Welcome back to CS 5!

Our Week 0 CS5 gallery

Homework 0
Problem 0: Reading + response...
Problem 1: Four-fours program: Can be done for lab...
Problem 2: Rock-paper-scissors + Adventure
Problems 3-4: Picobot! empty room (3) maze (4)

Picobot ~ problems... ?

My Grammarly is in valid-Picobot-only mode

Grammarly agrees !

Lab on Friday!

Looking forward to Week 1...

[A] What other work might

[B] What if CS 5 were now finished with Picobot?
due next Tuesday

Homework 1

Problem 0: Reading + response...

Problems 1+2: slicing and indexing: These are lab ...
Problem 3: Functions! In lab or beyond...
hw2pr4 PythonBat functions

The challenge of programming...

syntax
How it looks
semantics
What it does
intent
What it should do

humantyped input

machineproduced output

learning a language \sim syntax
 unavoidable, but not the point

... but learning CS ~ semantics
guiding how machines think!

Today's semantics in a silly, but surprisingly accurate, slide!

'ahahahah'

Inside the machine...

What's behind the scenes: Processing + Memory:

Data Storage

memory location 312

memory location 324
variables \sim boxes
id, del

Memory!

Random Access Memory

a big line of boxes, each with a name, type, location, and value

Memory!

Random Access Memory

a big line of boxes, each with a name, type, location, and value

Memory!

Random Access Memory

a big line of boxes, each with a name, type, location, and value

All languages use types

Type

Example

What is it?

numeric values with a
float 3.14 or 3.0
int
42 or 10**100
bool

Hey! Someone
can't spelle !
True or False
"Boolean values"
the T/F results from a test or comparison:
==, ! $=,<,>,<=,>=$
"Boolean operators"

Floating Point

What＇s $\pi^{128} ?$

In［1］：from math import＊
In［2］：pi＊＊128
Out［2］：4．3170164630188106e＋63

4.317016463

$4.3170164630188321967090836250244460126046419938927 \times 10^{63}$
4317016463018832196709083625024446012604641993892727664123878478.9 474515633440303225830450506795392754625977460310918186250543527301 5493669604963497465433934054041230503859310517746971つのпィフィ～• 59 172828279409970799626671ヶаロィィファー・－octodecillion 463 28プ～－－ 6654 vigintillion 317 secillion 832 quindecillion 196 268 septendecillion 18 sexdecidecillion 83 duodecillion 625 undecillion 586 quattuordecillion 709 tredecilin 604 septillion 641 sextillion 770124 decillion 446 nonillion 12 octilion 604 trillion 664 billion 123 million 268！ 993 quintillion 892 quadrillion 727 trillion 664 billionths ．．．$\quad 1$ 7765 878 thousand 478，and 947 thousandths

Floating Point

- Always uses scientific notation even if it doesn't look like it.
- Significand
- Exponent
- Limited Precision
- Approximation
- "Good enough" most of the time.

MODEL 12

1986

What's 42!

CAEIO scientific calc

1.405006118

| | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | | | 1 | 2 | |
| :---: | :---: | :---: | :---: |
| MODE | RUN | WRT | PCL | | t | - | x | - |
| :---: | :---: | :---: | :---: |
| COMP | BASE | SD | LR |

	1	2	3	4	5	6	7	8	9
MODE	RUN	WRT	PCL	Deg	Rad	Gra	Fix	Sci	Norm
+	-	\times	-	-			4	5	6
COMP	BASE-n	SD	LR	Defm	SHIFT MODE	0	1	9	

PSION ORGANISERTII

MODEL 12
In [1]: from math import *
In [2]: factorial(42)
Out[2]: 1405006117752879898543142606244511569936384000000000
In [3]: factorial(42) *1
Out [3]: 1405006117752879898543142606244511569936384000000000
In [4]: factorial(42) * 1.0
Also possible
Out [4]: 1.40500611775288e+51

**

Operate!
higher precedence

Operate!

