
Welcome	back	to	CS	5	! Wally

Homework 0

Alien

Problem 1: Four-fours program: Can be done for lab...

Problem 2: Rock-paper-scissors + Adventure

Problems 3-4: Picobot! empty room (3) maze (4)

Our	Week	0	
CS5	gallery

Problem 0: Reading + response…

Picobot

Picobot	~	problems...	?

Grammarly	agrees	!

My Grammarly is in
valid-Picobot-only

mode

Lab	on	
Friday!

Picobot	
tutoring	
gets	real!

Wally

Alien

Looking	forward	to	Week	1...

Homework 1

due next Tuesday

Problems 1+2: Slicing and indexing: These are lab ...

Problem 3: Functions! In lab or beyond... due next Tuesday

hw2pr4 PythonBat functions (not due this week - but they can be addictive!)

Problem 0: Reading + response…
due next Tuesday

due next next Tuesday!

[A] What other work might

adventure(
) have

encouraged you to

procrastinate... ?

[B] What if CS 5 were now

finished with Picobot?

The	challenge	of	programming…

syntax semantics intent
How	it	looks What	it	does What	it	should	do

human-
typed	
input

machine-
produced
output

human-
desired	
output

?

learning	a	language			~			syntax

…	but	learning	CS			~			semantics

unavoidable, but not the point

guiding how machines think!

Today's semantics

in a silly, but

surprisingly

accurate, slide!

Inside	the	machine…

name: x
type: int
LOC: 312

41

variables	~	boxes

memory	location	312

Computation Data	Storage

name: y
type: int
LOC: 324

42

memory	location	324

id, del

What's behind the scenes: Processing + Memory:

Memory!

name: x
type: int
LOC: 312

41

Random	Access	Memory	

name: z
type: int
LOC: 336

83
name: y
type: int
LOC: 324

42

a	big	line	of	boxes,	each	with	a	name,	type,	location,	and	value

name:
type: int
LOC: 348

83

Join me,
in the
machine!

Memory!

name: x
type: int
LOC: 312

41

Random	Access	Memory	

name: z
type: int
LOC: 336

83
name: y
type: int
LOC: 324

42

a	big	line	of	boxes,	each	with	a	name,	type,	location,	and	value

512	MB	of	memory

name:
type: int
LOC: 348

83

Deeper?

Memory!

byte	=	8	bits
bit	=	smallest	amt.	of	info.:		0	or	1

name: x
type: int
LOC: 312

on or off

41

Random	Access	Memory	

name: z
type: int
LOC: 336

83
name: y
type: int
LOC: 324

42

a	big	line	of	boxes,	each	with	a	name,	type,	location,	and	value

512	MB	of	memory

name:
type: int
LOC: 348

83

word	=	64	bits

TrueFalse

Now, that's a
bit, unboxed!

Hey!		Someone	
can't	spelle	!

All	languages	use	types

bool

int

float

Type Example What	is	it?

numeric values with a
fractional part, even if
the fractional part is .0

integers – Python has
“infinite” precision ints!

George	Boole

the	T/F	results	from	a	
test	or	comparison:
==,	!=,	<,	>,	<=,	>=	

10**10042 or

3.14 3.0or

True Falseor

"Boolean	values"
"Boolean	operators"

type(x)

Floating	Point

2010

1985

What’s	π128	?

4317016463018832196709083625024446012604641993892727664123878478.9
474515633440303225830450506795392754625977460310918186250543527301
549366960496349746543393405404123050385931051774697126943108466359
172828279409970799626671699113384705953187480724955737651020706515
287223993451712635948351115145740920104474450409476646607093560726
665456056508528459299270285193814888344310949840872793088246549905
268399187255999504710677502883693814248667423465024070952982210658
586525562596695908800701405852285639369144499732871656832068600998
770691072767478007619168895385964880226371167833895622602072426111
268991220721976018680557827209321452943850021416894870702879214542
776547666896459975218624429609715913959823324558501722525498659481
302813651086673017167129086703124872907738042554461882590178737032

4	vigintillion	317	no
vemdecillion	16	octo

decillion	463	

septendecillion	18	s
exdecillion	832	quin

decillion	196	

quattuordecillion	70
9	tredecillion	83	duo

decillion	625	undeci
llion	

24	decillion	446	non
illion	12	octillion	60

4	septillion	641	sext
illion	

993	quintillion	892	
quadrillion	727	trill

ion	664	billion	123	m
illion	

878	thousand	478,	a
nd	947	thousandths

	515	millionths	…

Floating	Point

• Always	uses	
scientific	notation	
even	if	it	doesn’t	
look	like	it.
– Significand
– Exponent

• Limited	Precision
• Approximation
• “Good enough”
most of the time. 1986

What’s	42!

