
Fun	with	Functions!

We	must	go	
deeper

How	to	Eat	Chocolate
One	piece	at	a	time…

This	is	a	fundamental	idea!

S = 'alien'

S[0] ==

S[1:]==

0					1					2					3						4

Last	time:			Python	slices...

and?

indexing

slicing

Computation's	Dual	Identity

name: x
type: int
LOC: 300

41

memory	location	300

Computation Data	Storage

name: y
type: int
LOC: 304

42

memory	location	304

Last	time

variables	~	boxes

But	what	does	the	
stuff	on	this	side	
look	like	? Data!

This	week's	reading			data	vs	theory…

?

!

a	New
Newton!

This	week's	reading			data	vs	theory…

?

!

a	New
Newton!

This	year's	
Livermore	clinic!

Computation's	Dual	Identity

name: x
type: int
LOC: 300

41

memory	location	300

Computation Data	Storage

name: y
type: int
LOC: 304

42

memory	location	304

variables	~	boxes

accessed	through	functions…

Functions!It's	no	coincidence	
this	starts	with	fun!

This	time

Functioning	across	disciplines

def g(x):
 return x**100

g(x)		=		x100

CS's	googolizer Math's	googolizer

defined	by	what	it	relates

+	what	follows	behaviorally

procedure structure

+	what	follows	logically

defined	by	what	it	does

Functions!

In [2]: verbify('random')
Out[2]: 'randomize'

In [3]: nounify('eat')
Out[3]: 'eater'

Functions!

In [2]: verbify('random')
Out[2]: 'randomize'

In [3]: nounify('eat')
Out[3]: 'eater'

def verbify(
noun):

 return noun
 + 'ize'

def nounify(
noun):

 return noun
 + 'er'

Functions!

In [2]: verbify('random')
Out[2]: 'randomize'

In [3]: nounify('eat')
Out[3]: 'eater'

In [4]: nounify('bake')
Out[4]: 'bakeer'

def verbify(
noun):

 return noun
 + 'ize'

def nounify(
noun):

 return noun
 + 'er'

Functions!

In [2]: verbify('random')
Out[2]: 'randomize'

In [3]: nounify('eat')
Out[3]: 'eater'

In [4]: nounify('bake')
Out[4]: 'baker'

def verbify(
noun):

 return noun
 + 'ize'

def nounify(
verb):

 return stem
(verb) + 'er

'

More	Functions!

In [2]: verbify('random')
Out[2]: 'randomize'

In [3]: nounify('eat')
Out[3]: 'eater'

In [4]: nounify('bake')
Out[4]: 'baker'

def stem(word):
 if word[-1] == 'e': return word[:-1] else:
 return word

def verbify(noun):
 return stem(noun) + 'ize'

def nounify(verb):
 return stem(verb) + 'er'

I'm	happy	
about	this,	too!

Ok,	we	humans	work	better	when	naming	things...
	

...why	might	computers	"prefer"	the	top	version?!

def insertOh(s):
 m = len(s)//2
 return s[m:] + 'OH' + s[:m]

def insertOh(s):
 return s[len(s)//2:] + 'OH' + s[:len(s)//2]

Use	variables!

Aargh!

these	two	functions	
do	the	"same"	thing...	

More	Functions!
def convLengthPrint(inches):

""" convert inches to customary length units
input: inches, an int

"""
miles = inches // (8 * 10 * 22 * 3 * 12) # 8 furlongs per mile
inches = inches % (8 * 10 * 22 * 3 * 12)
furlongs = inches // (10 * 22 * 3 * 12) # 10 chains per furlong
inches = inches % (10 * 22 * 3 * 12)
chains = inches // (22 * 3 * 12) # 22 yards per chain
inches = inches % (22 * 3 * 12)
yards = inches // (3 * 12) # 3 feet per yard
inches = inches % (3 * 12)
feet = inches // 12 # 12 inches per foot
inches = inches % 12
print(miles, "miles,", furlongs, "furlongs,", chains, "chains,",

yards, "yards,", feet, "feet, and", inches, "inches.")

