
	

	 	

CS	105	
Lab	2:	Debugger	

Playing	with	X86-64	Assembly	

Introduction	and	Goals	
NOTE:	This	lab	must be	run	on	Wilkes.	If	you	run	it	on	a	different	machine,	you	may	get	incorrect	answers.	
	

The	goals	of	this	assignment	are	to	do	some	basic	investigation	of	the	x86-64	architecture	and	assembly	
language,	and	to	begin	learning	how	to	use	the	debugger	gdb.	You	can	read	the	manual	page	for	gdb by	
typing	“man gdb”	on	the	command	line.1	You	can	scroll	up	and	down	in	the	manual	page	using	the	space	
bar	or	the	up/down	and	page-up/page-down	keys,	and	can	exit	by	pressing	the	“q”	key.	The	lab	Web	page	
also	 has	 links	 to	 a	 quick	 summary	 and	 to	 a	 printable	 gdb reference	 card;	 you	 can	 also	 Hind	 other	
information	about	gdb with	Google	or	another	favorite	search	engine.	

Optimizing	your	learning.	In	this	lab,	we	will	frequently	tell	you	to	type	certain	gdb commands.	Please	
pay	attention	to	those	commands;	don’t	just	blindly	copy	them	from	the	handout	without	thinking	about	
them.	In	each	case,	we	have	carefully	selected	them	because	they	will	be	useful	to	you	in	this	lab,	in	later	
labs,	and	in	life.	Facility	with	the	debugger	is	an	extremely	valuable	skill	for	a	computer	scientist;	you	can	
Hind	and	Hix	bugs	far	more	quickly	with	the	debugger’s	help	than	by	inserting	print	statements	or	staring	at	
the	code.2	

Compiler	options.	It	will	be	useful	to	know	that	you	can	get	the	compiler	to	generate	the	assembler	source	
for	a	program	foo by	running	“gcc -S foo.c”.	You	should	also	know	that	to	use	the	debugger	effectively,	
you	will	need	to	compile	with	the	“-g”	switch.	In	fact,	you	should	just	get	in	the	habit	of	always	compiling	
with	“-g”;	the	situations	where	it’s	undesirable	are	extremely	unusual.	(But	note	that	-S and	-g are	best	
kept	separate.)	Also,	it’s	usually	wise	to	compile	with	the	“-Og”	switch	so	that	optimization	doesn’t	make	
debugging	more	difHicult.	Remember	that	debugging	is	nearly	always	more	important	than	optimization!	
(Important	detail:	you	can	compile	with	-S and	any	optimization	level,	and	in	fact	doing	so	can	produce	
useful	insights.)	

The	manual	page	for	gcc is	quite	lengthy;	however	you	may	Hind	it	interesting	to	skim	the	sections	that	
describe	the	debug	option	(-g)	and	optimization	options	(variants	of	-O).	Note	that	you	can	search	inside	
a	manual	page	after	opening	it	by	hitting	the	“/”	key,	typing	your	search,	and	then	pressing	Enter.	You	can	
use	search	to	quickly	locate	the	sections	“Options	for	Debugging	Your	Program”	and	“Options	That	Control	
Optimization”.	

Getting	set	up.	Download	the	Hiles	problem1.c and	problem2.c from	the	lab	Web	page.	You	won’t	be	
editing	these	Hiles,	but	you	will	be	using	them	with	the	debugger	throughout	the	lab.	

Collect	your	answers	to	all	of	the	following	questions	in	a	plain-text	Hile	named	“lab02.txt”.	Identify	
each	section	by	problem	number,	and	each	answer	by	question	number.	Be	sure	to	put	your	name	and	your	
partner’s	name	at	the	top	of	the	Hile.	

	

	
1	In	general,	you	can	read	the	manual	page	for	a	command	(or	built-in	library	function)	called	foo using	“man foo”	
2	Sometimes	those	other	techniques	are	useful	too,	but	debuggers	are	designed	to	help	you	>ind	bugs,	and	they	do	a	good	job	of	it!	



	

	 	

Submission.	 Submit	ONLY	the	lab02.txt answer	Hile,	using	the	following	command:	

cs105submit -a 02 lab02.txt.	

NOTE:	Do	not	change	either	of	the	programs	in	this	lab!	