Also	possible	
in	1982

()

**

-

* / % //

+ -

> == <

=

Operate! higher precedence

()

**

-

* / % //

+ -

> == <

=

Operate! higher precedence

()

**

-

* / % //

+ -

> == <

=

Operate! higher precedence

Python	operators
()

**
-

+ -

> == <

=

parens

power

negate

times,	mod,	divide

add,	subtract

compare

assign
It's	not	worth	remembering	all	these	%+/*	things!					
I’d	recommend	parentheses	over		precedence.

higher precedence

* / % //

the	"equals"	operators	

= != ==
This	is	true	–	but	what	is	it	saying!?

= != ==
SET	

(make	equal	to)
isn't	equal	to TEST	equals

the	"equals"	operators	

x = 41
y = x+1

x == 42
y == 42

I	want		=== !===

= != ==
isn't	equal	to TEST	equals

the	"equals"	operators	

x = 41
y = x+1

x == 42
y == 42

True

False

I	want		=== !===

SET	
(make	equal	to)

= != ==
isn't	equal	to TEST	equals

the	"equals"	operators	

x = 41
y = x+1

x != 42
y != 42

I	want		=== !===

SET	
(make	equal	to)

= != ==
isn't	equal	to TEST	equals

the	"equals"	operators	

x = 41
y = x+1

x != 42
y != 42

I	want		=== !===

True

False

SET	
(make	equal	to)

7 % 3

% the	mod	operator	

8 % 3

9 % 3

30 % 7

x%4 == 0

x%2 == 0

For what values of x
are these True?

What happens on these
years, football-wise!?

x%y is the remainder when x is divided by y

x%2 == 1

x%4 == 3

If x is a year, what happens
on these years!?

What values x make
this test True?

What values x make
this test True?

7 % 3

% the	mod	operator	

8 % 3

9 % 3

30 % 7

x%4 == 0

x%2 == 0

For what values of x
are these True?

What happens on these
years, football-wise!?

x%y is the remainder when x is divided by y

x%2 == 1

x%4 == 3

If x is a year, what happens
on these years!?

What values x make
this test True?

What values x make
this test True?

7 // 3

// integer	division

8 // 3

9 // 3

30 // 7

x//y is x/y,
rounded-down
to an integer

7 // 3

8 // 3

9 // 3

30 // 7

x//y is x/y,
rounded-down
to an integer

x == (x//y)*y + (x%y)

Why?

of full y's in x remainder after "taking" all of the full y's in x

30 == (4)*7 + (2)
Decomposition	of	30	into	7's:

Decomposition	of	x	into	y's:

// integer	division

how		=		works

x = 41
y = x + 1
z = x + y

x = x + y

"Quiz"

What	are	x,	y,	and	
z	at	this	time?

a = 11//2
b = a%3
c = b** a+b *a

Try	it!

x y z

x y z

Run
these	
lines

Then	run	
this	line

What	are	the	values	of	a,	b,	and	c	
after	the	3	lines,	at	left,	run?

What	are	x,	y,	and	
z	at	this	time?

a b c

Name(s)		______________________________

Inside	the	machine…

name: x
type: int
LOC: 312

What's happening in python:

id, del

Computation Memory	(Data	Storage)

name: y
type: int
LOC: 324

x = 41
y = x + 1
z = x + y
x = x + y

What's happening behind the scenes (in memory):

name: z
type: int
LOC: 312

Inside	the	machine…

name: x
type: int
LOC: 312

41

What's happening in python:

id, del

Computation Memory	(Data	Storage)

name: y
type: int
LOC: 324

42

x = 41
y = x + 1
z = x + y
x = x + y

What's happening behind the scenes (in memory):

name: z
type: int
LOC: 312

83

[Thank	you,	Lucas!]