More	Functions!
def convLength(inches):

""" convert inches to customary length units
input: inches, an int

"""
miles = inches // (8 * 10 * 22 * 3 * 12) # 8 furlongs per mile
inches = inches % (8 * 10 * 22 * 3 * 12)
furlongs = inches // (10 * 22 * 3 * 12) # 10 chains per furlong
inches = inches % (10 * 22 * 3 * 12)
chains = inches // (22 * 3 * 12) # 22 yards per chain
inches = inches % (22 * 3 * 12)
yards = inches // (3 * 12) # 3 feet per yard
inches = inches % (3 * 12)
feet = inches // 12 # 12 inches per foot
inches = inches % 12

return [miles, furlongs, chains, yards, feet, inches]

What's	the	diff
erence?

return vs.								print

def dbl(x):
 """ dbls x """

return 2*x

def dblPR(x):
 """ dbls x """
 print(2*x)

ans = dbl(20) ans = dblPR(20)

What's	the	difference	?!

print	changes	only	
pixels-on-the-screen

return >>								print

ouch!yes!

ans = dbl(20) + 2 ans = dblPR(20)+2
this is a value for further use! this turns lightbulbs on!

def dbl(x):
 """ dbls x """

return 2*x

def dblPR(x):
 """ dbls x """
 print(2*x)

return			conveys	
the	function's	value

…	which	the	terminal	then	prints!

return >>								print

how	software	passes	
information	from	
function	to	function...

changes	the	pixels	
(little	lightbulbs)	
on	your	screen

return >>								print

how	software	passes	
information	from	
function	to	function...

changes	the	pixels	
(little	lightbulbs)	
on	your	screen

Terminology
def convLength(inches):

""" convert inches to customary length units
input: inches, an int

"""
miles = inches // (8 * 10 * 22 * 3 * 12) # 8 furlongs per mile
inches = inches % (8 * 10 * 22 * 3 * 12)
furlongs = inches // (10 * 22 * 3 * 12) # 10 chains per furlong
inches = inches % (10 * 22 * 3 * 12)
chains = inches // (22 * 3 * 12) # 22 yards per chain
inches = inches % (22 * 3 * 12)
yards = inches // (3 * 12) # 3 feet per yard
inches = inches % (3 * 12)
feet = inches // 12 # 12 inches per foot
inches = inches % 12

return [miles, furlongs, chains, yards, feet, inches]

in-line	comments	—optional	in	CS	5
code	bl

ock

return		statement

functio
n	

name signature	line

docstring

param
eter

follow	the	data!

>>> undo('caf')

def undo(s):

 """ this "undoes" its input, s """
 return 'de' + s

'decaf'

follow	the	data!

>>> undo('caf')

>>> undo(undo('caf'))

def undo(s):

 """ this "undoes" its input, s """
 return 'de' + s

strings,	lists,	numbers	…	
all	data	are	fair	game

'decaf'

follow	the	data!

>>> undo('caf')

>>> undo(undo('caf'))

def undo(s):

 """ this "undoes" its input, s """
 return 'de' + s

strings,	lists,	numbers	…	
all	data	are	fair	game

'decaf'

'dedecaf'

Big	Ideas
• We	can	write	functions
• Those	functions	can	make	decisions

• We	can	call	functions
• We	can	write	functions	that	call	functions	
we've	written	and	use	their	results

• Variables	in	functions	belong	to	the	
function	and	vanish	when	it's	done!

How f'ns work…

def g(x):
 result = 4*x + 2
 return result

What	is		 demo(15)				here?

def demo(x):
 y = x//3
 z = g(y)
 return z + y + x

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

Quiz

15
What	is	 f(2)			here?

I	might	have	
a	guess…

Names:		__

def vwl(s):

 if s == '':
 return 0

 elif s[0] in 'aeiou':
 return 1 + vwl(s[1:])

 else:
 return 0 + vwl(s[1:])

What	is	 vwl("alien")			here?

Extra!

Functions
!

How f'ns work…

def g(x):
 result = 4*x + 2
 return result

What	is		 demo(15)				here?

def demo(x):
 y = x//3
 z = g(y)
 return z + y + x

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

Quiz

15
What	is	 f(2)			here?

I	might	have	
a	guess…

Names:		__

def vwl(s):

 if s == '':
 return 0

 elif s[0] in 'aeiou':
 return 1 + vwl(s[1:])

 else:
 return 0 + vwl(s[1:])

What	is	 vwl("alien")			here?

Extra!

How f'ns work…

def g(x):
 result = 4*x + 2
 return result

What	is		 demo(15)				here?

def demo(x):
 y = x//3
 z = g(y)
 return z + y + x

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

Quiz

15
What	is	 f(2)			here?

I	might	have	
a	guess…

Names:		__

def vwl(s):

 if s == '':
 return 0

 elif s[0] in 'aeiou':
 return 1 + vwl(s[1:])

 else:
 return 0 + vwl(s[1:])

What	is	 vwl("alien")			here?