Problem	1—Debugging	Optimized	Code	(16	Points)	
Let’s	Hirst	look	at	problem1.c.	You	can	quickly	view	the	contents	of	a	Hile	using	the	less command,	e.g.,	
“less problem1.c”.	You	can	navigate	through	a	Hile	using	less the	same	way	you	navigate	through	
man pages.	(In	fact,	man uses	less to	display	the	manual!).	

This	Hile	contains	a	function	that	has	a	small	while loop,	and	a	simple	main that	calls	it.	BrieHly	study	
the	loop_while function	to	understand	how	it	works	(you	don’t	need	to	fully	decode	it;	just	get	a	clue	
about	what’s	going	on).	

It	will	also	be	useful	to	know	what	the	atoi function	does.	Type	“man atoi”	in	a	terminal	window	to	
view	the	manual	page	for	atoi and	Hind	out.	(Side	note:	the	function’s	name	is	pronounced	“ay	to	eye,”	as	
in	“ASCII	to	integer”,	not	“a	toy.”)	

Finally,	it	will	be	useful	to	have	a	slight	clue	about	printf.	Since	printf is	quite	complicated,	for	
now	we’ll	just	say	that	it	prints	answers,	and	"%d" means	“print	in	decimal”.	We	encourage	you	to	read	
more	about	printf in	Kernighan	&	Ritchie	or	online	(the	advantage	of	reading	in	K&R	is	that	the	
description	there	is	less	complex;	recent	versions	of	printf have	tons	of	extensions	that	aren’t	
particularly	useful	in	this	course).	

Compile	 the	 program	with	 the	-g switch	 and	 with	no	 optimization:	 “gcc -g -o problem1 
problem1.c”.	 Run	gdb problem1 and	 set	 a	 breakpoint	 in	main (“b main”).	 (When	 you	 “set	 a	
breakpoint,”	you	are	telling	the	debugger	that	whenever	the	program	reaches	that	line,	you	want	to	freeze	
it	so	you	can	type	more	debugger	commands,	such	as	examining	variables.	It’s	much	quicker	than	using	
printf!)	

Run	the	program	by	typing	“r”	or	“run”.	The	program	will	stop	in	main.	(Ignore	any	warnings;	they’re	
meaningful	but	we’ll	work	around	them.)	

Again,	pay	attention	to	the	commands	below.	For	example	you	should	remember	that	“r”	is	the	quickest	
way	to	run	a	program	under	gdb (see	above)	and	that	if	you	use	“run”	alone	it	remembers	the	arguments	
you	used	last	time	(see	Step	6	below).	

(Note:	 to	 help	 you	 keep	 track	 of	 what	 you’re	 supposed	 to	 doing,	 we	 have	 used	 italics	 to	 list	 the	
breakpoints	you	should	have	already	set	at	the	beginning	of	each	step—except	when	they	don’t	matter.	Also,	
when	possible	we	have	listed	the	state	you	should	be	in.)	

1. Existing	breakpoint	at	main.	
Type	“c”	(or	“continue”)	to	continue	past	the	breakpoint.	What	happens?	

	

2. Existing	breakpoint	at	main;	after	the	program	terminates.	

Type	“bt”	(or	“backtrace”).	That	will	print	a	“trace”	of	which	function	called	which	to	get	to	where	
the	program	died.	Take	note	of	the	numbers	in	the	left	column;	they	identify	the	stack	frames	of	the	
calls	that	led	to	the	point	of	failure.	The	point	of	failure	is	#0,	and	main is	the	last	function	listed.	
Type	“frame n”,	where	n	is	one	of	those	numbers,	to	get	to	main’s	stack	frame	so	that	you	can	look	
at	main’s	variables.	What	Hile	and	line	number	are	you	on?	

	

3. Existing	breakpoint	at	main;	after	the	program	terminates.	
Usually	when	bad	things	happen	in	the	library	(here,	several	variants	of	strtol)	it’s	your	fault,	not	
the	library’s.	In	this	case,	the	problem	is	that	main passed	a	bad	argument	to	atoi.	Let’s	rerun	the	
program	and	take	a	look	at	the	bad	argument.	Rerun	the	program	by	typing	“r”	(you’ll	have	to	conHirm	



	

	 	

that	you	really	want	to	do	that)	and	let	it	stop	at	the	breakpoint.	Note	that	in	Step	1,	atoi was	called	
with	the	argument	“argv[1]”.	You	can	Hind	out	the	value	that	was	passed	to	atoi with	the	command	
“print argv[1]”.	What	is	printed?	