Python operators

parens

()

* *

negate
times, mod, divide
add, subtract

compare

$>==<$
assign

the "equals" operators

This is true - but what is it saying!?

the "equals" operators

SET
(make equal to)
isn't equal to

$$
\begin{aligned}
& x=41 \\
& y=x+1
\end{aligned}
$$

TEST equals

the "equals" operators

SET

$$
\begin{aligned}
& x=41 \\
& y=x+1
\end{aligned}
$$

TEST equals

False
$x=42$
$y \underset{\text { True }}{==} 42$

the "equals" operators

SET
(make equal to)

$$
\begin{array}{ll}
\mathrm{x}=41 & \mathrm{x} \\
\mathrm{y}=\mathrm{x}+1 & \mathrm{y} \\
\mathrm{y}=42 \\
\hline
\end{array}
$$

isn't equal to

the "equals" operators

SET

$$
\begin{aligned}
& x=41 \\
& y=x+1
\end{aligned}
$$

isn't equal to
TEST equals

응
 the mod operator

$$
\begin{array}{ll}
7 \div 3==1 & 9 \div 3==0 \\
8 \div 3==2 & 30 \div 7==2
\end{array}
$$

$\mathbf{x} \% \mathbf{y}$ is the remainder when \mathbf{x} is divided by \mathbf{y}

For what values of \mathbf{x} are these True?

What values x make
this test True?
What values x make
this test True?
If x is a year, what happens
on these years!?
What happens on these
years, football-wise!?

What values x make this test True?

If x is a year, what happens on these years!?
years, football-wise!?

응
 the mod operator

$7 \% 3$

$9 \div 3$

$8 \% 3$

$30 \div 7$

$\mathbf{x} \% \mathbf{y}$ is the remainder when \mathbf{x} is divided by \mathbf{y}

US, Mexico announce bid for 2027 FIFA Women's World Cup
A successful bid would see the countries co-host the women's tournament a year after hosting the men's.
By Suan Lingesuman

$x \div 2=1$
$x \% 4=0$
$x \div 4=3$
$x \div 2=0$

What values x make this test True?

What values x make this test True?

If x is a year, what happens on these years!?

What happens on these years, football-wise!?
// integer division

$$
7 \text { // } 3
$$

$$
8 / / 3
$$

$$
=2
$$

$\mathbf{x} / / \mathbf{y}$ is \mathbf{x} / \mathbf{y}, rounded-down

$$
9 / / 3==3
$$ to an integer

$$
30 / / 7==4
$$

// integer division

7 // 3

8 // 3

9 // 3
$\mathbf{x} / / \mathbf{y}$ is \mathbf{x} / \mathbf{y}, rounded-down to an integer

$30 / / 7$

Decomposition of 30 into 7 's:

$$
\begin{equation*}
30==(4) * 7+ \tag{2}
\end{equation*}
$$

Decomposition of x into y's:

$$
x=(x / / y) * y+(x \% y)
$$

Try it!

$$
\begin{aligned}
& a=11 / / 2 \\
& b=a \% 3 \\
& c=(b * * a+(b * a)
\end{aligned}
$$

What are the values of a, b, and c after the 3 lines, at left, run?

Inside the machine...

	$\mathbf{y}=\mathbf{x}+\mathbf{1}$
	$\mathbf{z}=\mathbf{x}+\mathbf{y}$
What's happening in python:	$\mathbf{x}=\mathbf{x}+\mathbf{y}$

What's happening behind the scenes (in memory):

Computation

Memory (Data Storage)

$$
41+42=83
$$

id, del

Inside the machine...

	$\mathbf{y}=\mathbf{x}+\mathbf{1}$
	$\mathbf{z}=\mathbf{x}+\mathbf{y}$
What's happening in python:	$\mathbf{x}=\mathbf{x}+\mathbf{y}$

$$
\begin{aligned}
& x=41 \\
& y=x+1 \\
& z=x+y \\
& x=x+y
\end{aligned}
$$

What's happening behind the scenes (in memory):

Computation

Memory (Data Storage)

id, del

CS ~ names are "current data" (really, current state)

they're changing all the time - intentionally and their behavior is their purpose

Math ~ names are concepts

they're consistent - intentionally - and their inherent relationships are their purpose
$\bigcirc \bigcirc \nabla$
П
2.072 likes