Extra!

42 42

3

def demo(x):
 y = x/3
 z = g(y)
 return z + y + x

def g(x):
 result = 4*x + 2
 return result

result = demo(15)
print("demo(15) is", result)

def demo(x):
 y = x/3
 z = g(y)
 return z + y + x

def g(x):
 result = 4*x + 2
 return result

result = demo(15)
print("demo(15) is", result)

One	snapshot...

def demo(x):
 y = x/3
 z = g(y)
 return z + y + x

How	functions	work…15

def g(x):
 result = 4*x + 2
 return result

they	stack.

"the stack"

def demo(x):
 y = x/3
 z = g(y)
 return z + y + x

How	functions	work…15

stack frame

they	stack.

"the stack"

x = 15
y = 5
z = ?????

call: demo(15)
local variables:

def g(x):
 result = 4*x + 2
 return result

def demo(x):
 y = x/3
 z = g(y)
 return z + y + x

How	functions	work…15

stack frame

they	stack.

"the stack"

x = 15
y = 5
z = ?????

call: demo(15)
local variables:

stack frame

x = 5
result = 22
returns 22

call: g(5)
local variables:

def g(x):
 result = 4*x + 2
 return result

def demo(x):
 y = x/3
 z = g(y)
 return z + y + x

How	functions	work…15

stack frame

they	stack.

"the stack"

x = 15
y = 5
z = ?????

call: demo(15)
local variables:

stack frame

x = 5
result = 22
returns 22

call: g(5)
local variables:

def g(x):
 result = 4*x + 2
 return result

def demo(x):
 y = x/3
 z = g(y)
 return z + y + x

How	functions	work…15

stack frame

they	stack.

"the stack"

x = 15
y = 5
z = 22

call: demo(15)
local variables:

def g(x):
 result = 4*x + 2
 return result

def demo(x):
 y = x/3
 z = g(y)
 return z + y + x

How	functions	work…15

stack frame

they	stack.

"the stack"

x = 15
y = 5
z = 22
return 42

call: demo(15)
local variables:

def g(x):
 result = 4*x + 2
 return result

def demo(x):
 y = x/3
 z = g(y)
 return z + y + x

How	functions	work…15

they	stack.

"the stack"

def g(x):
 result = 4*x + 2
 return result

42
output afterward

s,	the	stac
k	is	

empty…,	b
ut	ready	i

f	

another	fu
nction	is	c

alled	

How	functions	work…
"the stack"

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

2
what's	f(2)	?

So	many	x'es...	!

How	functions	work…

stack frame

"the stack"

x = 2
need f(1)

call: f(2)
local variables:

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

2

How	functions	work…

stack frame

"the stack"

x = 2
need f(1)

call: f(2)
local variables:

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

1

stack frame

x = 1
need f(0)

call: f(1)
local variables:

How	functions	work…

stack frame

"the stack"

x = 2
need f(1)

call: f(2)
local variables:

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

0

stack frame

x = 1
need f(0)

call: f(1)
local variables:

stack frame

x = 0
returns 12

call: f(0)
local variables:

How	functions	work…

stack frame

"the stack"

x = 2
need f(1)

call: f(2)
local variables:

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

stack frame

x = 1
need f(0)

call: f(1)
local variables:

stack frame

x = 0
returns 12

call: f(0)
local variables:

0

How	functions	work…

stack frame

"the stack"

x = 2
need f(1)

call: f(2)
local variables:

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

1

stack frame

x = 1
f(0) = 12
result =

call: f(1)
local variables:

How do we
compute the

result?

How	functions	work…

stack frame

"the stack"

x = 2
need f(1)

call: f(2)
local variables:

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

1

stack frame

x = 1
f(0) = 12
result = 22

call: f(1)
local variables:

Where does
that result go?

How	functions	work…

stack frame

"the stack"

x = 2
need f(1)

call: f(2)
local variables:

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

1

stack frame

x = 1
f(0) = 12
result = 22

call: f(1)
local variables:

How	functions	work…

stack frame

"the stack"

x = 2
f(1) = 22
result =

call: f(2)
local variables:

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

2

What's this
return value?

How	functions	work…

stack frame

"the stack"

x = 2
f(1) = 22
result = 42

call: f(2)
local variables:

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

2

which then
gets returned…

How	functions	work…

stack frame

"the stack"

x = 2
f(1) = 22
result = 42

call: f(2)
local variables:

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

2

the result then
gets returned…

How	functions	work…
"the stack"

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

2

42
output

again,	the
	stack	is	e

mpty,	

but	ready
	if	another

	

function	i
s	called…	

functions	stack.