CS	~	names	are	"current	data"		
(really,	current	state)

Math	~	names	are	concepts	

they're	changing	all	the	time	–	intentionally	–	
and	their	behavior	is	their	purpose	

they're	consistent	–	intentionally	–	and	their	
inherent	relationships	are	their	purpose	

how		=		works

x = 41
y = x + 1
z = x + y

x = x + y

"Quiz"

What	are	x,	y,	and	
z	at	this	time?

a = 11//2
b = a%3
c = b** a+b *a

x y z

x y z

Run
these	
lines

Then	run	
this	line

What	are	the	values	of	a,	b,	and	c	
after	the	3	lines,	at	left,	run?

What	are	x,	y,	and	
z	at	this	time?

a b c

41 42 83

83 42 83

5 2 ??

Most of the solutions...

Try	it!

among many 42 references...
mostly in cs5...!

Are	numbers	enough	for	everything?

Yes	and	no…

You	need	lists	of	numbers,	as	well!

and	strings	-	lists	of	characters	-	too.

Both	of	these	are	Python	 sequences…

strings:		textual	data

add!

s = 'scripps'
c = 'college'

type...

multiply!!

len

type(s)

len(s)

s + c

2*s + 3*c

strings

What	did	you	say!?!

s1 = 'ha'

s2 = 't'
Given

s1 + s2

2*s1 + s2 + 2*(s1+s2)

What	are	

strings:		textual	data

s1 = 'ha'

s2 = 't'
Given

s1 + s2

2*s1 + s2 + 2*(s1+s2)

What	are	

strings:		textual	data

hat

ha ha that hatWhat	did	you	say!?!

Data
Data,	data	everywhere…	

Big	Data?

2015

1 Zettabyte

1 Exabyte

1 Petabyte

(brain) 14 PB: http://www.quora.com/Neuroscience-1/How-much-data-can-the-human-brain-store

(2002) 5 EB: http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm
(2023) https://explodingtopics.com/blog/data-generated-per-day (estimate of 181zb in 2025)

1 Petabyte, PB == 1000 Terabytes, TB

2009

(2025) 16-175ZB: https://seedscientific.com/how-much-data-is-created-every-day/
(2020) 44ZB: http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
(2015) 8 ZB: http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
(2011) 1.8 ZB: http://www.emc.com/leadership/programs/digital-universe.htm
(2009) 800 EB: http://www.emc.com/collateral/analyst-reports/idc-digital-universe-are-you-ready.pdf
(2006) 161 EB: http://www.emc.com/collateral/analyst-reports/expanding-digital-idc-white-paper.pdf

2006

2011

(life in video) 60 PB: in 4320p resolution, extrapolated from 16MB for 1:21 of 640x480 video
(w/sound) – almost certainly a gross overestimate, as sleep can be compressed significantly!

161 EB

800 EB

1.8 ZB 8.0 ZB

14 PB

60 PB

Data produced each year, in total

100-years of HD video + audio
Human brain's capacity

Data,	data	everywhere…	

References

lo
ga

rit
hm

ic

sc
al

e

1 Terabyte, TB == 1000 Gigabytes, GB

2020

44 ZB

1 Yottabyte

181 ZB

2025

alotta-bytes?	

20025 EB

Big	Data?

data

information

knowledge

wisdom

Google

Google's	users

G.G.M,	et	al.

Data's	elevation?

G.	Garcia	Marquez

Lists	~	collections	of	any	data

M = [4, 7, 100, 42, 5, 47]

Lists	~	collections	of	any	data

M = [4, 7, 100, 42, 5, 47]

Square brackets tell
python you want a list.

Commas separate
elements.

len(M) M[0] M[0:3]

0 index

elements

1 2 3 4 5

slicing indexing top-level length

syntax

semantics

Lists	~	collections	of	any	data

M = [4, 7, 100, 42, 5, 47]

Square brackets tell
python you want a list.

Commas separate
elements.

len(M) M[0] M[0:3]

slicing indexing top-level length

0 index

elements

1 2 3 4 5

6 4 [4,7,100]

syntax

semantics

[]

Lists	~	collections	of		any		data

L = [3.14, [2,40], 'third', 42]

len(L) L[0] L[0:1]

always returns a
substructure!

always returns
an element

slicing! indexing top-level length

only counts top-level elements

string

index0 1 2 3

L[3]

always returns
an element

indexing

L[1]

always returns
an element

indexing

Lists	~	collections	of		any		data

L = [3.14, [2,40], 'third', 42]

len(L) L[2]

always returns
an element

indexing top-level length

only counts top-level elements

string

'hi'

L[][:]

indexing + slicing

index0 1 2 3

Composition
Science!