[Thank you, Lucas!]
how $=$ works

"Quiz"

$$
\begin{array}{ll}
& \mathbf{x}=41 \\
\text { Run } \\
\text { these } \\
\text { lines } & \mathbf{y}=\mathbf{x}+1 \\
& \mathbf{z}=\mathbf{x}+\mathbf{y}
\end{array}
$$

Then run this line

$$
x=x+y
$$

$\longrightarrow \quad \begin{gathered}\text { What are } \mathbf{x}, \mathbf{y} \text {, and } \\ \mathbf{z} \text { at this time? }\end{gathered}$

Try it!

$$
\begin{aligned}
& \mathrm{a}=11 / / 2 \\
& \mathrm{~b}=\mathrm{a} \% 3 \\
& \mathrm{c}=\mathrm{b} * * \mathrm{a}+\mathrm{b} * \mathrm{a}
\end{aligned}
$$

What are the values of a, b, and c after the 3 lines, at left, run?

Popular culture [edit]

The Hitchhiker's Guide to the Galaxy [edit]

The number 42 is, in The Hitchhiker's Guide to the Galaxy by Douglas Adams, the "Answer to the Ultimate Question of Life, the Universe, and Everything", calculated by an enormous supercomputer named Deep Thought over a period of 7.5 million years. Unfortunately, no one knows what the question is. Thus, to calculate the Ultimate Question, a special computer the size of a small planet was built from organic components and named "Earth". The Ultimate Question "What do you get when you multiply six by nine ${ }^{[[17]}$ was found by

The Answer to the Ultimate Question of Life, The Universe, and Everything. Arthur Dent and Ford Prefect in the second book of the series,
The Restaurant at the End of the Universe. This appeared first in the radio play and later in the novelization of The Hitchhiker's Guide to the Galaxy. The fact that Adams named the episodes of the radio play "fits", the same archaic title for a chapter or section used by Lewis Carroll in "The Hunting of the Snark", suggests that Adams was influenced by Carroll's fascination with and frequent use of the number. The fourth book in the series, the novel So Long, and Thanks for All the Fish, contains 42 chapters. According to the novel Mostly Harmless, 42 is the street address of Stavromula Beta. In 1994 Adams created the 42 Puzzle, a game based on the number 42.

Are numbers enough for everything?

Yes and no...

You need lists of numbers, as well!
and strings - lists of characters - too.

Both of these are Python sequences...

strings: textual data

s = 'scripps'
 c = 'college'

strings
type... type (s)
str
len $\operatorname{len}(s)$
7
add!
$s+c$
'scrippscolleye'
multiply!! $\quad 2{ }^{*} s+3 * C$

strings: textual data

Given $\left\{\begin{array}{l}\mathbf{s} 1=\text { 'ha' } \\ \mathbf{s 2}=\text { 't' }\end{array}\right.$

What are s1 + s2

2*s1 + s2 + 2*(s1+s2)

strings: textual data

Given $\left\{\begin{array}{l}\mathbf{s} 1=\text { 'ha' } \\ \mathbf{s 2}=\text { 't' }\end{array}\right.$

What are s1 + s2 hat

2*s1 + s2 + 2*(s1+s2)

Big Data?

Data, data everywhere...

Data, data everywhere

100-years of HD video + audio
1 Petabyte - Human brain's capacity
1 Petabyte, PB == 1000 Terabytes, TB
1 Terabyte, TB == 1000 Gigabytes, GB
References
(2025) 16-175ZB: https://seedscientific.com/how-much-data-is-created-every-day/
(2020) 44ZB: http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm (2015) 8 ZB: http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf (2011) 1.8 ZB: http://www.emc.com/leadership/programs/digital-universe.htm
(2009) 800 EB: http://www.emc.com/collateral/analyst-reports/idc-digital-universe-are-you-ready.pdf (2006) 161 EB: http://www.emc.com/collateral/analyst-reports/expanding-digital-idc-white-paper.pdf
(2002) 5 EB: http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm (2023) https://explodingtopics.com/blog/data-generated-per-day (estimate of 181zb in 2025) (life in video) 60 PB: in 4320 p resolution, extrapolated from 16MB for 1:21 of 640×480 video ($\mathrm{w} /$ sound) - almost certainly a gross overestimate, as sleep can be compressed significantly! (brain) 14 PB: http://www.quora.com/Neuroscience-1/How-much-data-can-the-human-brain-store

Big Data?