	

4. Existing	breakpoint	at	main;	after	rerunning	the	program	and	stopping	at	the	breakpoint.	
If	you	took	CS	70,	you	will	recognize	that	number	as	the	value	of	a	NULL	pointer.	Like	many	library	
functions,	atoi doesn’t	like	NULL	pointers.	Rerun	the	program	with	an	argument	of	5	by	typing	“r 
5”.	When	it	reaches	the	breakpoint,	continue	(type	“c”).	What	does	the	program	print?	

	

5. Existing	breakpoint	at	main;	after	the	program	terminates.	
Without	restarting	gdb,	type	“r”	(without	any	further	parameters)	to	run	the	program	yet	again.	(If	
you	 restarted	gdb,	 you	must	 Hirst	 repeat	 Step	 5.)	When	 you	 get	 to	 the	 breakpoint,	 examine	 the	
variables	argc and	argv by	using	the	print command.	For	example,	type	“print argv[0].”	
Also	try	“print argv[0]@argc”,	which	is	gdb’s	notation	for	saying	“print	elements	of	the	argv 
array	starting	at	element	0	and	continuing	for	argc elements.”	What	is	the	value	of	argc?	What	are	
the	elements	of	the	argv array?	Where	did	they	come	from,	given	that	you	didn’t	add	anything	to	
the	run command?	

	

6. Existing	breakpoint	at	main;	at	main.	
The	step or	s command	is	a	useful	way	to	follow	a	program’s	execution	one	line	at	a	time.	Type	
“s”.	Where	do	you	wind	up?	If	you	end	up	on	a	line	inside	atoi.c,	type	“finish”	to	get	out	of	
atoi and	then	type	“s”	again	so	that	you	end	at	a	line	inside	problem1.c.	Now	answer	where	
you	wind	up.	

	

7. Existing	breakpoint	at	main;	at	main.	
gdb always	shows	you	the	line	that	is	about	to	be	executed.	Sometimes	it’s	useful	to	see	some	context.	
Type	“list”	and	the	Enter	(return)	key.	What	lines	do	you	see?	Then	hit	the	Enter	key	again.	What	
do	you	see	now?	

	

8. Existing	breakpoint	at	main;	at	main and	stepped	once	as	described	in	Step	7.	
Type	“s”	(and	Enter)	to	step	to	the	next	line.	Then	hit	the	Enter	key	three	more	times.	What	do	you	
think	the	Enter	key	does?	

	

9. Existing	breakpoint	at	main;	after	stepping	once	as	described	in	#7	and	then	stepping	four	more	
times.		

What	are	the	values	of	result,	a,	and	b?	

	

10. Existing	breakpoint	at	main;	after	stepping	once	as	described	 in	#7	and	then	stepping	 four	more	
times.	
	
A	handy	 feature	of	print is	 that	you	can	use	 it	 to	convert	between	bases.	For	example,	what	
happens	when	you	type	“print/x 42”?	How	about	“p 0x2f”?	
	



	

	 	

11. Existing	breakpoint	at	main;	after	stepping	once	as	described	 in	#7	and	then	stepping	 four	more	
times.	
Disassemble	the	main function	by	typing	“disassem main”	(or	“disas main”).	Look	at	
what	functions	are	called	by	main.	You	should	be	able	to	see	calls	to	atoi	and	loop_while. 
We	haven’t	covered	this	in	class,	but	functions	expect	their	Hirst	two	parameters	to	be	stored	in	
%rdi	and	%rsi	(also	known,	for	this	problem,	as	%edi and	%esi—go	Higure)	respectively,	and	
functions	return	results	in	%rax (also	known	as	%eax).	So	after	the	call	to	atoi,	the	result	of	
atoi will	be	in	%eax.	Describe	what	the	instructions	between	the	calls	to		atoi and	
loop_while are	doing.	
	