How	functions	work…
"the stack"

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

2

42
output

again,	the
	stack	is	e

mpty,	

but	ready
	if	another

	

function	i
s	called…	

functions	stack.

Functions	are	s
oftware's	cells

	…

…	each	f 'n	is	a	
self-contained

	

computational
	unit!

How	functions	work…
"the stack"

def f(x):
 if x == 0:
 return 12
 else:
 return f(x-1) + 10*x

2

42
output

again,	the
	stack	is	e

mpty,	

but	ready
	if	another

	

function	i
s	called…	

functions	stack.

Functions	are	s
oftware's	cells

	…

…	each	f 'n	is	a	
self-contained

	

computational
	unit!

Pass those papers

north!

Functions'	conceptual	challenge?
You	need	to	see	BOTH	the	
internal	details	AND	the	
world-facing	interface	
simultaneously!

cells!!!

Nature loves recursion!

Recursion's	conceptual	challenge?
You	need	to	see	BOTH	the	
self-similar	pieces		AND	the	
whole	thing		simultaneously!

... because it's completely self-sufficient!

romanesco	broccoli
Like broccoli, recursion is
"Good for You"

Yes... and no.Are these rules for real?

Yikes!

Yes... and no.Are these rules for real?

Yikes!
Let's	Recurse!

How	to	Eat	Chocolate
One	piece	at	a	time…

This	is	a	fundamental	idea!

Let's	write	factorial!

6!	=	6	×5	× 4	× 3	× 2	×1

or

6!	=	6	×(5	× 4	× 3	× 2	×1)

def fac(N):
 """ returns factorial of N
 """

 if N == 0:
 return 1

 else:
 return N * fac(N-1)

Recurse!

fac(3) N = 3

A

B

What	does	fac(3) return?			__
When	working, • How	many	times	does	line		A		run?	

• How	many	times	does	line		B		run?	
• How	many	N's	are	alive	at	once?!	

def fac(N):
 """ returns factorial of N
 """

 if N == 0:
 return 1

 else:
 return N * fac(N-1)

fac(3)

3 * fac(2)

2 * fac(1)

1 * fac(0)

N = 3

N = 2, next...

1

N = 1, next...

N = 0, next...

A

B

A

B

B

B

• How	many	times	does	line		A		run?	
• How	many	times	does	line		B		run?	

A	~	1	tim
e

B	~	3	tim
es

Recurse!

fac(3) returns	 6 6

• How	many	N's	are	alive	at	once?!	 4	N's	tota
l!

pythontutor.com

There	are	many	
different	values	of	N	–	
all	alive	simultaneously,	

in	the	stack	

how would you
design this?

def fac(N):

 if N == 0:
 return 1

 else:
 return N * fac(N-1) Recursive	

case	

Base	
case

Planning	recursively...

Caution:		A	base	case	is	"always"	needed...

EMPTY case

General case!

...	but	it's	not	always	1!

EMPTY case

Empty	case!				So	many	ways	...	!?

BASE case

the empty integer

the empty float

the empty string

the empty list

def fac(N):

 if N == 0:
 return 1

 else:
 return N * fac(N-1) Recursive	

case	

Base	
case

Thinking	recursively...

Crazy!			How	can	we	multiply	N	times	something	that	hasn't	happened	yet?!

EMPTY case

General case!

def fac(N):

 if N == 0:
 return 1

 else:
 rest = fac(N-1)
 return N*rest

Conceptual Actual

Acting	recursively

def fac(N):

 if N == 0:
 return 1

 else:

 return N*fac(N-1)

this	recursion	happens	first! hooray	for	variables!

Recursion	example:			vwl(S)

syntactic	
definition

syntactic	
stuff!

human	explanation	
–	of	what's	wanted!

human	explanations	–	of	
what's	happening

today:	bridging	these!