McKinsey\&Company
Careers
Global Locations

Big data: The next frontier for innovation, competition, and productivity

Elbe Alew jluork Eimes
Sunday Review \mid The Opinion Pages

WORLD U.S. N.Y./REGION BUSINESS TECHNOLOGY

NEWS ANALYSIS
Is Big Data an Economic Big Dud?

wisdom

G.G.M, et al.

knowledge

Google's users

information

Google

Data's elevation?

data

Lists \sim collections of any data

$$
M=[4,7,100,42,5,47]
$$

Lists \sim collections of any data

syntax Square brackets tell python you want a list.

Commas separate elements.

len (M)
M[0]
M[0:3]
slicing

Lists \sim collections of any data

Square brackets tell Commas separate

Lists \sim collections of any data

string

$\mathrm{L}=[3$	4, [20],	ird' ,	$42 \text {] }$
len(L)	L [0]	L [3]	L [1]	$\mathrm{L}[0: 1]$
4	3.14	42	$\begin{aligned} & {[2,40]} \\ & A=L[1] \\ & A[1] \\ & ==40 \end{aligned}$	[3.14]
top-level length	$\underset{\substack{\text { indexing } \\ \text { amaus eneurss }}}{\text { a }}$		$\underset{\substack{\text { indexing } \\ \text { almarar reumss }}}{ }$	slicing!

Lists \sim collections of any data

string

Indexing and Slicing!

$$
\begin{aligned}
& s[0]==\text { 'h' } s[-1]==' e ' \\
& s[17]==\text { 'g' } s[-2]==' g ' \\
& s[8]==\quad u ' \quad s[-11]==' u ' \\
& s[1]==' a ' \quad s[-6]==' \circ ' \\
& \mathbf{s}[19] \text { error! } \mathbf{s}[-20] \text { error! } \\
& s[6]==\underline{\prime} \quad s[-0]=\underline{\prime \prime}
\end{aligned}
$$

Indexing

single-location in a sequence
Can go out of bounds!
Let's see that...

Indexing and Slicing!

$$
\begin{aligned}
& \text { s[0] == 'h' } \\
& s[-1]==\text { 'e' } \\
& \text { s[17] == 'g' } \\
& \text { s[-2] == 'g' } \\
& \text { s[8] == 'u' } \\
& \text { s[-11] == 'u' } \\
& \text { s[1] == 'a' } \\
& \text { s[-6] == 'o' } \\
& \mathbf{s}[19] \text { error! } \mathbf{s}[-20] \text { error! } \\
& \boldsymbol{s}[6]==\text { ' } \quad s[-0]==\text { 'h' }
\end{aligned}
$$

Indexing

single-location in a sequence
Can go out of bounds!
Let's see that...

Indexing and Slicing!

$$
\begin{aligned}
& s[0: 2]==\text { 'ha' } \\
& \mathbf{s}[15: 18]==\text { 'leg' } \\
& \mathbf{s}[-2:]==\text { 'ge' } \\
& \mathbf{s}[: 3]==\text { 'har' }^{\prime} \\
& \mathbf{s}[5: 3]==\text { '' } \\
& \mathbf{s}[5: 3:-1]==\text { 'ye' } \\
& \mathbf{s}[10: 17: 3]== \\
& \mathbf{s}[1:: 6]==
\end{aligned}
$$

Indexing and Slicing!

$$
\begin{aligned}
& s[0: 2]==\text { 'ha' } \\
& \text { s[15:18] == 'leg' } \\
& \text { s[-2:] == 'ge' } \\
& \text { s[:3] == 'har' } \\
& \boldsymbol{s}[5: 3]==1 ' \\
& \text { s[5:3:-1] == 'ye' } \\
& s[10: 17: 3]==\text { 'doe' } \\
& s[1:: 6]=={ }^{\prime} \mathrm{amo}^{\prime}
\end{aligned}
$$

$\mathrm{L}=[5,4,2]$

First + Rest

$\mathbf{s}=$ 'harvey mudd college'

-19	-17	-15	-13	-11	-9	-7	-5	-3	
-18								-4	

L[0]
 s[0] ==
 L[1:]
 s[1:]