12. Existing	breakpoint	at	main;	after	stepping	once	as	described	in	#7	and	then	stepping	four	more	
times.	Type	“quit”	to	exit	gdb.	(You’ll	have	to	tell	it	to	kill	the	“inferior	process”,	which	is	the	
program	you	are	debugging.	Insulting!)	Recompile	the	program,	this	time	optimizing	it	more	by	
adding	-O2	after	the	-g:	“gcc -g -O2 -o problem1 problem1.c”.	Note	that	O	is	the	letter,	
not	a	zero.	(Also	note	that	the	lowercase	“-o”	is	still	necessary!)	Debug	it,	and	again	disassemble	
main.	What	do	you	notice	that’s	different?	What	do	you	think	happened	to	the	looping	logic?	
	

Problem	2—Stepping	and	Looking	at	Data	(17	Points)	
Now	take	a	look	at	problem2.c.	This	Hile	contains	three	static constants	and	three	functions.	Read	the	
functions	and	Higure	out	what	they	do.	(If	you’re	new	to	C,	you	may	need	to	consult	your	C	book	or	some	
online	references.)	Here	are	some	hints:	argv is	an	array	containing	the	strings	that	were	passed	to	the	
program	on	the	command	line	(or	from	gdb’s	run command);	argc is	the	number	of	arguments	that	
were	passed.	By	convention,	argv[0] is	the	name	of	the	program,	so	argc is	always	at	 least	1.	The	
malloc line	allocates	a	variable-sized	array	big	enough	to	hold	argc integers	(which	is	slightly	wasteful,	
since	we	only	store	argc-1 integers	there,	but	what	the	heck).	

By	now	we	hope	you’ve	learned	that	optimization	is	bad	for	debugging.	So	compile	the	program	with	-
Og -g and	bring	up	the	debugger	on	it.	

1. gdb provides	you	lots	of	ways	to	look	at	memory.	For	example,	type	“print puzzle1”	(something	
you	should	already	be	familiar	with).	What	is	printed?	

2. Gee,	that	wasn’t	very	useful.	Sometimes	it’s	worth	trying	different	ways	of	exploring	things.	How	
about	“p/x puzzle1”?	What	does	that	print?	Is	it	more	edifying?	

3. You’ve	just	looked	at	puzzle1	in	decimal	and	hex.	There’s	also	a	way	to	look	at	it	as	a	string,	although	
the	notation	is	a	bit	inconvenient.	The	“x”	(examine)	command	lets	you	look	at	arbitrary	memory	in	
a	variety	of	formats	and	notations.	For	example,	“x/bx”	examines	bytes	in	hexadecimal.	Let’s	give	
that	a	try.	Type	“x/4bx &puzzle1”	(the	“&”	symbol	means	“address	of”;	it’s	necessary	because	the	
x command	requires	addresses	rather	than	variable	names).	How	does	the	output	you	see	relate	to	
the	result	of	“p/x puzzle1”?	(Incidentally,	you	can	look	at	any	arbitrary	memory	location	with	x,	
as	in	“x/wx 0x404078”.)	

4. OK,	that	was	interesting	and	a	bit	weird.	But	we	still	don’t	know	what’s	in	puzzle1.	We	need	help!	
And	fortunately	gdb has	help	built	 in.	So	type	“help x”.	Then	experiment	on	puzzle1 with	
various	forms	of	the	x command.	For	example,	you	might	try	“x/16i &puzzle1”.	(x/16i is	one	
of	our	favorite	gdb commands—but	since	here	we	suspect	that	puzzle1 is	data,	not	instructions,	
the	 results	might	 be	 interesting	 but	 probably	 not	 correct.)	 Keep	 experimenting	 until	 you	 Hind	 a	
sensible	value	for	puzzle1.	What	is	the	human-friendly	value	of	puzzle1?	
Hints:	

• Don’t	accept	an	answer	that	is	partially	garbage!	



	

	 	

• Although	puzzle1 is	declared	as	an	int,	it’s	not	actually	an	integer.	But	on	a	32-bit	machine	
an	int	is	4	bytes,	2	halfwords,	or	one	(in	gdb terms)	word.	