4

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

Feeling positive? Python!
Feeling negative? Python!Indexing	and	Slicing!

s[0] == 'h'

s[17] == 'g'

s[8] == 'u'

s[1] == 'a'

s[-1] == 'e'

s[-2] == 'g'

s[-11] == 'u'

s[19] error! s[-20] error!
s[-6] == 'o'

s[-0] == ____ s[6] == ____

Indexing
single-location in	a	sequence

Can go	out	of	bounds!	
Let's	see	that...

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

Feeling positive? Python!
Feeling negative? Python!Indexing	and	Slicing!

Indexing
single-location in	a	sequence

Can go	out	of	bounds!	
Let's	see	that...

s[0] == 'h'

s[17] == 'g'

s[8] == 'u'

s[1] == 'a'

s[-1] == 'e'

s[-2] == 'g'

s[-11] == 'u'

s[19] error! s[-20] error!
s[-6] == 'o'

s[-0] == 'h' s[6] == ' '

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

Feeling positive? Python!
Feeling negative? Python!Indexing	and	Slicing!

s[0:2] == 'ha'

s[15:18] == 'leg'

s[-2:] == 'ge'

s[10:17:3] == _____

s[:3] == 'har'

s[5:3] == ''

s[5:3:-1] == 'ye'

Slicing
two-index-subsequence

Optional	third	value	is	the	"stride"

Omit	an	index	to	say	"the	end"

s[1::6] == _____I love
that

last one. - G. Garcia Marquez

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

Feeling positive? Python!
Feeling negative? Python!Indexing	and	Slicing!

s[0:2] == 'ha'

s[15:18] == 'leg'

s[-2:] == 'ge'

s[10:17:3] == 'doe'

s[:3] == 'har'

s[5:3] == ''

s[5:3:-1] == 'ye'

Slicing
two-index-subsequence

Optional	third	value	is	the	"stride"

Omit	an	index	to	say	"the	end"

s[1::6] == 'amo'I love
that

last one. - G. Garcia Marquez

L[0] ==

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

s[1:] ==
L[1:] ==

L = [5,4,2]

s[0] ==

0 1 2

-3 -2 -1
First	+	Rest

L[0] ==

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

s[1:] == 'arvey mudd college'

L[1:] ==

5

L = [5,4,2]

s[0] ==
[4,2]

'h'

0 1 2

-3 -2 -1

"first"	

"rest"	

Index	

Slice	

First	+	Rest

What is pi[0]

What slice of pi is [3,4,5]

What are pi[0]*(pi[1]+pi[2]) and pi[0]*(pi[1:2]+pi[2:3]) ?

What slice of pi is [3,1,4]

What is pi[1:]

What are len(pi), len(L), len(L[1])?

What is pi[2:4]

What is L[0]

What is L[0][1]

What is L[0:1]

What slice of M is 'try'

These two are different!

Extra!	Mind	Muddlers

Part	2Part	1

These three
are all
different

pi = [3,1,4,1,5,9]

L = ['pi', "isn't", [4,2]]

M = 'You need parentheses for chemistry !'
0 4 8 12 16 20 24 28 32

What is M[::5]

What is M[9:15]

What slice of M is 'shoe'

_

0

2 6 10 14 18 22 26 30

1 2 3 4 5

-6 -5 -4 -3 -2 -1

34

_

[1,4,1,5,9]

"first of pi"

"rest of pi"

Try	it... We <3 ()

What is pi[0]

What slice of pi is [3,4,5]

What are pi[0]*(pi[1]+pi[2]) and pi[0]*(pi[1:2]+pi[2:3]) ?

What slice of pi is [3,1,4]

What is pi[1:]

What are len(pi), len(L), len(L[1])?

What is pi[2:4]

What is L[0]

What is L[0][1]

What is L[0:1]

What slice of M is 'try'

These two are different!