$\mathrm{L}=\left[\mathrm{S}_{-3}^{0}, \mathbf{4}_{-2}^{1}, 2_{-1}^{2}\right]$
 First + Rest
 $\mathbf{s}=$ 'harvey mudd college' <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-19</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-17</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-15</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-13</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-11</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-9</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-7</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-5</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-3</td>
<td style="text-align: center; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-1</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-18</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-16</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-14</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-12</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-10</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-8</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-6</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-4</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-2</td>
<td style="text-align: center; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| -19 | -17 | -15 | -13 | -11 | -9 | -7 | -5 | -3 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -18 | -16 | -14 | -12 | -10 | -8 | -6 | -4 | -2 | |</table-markdown></div>

 $L[0]==\quad{ }_{\text {Index }}$

 $L[0]==\quad{ }_{\text {Index }}$ s[0] == 'h' s[0] == 'h'

 "first"

 "first"}
$\mathrm{L}[1:]=={ }^{[4,2]}$ slice
s[1:] == 'arvey mudd college'
pi $=\left[3,1,4,1_{6}^{3}, \mathbf{5}^{4}, 9\right]$

Try it...

L = ['pí', "兰sn't", [4,2]]

M = 'You need parentheses for chemistry

Extra! Mind Muddlers
pi[0]*(pi[1]+pi[2]) and
pi[0]*(pi[1:2]+pi[2:3]) ?
These two are different!
pi $=[3,1,4,1,5,9]$

Try it．．．

L＝［＇pin＇，＂酋sn＇t＂，［4，2］］

M＝＇You need parentheses for chemistry

Part $\mathbf{1}$
What is pi［0］
What is pi［1：］

6
What are len（pi），len（L），len（L［1］）？

What is pi［2：4］

What slice of pi is $[3,1,4]$

What slice of pi is［3，4，5］

Part 2
$\left.\begin{array}{l}\text { What is } \mathrm{L}[0] \\ \text { What is } \mathrm{L}[0][1] \\ \text { What is } \mathrm{L}[0: 1]\end{array}\right\} \begin{aligned} & \text { These three } \\ & \begin{array}{l}\text { are all } \\ \text { different }\end{array}\end{aligned}$
What slice of \mathbf{M} is＇try＇

What slice of \mathbf{M} is＇shoe＇

What is $M[9: 15]$

What is $\mathbf{M}[:: 5]$

Extra！Mind Muddlers What are
pi［0］＊（pi［1］＋pi［2］）and
pi［0］＊（pi［1：2］＋pi［2：3］）？
These two are different！
pi $=\left[3,1,4,1_{1}^{3}, 5_{2}^{4}, 9\right]$

Tried!

L = ['pí', "兰sn't", [4,2]]
M = 'You need parentheses for chemistry

pi $=\left[3,1,4,1_{1}^{3}, 5_{2}^{4}, 9\right]$

Tried!

$$
\mathrm{L}=[\text { 'pí', "ísn't", [4,2]] }
$$

M = 'You need parentheses for chemistry

What are
These two are different!
pi[0]*(pi[1]+pi[2]) and
pi[0]*(pi[1:2]+pi[2:3]) ?
$3 *(1+4)==15$

$$
3^{*}([1]+[4])==3^{*}[1,4]==[1,4,1,4,1,4]
$$

Python slices - it dices...

(data, at least)

... but wait, there's more!

Python slices - it dices...

(data, at least)

Python
 functions
 ... but wait, there's more!

Functioning in Python

\# my own function!
def dbl(x):

""" returns double its input, x """ return 2x

This doesn't look quite right...

Functioning in Python

```
#
2 # Putting the "fun" into Python functions!
# #
4
5 def dbl( x ):
    """ returns double its input, x """
        return 2x
```

More visibly broken...!

Functioning in Python

def dbl(x):
""" returns double its input, x """ return 2*x

Python's
keywords
Some of Python's baggage...

Function Fun!

def adjectify(s):
""" makes its input an adjective return s + '-tastic'

In[1] adjectify('cs5')
 'cs5-tastic

strings, lists, numbers ... all data are fair game

Have a cs5-tastic Week!

and Semester, too

This week's lab ~
first two hw problems