• There	are	44	possible	combinations	of	sizes	and	formats.	But	you	know	the	size,	right?	And	the	
“c”,	 “i”,	 and	 “s”	 formats	don’t	make	sense	with	a	 size,	 so	you	have	a	manageable	number	of	
choices.	Try	them	all!	Be	systematic.	

5. Having	solved	puzzle1,	look	at	the	value	carefully.	Is	it	correct?	(You	might	wish	to	check	it	online.)	
If	it’s	wrong,	why	is	it	wrong?	

6. Now	we	can	move	on	to	puzzle2.	It	pretends	to	be	an	array	of	ints,	but	you	might	suspect	that	it	
isn’t.	Using	your	newfound	skills,	Higure	out	what	it	is.	(Hint:	since	there	are	two	ints,	the	entire	
value	occupies	8	bytes.	So	you’ll	need	to	use	some	of	the	size	options	to	the	x command.)	What	is	
the	human-friendly	value?	(Hint:	it’s	not	“105”.	Nor	is	there	garbage	in	it.)	

7. Are	you	surprised?	

8. Is	it	correct?	

9. We	have	one	puzzle	left.	By	this	point	you	may	have	already	stumbled	across	its	value.	If	not,	Higure	
it	out;	it’s	often	the	case	that	in	a	debugger	you	need	to	make	sense	of	apparently	random	data.	What	
is	stored	in	puzzle3?	

10. We’ve	 done	 all	 this	 without	 actually	 running	 the	 program.	 But	 now	 it’s	 time	 to	 execute!	 Set	 a	
breakpoint	in	fix_array.	Run	the	program	with	the	arguments	1 1 2 3 5 8 13 21 44 65.	
When	it	stops,	print	a_size and	verify	that	it	is	10.	Did	you	really	need	to	use	a	print command	
to	Hind	the	value	of	a_size?	(Hint:	look	carefully	at	the	output	produced	by	gdb.)	

11. Existing	breakpoint	at	fix_array;	stopped	at	that	breakpoint.		

What	is	the	value	of	a?	

12. Existing	breakpoint	at	fix_array;	stopped	at	that	breakpoint.	
Type	“display a”	to	tell	gdb that	it	should	display	a every	time	you	step	(although	gdb will	
only	obey	part	of	the	time).	Step	Hive	times.	Which	line	last	displayed	a?	

13. Existing	breakpoint	at	fix_array;	after	hitting	that	breakpoint	and	then	stepping	Five	times.		

Step	twice	more	(a	sixth	and	seventh	time).	What	is	the	value	of	a now?	What	is	i?	

14. Existing	breakpoint	at	fix_array;	after	hitting	that	breakpoint	and	then	stepping	seven	times.		

At	this	point	you	should	(again)	be	at	the	call	to	hmc_pomona_fix.	You	already	know	what	that	
function	does,	and	stepping	through	it	is	a	bit	of	a	pain.	The	authors	of	debuggers	are	aware	of	that	
fact,	and	they	always	provide	two	ways	to	step	line-by-line	through	a	program.	The	one	we’ve	been	
using	(step)	is	traditionally	referred	to	as	“step	into”—if	you	are	at	the	point	of	a	function	call,	you	
move	stepwise	into	the	function	being	called.	The	alternative	is	“step	over”—if	you	are	at	a	normal	
line	it	operates	just	like	step,	but	if	you	are	at	a	function	call	it	does	the	whole	function	just	as	if	it	
were	a	single	line.	Let’s	try	that	now.	In	gdb,	it’s	called	next or	just	n.	Type	“n”	twice.	What	line	do	
we	wind	up	at?	What	is	the	value	of	i now?	(Recall	that	in	gdb as	in	most	debuggers,	the	line	
shown	is	the	next	line	to	be	executed.)	

15. fix_array;	after	hitting	that	breakpoint,	stepping	seven	times,	and	typing	next twice.	
It’s	often	useful	to	be	able	to	follow	pointers.	gdb is	unusually	smart	in	this	respect;	you	can	type	
complicated	expressions	like	p *a.b->c[i].d->e.	Here,	we	have	kind	of	lost	track	of	a,	and	we	
just	want	to	know	what	it’s	pointing	at.	Type	“p *a”.	What	do	you	get?	

