsibility Principle
	Corollary: Limit the Scope of Data
	Corollary: Use Copies of Data
	Corollary: Threads Should Be as Independent as Possible

	Know Your Library
	Thread-Safe Collections

	Know Your Execution Models
	Producer-Consumer
	Readers-Writers
	Dining Philosophers

	Beware Dependencies Between Synchronized Methods
	Keep Synchronized Sections Small
	Writing Correct Shut-Down Code Is Hard
	Testing Threaded Code
	Treat Spurious Failures as Candidate Threading Issues
	Get Your Nonthreaded Code Working First
	Make Your Threaded Code Pluggable
	Make Your Threaded Code Tunable
	Run with More Threads Than Processors
	Run on Different Platforms
	Instrument Your Code to Try and Force Failures
	Hand-Coded
	Automated

	Conclusion
	Bibliography

	Chapter 14: Successive Refinement
	Args Implementation
	How Did I Do This?

	Args: The Rough Draft
	So I Stopped
	On Incrementalism

	String Arguments
	Conclusion

	Chapter 15: JUnit Internals
	The JUnit Framework
	Conclusion

	Chapter 16: Refactoring SerialDate
	First, Make It Work
	Then Make It Right
	Conclusion
	Bibliography

	Chapter 17: Smells and Heuristics
	Comments
	C1: Inappropriate Information
	C2: Obsolete Comment
	C3: Redundant Comment
	C4: Poorly Written Comment
	C5: Commented-Out Code

	Environment
	E1: Build Requires More Than One Step
	E2: Tests Require More Than One Step

	Functions
	F1: Too Many Arguments
	F2: Output Arguments
	F3: Flag Arguments
	F4: Dead Function

	General
	G1: Multiple Languages in One Source File
	G2: Obvious Behavior Is Unimplemented
	G3: Incorrect Behavior at the Boundaries
	G4: Overridden Safeties
	G5: Duplication
	G6: Code at Wrong Level of Abstraction
	G7: Base Classes Depending on Their Derivatives
	G8: Too Much Information
	G9: Dead Code
	G10: Vertical Separation
	G11: Inconsistency
	G12: Clutter
	G13: Artificial Coupling
	G14: Feature Envy
	G15: Selector Arguments
	G16: Obscured Intent
	G17: Misplaced Responsibility
	G18: Inappropriate Static
	G19: Use Explanatory Variables
	G20: Function Names Should Say What They Do
	G21: Understand the Algorithm
	G22: Make Logical Dependencies Physical
	G23: Prefer Polymorphism to If/Else or Switch/Case
	G24: Follow Standard Conventions
	G25: Replace Magic Numbers with Named Constants
	G26: Be Precise
	G27: Structure over Convention
	G28: Encapsulate Conditionals
	G29: Avoid Negative Conditionals
	G30: Functions Should Do One Thing
	G31: Hidden Temporal Couplings
	G32: Don't Be Arbitrary
	G33: Encapsulate Boundary Conditions
	G34: Functions Should Descend Only One Level of Abstraction
	G35: Keep Congurable Data at High Levels
	G36: Avoid Transitive Navigation

	Java
	J1: Avoid Long Import Lists by Using Wildcards
	J2: Don't Inherit Constants
	J3: Constants versus Enums

	Names
	N1: Choose Descriptive Names
	N2: Choose Names at the Appropriate Level of Abstraction
	N3: Use Standard Nomenclature Where Possible
	N4: Unambiguous Names
	N5: Use Long Names for Long Scopes
	N6: Avoid Encodings
	N7: Names Should Describe Side-Effects

	Tests
	T1: Insufficient Tests
	T2: Use a Coverage Tool!
	T3: Don't Skip Trivial Tests
	T4: An Ignored Test Is a Question about an Ambiguity
	T5: Test Boundary Conditions
	T6: Exhaustively Test Near Bugs
	T7: Patterns of Failure Are Revealing
	T8: Test Coverage Patterns Can Be Revealing
	T9: Tests Should Be Fast

	Conclusion
	Bibliography

	Appendix A: Concurrency II
	Client/Server Example
	The Server
	Adding Threading
	Server Observations
	Conclusion

	Possible Paths of Execution
	Number of Paths
	Digging Deeper
	Conclusion

	Knowing Your Library
	Executor Framework
	Nonblocking Solutions
	Nonthread-Safe Classes

	Dependencies Between Methods Can Break Concurrent Code
	Tolerate the Failure
	Client-Based Locking
	Server-Based Locking

	Increasing Throughput
	Single-Thread Calculation of Throughput
	Multithread Calculation of Throughput

	Deadlock
	Mutual Exclusion
	Lock & Wait
	No Preemption
	Circular Wait
	Breaking Mutual Exclusion
	Breaking Lock & Wait
	Breaking Preemption
	Breaking Circular Wait

	Testing Multithreaded Code
	Tool Support for Testing Thread-Based Code
	Conclusion
	Tutorial: Full Code Examples
	Client/Server Nonthreaded
	Client/Server Using Threads

	Appendix B: org.jfree.date.SerialDate
	Appendix C: Cross References of Heuristics
	Epilogue
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