Extra!	Mind	Muddlers

Part	2Part	1

These three
are all
different

pi = [3,1,4,1,5,9]

L = ['pi', "isn't", [4,2]]

M = 'You need parentheses for chemistry !'
0 4 8 12 16 20 24 28 32

What is M[::5]

What is M[9:15]

What slice of M is 'shoe'

6

0

2 6 10 14 18 22 26 30

1 2 3 4 5

-6 -5 -4 -3 -2 -1

34

3

[1,4,1,5,9]

3 5

[4, 1]

pi[0:3]

pi[0:5:2] or pi[0::2]

'parent'

M[31:34] or M[-5:-2] or ...

'pi'

'i'

['pi']

M[30:17:-4]

'Yeah cs!'

Try	it... We <3 ()

What is pi[0]

What slice of pi is [3,4,5]

What are pi[0]*(pi[1]+pi[2]) and pi[0]*(pi[1:2]+pi[2:3]) ?

What slice of pi is [3,1,4]

What is pi[1:]

What are len(pi), len(L), len(L[1])?

What is pi[2:4]

What is L[0]

What is L[0][1]

What is L[0:1]

What slice of M is 'try'

These two are different!

Extra!	Mind	Muddlers

Part	2Part	1

These three
are all
different

pi = [3,1,4,1,5,9]

L = ['pi', "isn't", [4,2]]

M = 'You need parentheses for chemistry !'
0 4 8 12 16 20 24 28 32

What is M[::5]

What is M[9:15]

What slice of M is 'shoe'

6

0

2 6 10 14 18 22 26 30

1 2 3 4 5

-6 -5 -4 -3 -2 -1

34

3

[1,4,1,5,9]

3 5

[4, 1]

pi[0:3]

pi[0:5:2] or pi[0::2]

3*(1+4) == 15 3*([1]+[4]) == 3*[1,4] == [1,4,1,4,1,4]

'parent'

M[31:34] or M[-5:-2] or ...

'pi'

'i'

['pi']

M[30:17:-4]

'Yeah cs!'

We <3 () Tried!

What is pi[0]

What slice of pi is [3,4,5]

What are pi[0]*(pi[1]+pi[2]) and pi[0]*(pi[1:2]+pi[2:3]) ?

What slice of pi is [3,1,4]

What is pi[1:]

What are len(pi), len(L), len(L[1])?

What is pi[2:4]

What is L[0]

What is L[0][1]

What is L[0:1]

What slice of M is 'try'

These two are different!

Extra!	Mind	Muddlers

Part	2Part	1

These three
are all
different

pi = [3,1,4,1,5,9]

L = ['pi', "isn't", [4,2]]

M = 'You need parentheses for chemistry !'
0 4 8 12 16 20 24 28 32

What is M[::5]

What is M[9:15]

What slice of M is 'shoe'

6

0

2 6 10 14 18 22 26 30

1 2 3 4 5

-6 -5 -4 -3 -2 -1

34

3

[1,4,1,5,9]

3 5

[4, 1]

pi[0:3]

pi[0:5:2] or pi[0::2]

3*(1+4) == 15 3*([1]+[4]) == 3*[1,4] == [1,4,1,4,1,4]

'parent'

M[31:34] or M[-5:-2] or ...

'pi'

'i'

['pi']

M[30:17:-4]

'Yeah cs!'

M[-6:-19:-4]

Tried! We <3 ()

Python	slices	-	it	dices...	

…	but	wait,		there's	more!

(data,	at	least)

Python	slices	-	it	dices...	

…	but	wait,		there's	more!

(data,	at	least)

Python
	

functio
ns

my own function!

def dbl(x):

 """ returns double its input, x """
 return 2x

This	doesn't	look	quite	right…

Functioning	in	Python

More	visibly	broken…	!

Functioning	in	Python

Functioning	in	Python

Some	of	Python's	baggage…

my own function!

def dbl(x):

 """ returns double its input, x """
 return 2*x

comment	for	
other	coders

documentation	string	
for	all	users

Python's	
keywords

Function	Fun	!	

In[1] adjectify('cs5')

def adjectify(s):

 """ makes its input an adjective """
 return s + '-tastic'

strings,	lists,	numbers	…	
all	data	are	fair	game

'cs5-tastic

Have	a	c
s5-tasti

c	Week!

This	week's	lab	~													
first	two	hw	problems

and Semester, too