16. Existing	breakpoint	at	fix_array;	after	hitting	that	breakpoint,	stepping	seven	times,	and	typing	
next twice.	



	

	 	

Often	when	debugging,	you	know	that	you	don’t	care	about	what	happens	in	the	next	three	or	six	
lines.	You	could	type	“s”	or	“n”	that	many	times,	but	we’re	computer	scientists,	and	CS	types	sneer	
at	doing	work	that	computers	could	do	for	them—especially	mentally	taxing	tasks	like	counting	to	
twelve.	So	on	a	guess,	type	“next 12”.	What	is	the	value	of	*a now?	

17. Existing	 breakpoint	 at	fix_array;	 after	 hitting	 that	 breakpoint,	 stepping	 seven	 times,	 and	 (in	
effect)	typing	next 14	times	(whew!).	
Let’s	use	n to	verify	that	it	works	just	like	s when	you’re	not	at	a	function	call.	Type	n until	you	
see	a	line	from	main.	Then	type	n one	more	time.	Which	two	lines	of	main were	displayed?	

Finally,	a	small	side	comment:	if	you’ve	set	up	a	lot	of	display commands	and	want	to	get	rid	of	some	
of	them,	investigate	info display and	help undisplay.	

Problem	3—Assembly-Level	Debugging	(18	Points)	
So	far,	we’ve	mostly	been	taking	advantage	of	the	fact	that	gdb understands	your	program	at	the	source	
level:	 it	 knows	 about	 strings,	 source	 lines,	 call	 chains,	 and	 even	 complicated	 C++	 data	 structures.	 But	
sometimes	it’s	necessary	to	dive	into	the	assembly	code.	

Note:	If	you	get	to	this	point	before	we’ve	done	the	lecture	on	“Hlow	control”,	this	would	be	a	good	time	
to	take	a	break	and	work	on	some	other	class.	

Note:	When	you	are	working	with	assembly	code,	it	can	be	very	helpful	to	issue	the	gdb command	“set 
disassemble-next-line on”.	 That	 will	 tell	 gdb that	 whenever	 the	 program	 stops,	 it	 should	
disassemble	and	display	the	next	instruction	that	is	to	be	executed.	We	suggest	that	you	issue	this	command	
whenever	you	start	gdb.	

To	be	sure	we’re	all	on	the	same	page,	let’s	quit	gdb and	bring	it	up	on	problem2 again,	still	using	
the	result	of	compiling	with	-Og -g.	Run	the	program	with	arguments	of	1 42 2 47 3.	

1. No	breakpoints;	after	running	problem2.		
What	is	the	output?	Whoop-dee-doo.	

2. No	breakpoints.	
Set	a	breakpoint	in	main.	Run	the	program	again	(use	“r”	alone	so	that	it	gets	the	same	arguments).	
What	line	does	it	stop	at?	

3. Existing	breakpoint	at	main;	after	running	the	program.	

Booooooooooring.	Type	“list”	and	then	Enter	to	see	what’s	nearby,	then	type	“b 35”	and	“c”.	What	
line	does	it	stop	now?	

4. Existing	breakpoints	at	main lines	29	and	35;	after	running	and	continuing.	
Shocking.	But	since	that’s	the	start	of	the	loop,	typing	“c”	will	take	you	to	the	next	iteration,	right?	

5. Existing	breakpoints	at	main lines	29	and	35;	after	running	and	continuing	twice.	
Oops.	Good	thing	we	can	start	over	by	just	typing	“r”.	Continue	past	that	Hirst	breakpoint	to	the	
second	one,	which	is	what	we	care	about.	But	why,	if	we’re	in	the	for statement,	didn’t	it	stop	the	
second	time?	Type	“info b”	(or	“info breakpoints”	for	the	terminally	verbose).	Lots	of	good	
stuff	 there.	The	 important	 thing	 is	 in	 the	 “address”	 column.	Take	note	of	 the	 address	 given	 for	
breakpoint	2,	and	then	type	“disassem main”.	You’ll	note	that	there’s	a	helpful	little	arrow	right	
at	breakpoint	2’s	address,	since	that’s	the	instruction	we’re	about	to	execute.	Looking	back	at	the	
corresponding	source	code,	what	part	of	the	for statement	does	this	assembly	code	correspond	
to?	

6. Existing	breakpoints	at	main lines	29	and	35;	after	running	and	continuing	once.	

Between	where	you’re	currently	stopped	and	the	call	to	fix_array	,	you’ll	Hind	logic	for	the	for	
loop	 in	 lines	35-37	of	 the	source	code.	Note	 that	 cmp	compares	 two	operands,	 jmp	 jumps	 to	a	



	

	 	

different	speciHied	line,	and	jl	or	jg	jumps	depending	on	the	previous	comparison.	It	looks	like	we	
do	a	comparison	(presumably	between	i	and	argc),	and	depending	on	the	result,	we	jump	into	the	
for	loop.	At	what	line	(main	+	?)	do	you	think	the	inside	of	the	for	loop	starts,	i.e.,	line	36	in	the	
source	code?	

7. Existing	breakpoints	at	main lines	29	and	35;	after	running	and	continuing	once.	
You	 can	 test	 your	 answer	 to	 the	 previous	 question	 by	 setting	 a	 breakpoint	 at	 an	 assembly	
instruction,	even	if	it’s	in	the	middle	of	a	statement!	For	example,	you	could	type	“b *(main+39)”	
to	set	a	breakpoint	at	(main+39)	or	“b *0x4011f1”	to	set	a	breakpoint	at	the	instruction	at	
0x4011f1. The	asterisk	tells	gdb to	interpret	the	rest	of	the	command	as	an	address	in	memory,	
as	opposed	to	a	line	number	in	the	source	code.	Go	ahead	and	set	a	breakpoint	at	the	instruction	
you	suspect	corresponds	to	line	36	in	the	source	code.	You	might	have	seen	the	line	number	when	
you	set	the	breakpoint,	but	in	case	you	missed	it,	if	you	now	look	at	“info	b”,	were	you	correct?		

8. Existing	breakpoints	at	main lines	29,		35	and	36;	after	running	and	continuing	once.	
Continue	so	that	the	third	breakpoint	is	hit.	We	can	look	at	the	current	value	of	the	array	by	
typing	“p array[0]@argc”	or	“p array[0]@6”.	But	the	current	value	isn’t	interesting.	We	
want	to	continue	a	few	times	and	see	what	it	looks	like	then,	but	typing	“c”	over	and	over	is	
tedious	(especially	if	you	need	to	do	it	10,000	times!)	so	let’s	use	continue or	c to	get	to	
breakpoint	3	and	then	try	“c 4”.	What	are	the	full	contents	of	array?	

9. Existing	breakpoints	at	main lines	29,	35,	and	36;	after	continuing	until	breakpoint	3	has	been	hit	
and	then	typing	c 4.	
Perhaps	we	wish	we	had	done	“c 3”	instead	of	“c 4”.	We	can	rerun	the	program,	but	we	really	
don’t	need	all	the	breakpoints;	we’re	only	working	with	breakpoint	3.	Type	“info b”	to	Hind	out	
what’s	going	on	right	now.	Then	use	“d 1”	or	“delete 1”	to	completely	get	rid	of	breakpoint	1.	
But	maybe	breakpoint	2	will	be	useful	in	the	future,	so	type	“disable 2”.	Use	“info b”	to	verify	
that	it’s	no	longer	enabled	(“Enb”).		

10. No	previous	state.	
Sometimes,	instead	of	stepping	through	a	program	line	by	line,	we	want	to	see	what	the	individual	
instructions	do.	Of	course,	 instructions	manipulate	registers.	Quit	gdb and	restart	 it,	 setting	a	
breakpoint	in	fix_array.	(Remember	to	issue	“set disassemble-next-line on”.)	Run	
the	program	with	arguments	of	1 42 2 47 3.	At	the	breakpoint,	type	“info registers”	(or	
“info r”	for	the	lazy)	to	see	all	the	processor	registers	in	both	hex	and	decimal.	Which	registers	
have	not	been	covered	in	class?	

11. Existing	breakpoint	at	fix_array;	after	running	and	hitting	the	breakpoint.	
Often,	looking	at	all	the	registers	is	excessive.	Perhaps	we	only	care	about	one.	Type	“p $rdi”.	
What	is	the	value?	Is	“p/x $rdi”	more	meaningful?	

12. fix_array;	after	running	and	hitting	the	breakpoint.	
We	mentioned	a	fondness	for	“x/16i”.3	Actually,	what	we	really	like	is	“x/16i $rip”.	Compare	
that	to	the	result	of	“disassem fix_array”.	Explain	your	observations.	

13. Existing	breakpoint	at	fix_array;	after	running	and	hitting	the	breakpoint.	
Finally,	we	mentioned	stepping	by	instructions.	That’s	done	with	“stepi”	(“step	one	instruction”).	
Type	that	now,	and	note	that	gdb gives	a	new	instruction	address	but	says	that	you’re	in	the	left	
curly	brace.	If	you	remembered	to	do	“set disassemble-next-line on”	then	gdb will	also	
tell	you	what	instruction	you	are	on.4	What	instruction	are	we	on?	

	
3	There’s	nothing	special	about	the	number	16;	we	just	like	powers	of	2,	and	16	gives	you	enough	instructions	to	be	useful.	
4	An	alternative,	which	shows	only	one	line,	is	to	use	“display/i $rip”.	Don’t	combine	the	two	techniques	or	you’ll	get	confused.	



	

	 	

14. Keep	hitting	Enter	to	step	one	instruction	at	a	time	until	you	reach	a	call instruction.	What	
function	is	about	to	be	called?	

15. Existing	breakpoint	at	fix_array;	after	hitting	the	breakpoint	and	then	stepping	by	instruction	
until	a	call is	about	to	be	executed.	
As	with	source-level	debugging,	at	the	assembly	level	it’s	often	useful	to	skip	over	function	calls.	At	
this	point	you	have	a	choice	of	typing	“stepi”	or	“nexti”.	If	you	type	“stepi”,	what	do	you	expect	
the	next	 instruction	 to	 be?	What	 about	 “nexti”?	Give	 each	 answer	 relative	 to	 the	 start	 of	 the	
function,	e.g.,	(main+32).	(By	now,	your	debugging	skills	should	be	strong	enough	that	you	can	try	
one,	restart	the	program,	and	try	the	other	if	needed!)	

16. Existing	breakpoint	at	fix_array;	after	experimenting	with	stepi and	nexti.	
Almost	there!	Stepping	one	instruction	at	a	time	can	be	tedious.	You	can	always	use	“stepi n”	to	
zip	past	a	bunch	of	them,	but	when	you’re	dealing	with	loops	and	conditionals	it	can	be	hard	to	
decide	whether	it’s	going	to	be	1,042	or	47,093	instructions	before	you	reach	the	next	interesting	
point	in	your	program.	Sure,	you	could	set	a	breakpoint	at	the	next	suspect	line.	But	sometimes	the	
deHinition	 of	 “interesting”	 is	 inside	a	 line.	 Let’s	 say,	 just	 for	 the	 sake	 of	 argument,	 that	 you	 are	
interested	 in	 how	 the	 retq (aka	 ret)	 instruction	 works.	 You	 may	 want	 to	 “disassem 
fix_array”	to	see	at	which	address	this	instruction	occurs.	Go	ahead	and	set	a	breakpoint	there,	
using	the	strategy	we	learned	in	#7,	and	then	continue.	What	source	line	is	listed?	

17. Existing	breakpoints	at	fix_array and	retq;	stopped	at	retq instruction.	
The	retq (ret)	instruction	manipulates	registers	in	some	fashion.	Start	by	looking	at	what	%rsp 
points	to.	You	can	Hind	out	the	address	with	“p/x $rsp”	and	then	use	the	x command,	or	you	
could	 just	 try	 “x/x $rsp”.	Or	you	could	get	wild	and	use	C-style	 typecasting:	 “p/x *(long 
*)$rsp”	(try	it!).	What	is	the	value?	

18. Existing	breakpoints	at	fix_array and	retq;	stopped	at	retq instruction.	
Use	“info reg”	to	Hind	out	what	all	the	registers	are.	Then	use	“stepi”	to	step	past	the	retq 
instruction,	and	look	at	all	the	registers	again.	Which	registers	have	changed,	and	what	are	their	
old	and	new	values?	If	we	haven’t	already,	we’ll	talk	soon	about	why	those	registers	in	particular	
change	we	exit	a	function!	

That’s	it;	you’re	done!	