The	idea...

is 'a' a
vowel?

of vowels in
'lien'+

first rest

vwl(S), the total # of vowels in
S = 'alien'

The	idea...

is 'a' a
vowel?

of vowels in
'lien'+

first rest

vwl(S), the total # of vowels in
S = 'alien'

is 'l' a
vowel?

of vowels in
'ien'+

first rest

The	idea...

vwl(S), the total # of vowels in
S = 'lien'

is 'i' a
vowel?

of vowels in
'en'+

first rest

The	idea...

vwl(S), the total # of vowels in
S = 'ien'

is 'e' a
vowel?

of vowels in
'n'+

first rest

The	idea...

vwl(S), the total # of vowels in
S = 'en'

is 'n' a
vowel?

of vowels in
''+

first rest

The	idea...

vwl(S), the total # of vowels in
S = 'n'

is 'n' a
vowel?

of vowels in
''+

first rest

The	idea...

vwl(S), the total # of vowels in
S = ''

The	idea,	in	one	slide:

vwl(S), the total # of vowels in
S

is S[0] a
vowel?

of vowels in
S[1:]+

first rest

Recursion	example:			vwl(S)

total # of vowels in
S

is S[0] a
vowel?

of vowels in
S[1:]+

first rest

Analysis
...

...	via	self-simi
larity!

Indexing	+	slicing!

is S[0] a
vowel?

of vowels in
S[1:]+

first rest

the first-of-S the rest-of-S

hw1if		you	worked	on	lab	and	submit	pr1+pr2	
you'll	get	full	credit	for	pr1	+	pr2

else
you	should	complete	the	two	lab	problems,	pr1	+	pr2

either	way:				submit	pr1	+	pr2
Is	this	Python??

:

complete	and	submit			hw1pr3

Extra	Credit:		Pig	Latin	/	CodingBat

DNA	transcription

+	start	hw2pr4

:
be sure to submit

both pr1+pr2...

hw1if		you	worked	on	lab	and	submit	pr1+pr2	
you'll	get	full	credit	for	pr1	+	pr2

else
you	should	complete	the	two	lab	problems,	pr1	+	pr2

either	way:				submit	pr1	+	pr2
Is	this	Python??

:

complete	and	submit			hw1pr3

Extra	Credit:		Pig	Latin	/	CodingBat

DNA	transcription

+	start	hw2pr4

:

Use recursion!

be sure to submit

both pr1+pr2...

if		you	worked	on	lab	and	submit	pr1+pr2	
you'll	get	full	credit	for	pr1	+	pr2

else
you	should	complete	the	two	lab	problems,	pr1	+	pr2

either	way:				submit	pr1	+	pr2
Is	this	Python??

:

complete	and	submit			hw1pr3 +	start	hw2pr4

:

Use PythonBat!
Recursion-free!

due for week 2

hw1

pythontutor.com There	are	six	different	
values	of	S	–	all	alive	
simultaneously,	in	the	

stack	

def vwl(s):
 """ returns # of vowels in s
 """

 if s == '':
 return 0

 elif s[0] in 'aeiou':
 return 1 + vwl(s[1:])

 else:
 return 0 + vwl(s[1:])

Variations!

EMPTY case

Specific case

General case!

How could we CHANGE this function to

"keep" all of the vowels? That is, it

should return 'aie' instead of 3

BASE case

Writing keepvwl, to return 'aie'
instead of 3

cVcVc ?

def keepvwl(S):
 if len(S) == 0:
 return ''

 elif S[0] in 'aeiou':
 return S[0] + keepvwl(S[1:])

 else:
 return '' + keepvwl(S[1:])

EMPTY case

General case

Specific case

EMPTY output

Specific output

General output!

here's keepvwl

others?!

v_w_l ?
dropvwl ?

Extra! For what word w does keepvwl(w) return 'aeiou' ?

create drpvwl

def dropvwl(S):
 if len(S) == 0:
 return ___

 elif S[0] in 'aeiou':
 return ___ + dropvwl(S[1:])

 else:
 return ___ + dropvwl(S[1:])

... first, finish drpvwl

... change to v_w_l

... change to cVcVc

Fill in the code at left in order to...

then...

then...

here's keepvwl

def keepvwl(S):
 if len(S) == 0:
 return ''

 elif S[0] in 'aeiou':
 return S[0] + keepvwl(S[1:])

 else:
 return '' + keepvwl(S[1:])

[A]		What	is	keepvwl('recursion')	?

[B]	When	running	[A],	how	many	times	does	this	base-case	line	return?

[C]	When	running	[A],	how	many	times	does	this	elif-case	line	return?

[D]	When	running	[A],	how	many	times	does	this	else-case	line	return?

[B]

[C]

[D]

[A]

Extra! For what word w does keepvwl(w) return 'aeiou' ?

create drpvwl

def dropvwl(S):
 if len(S) == 0:
 return ___

 elif S[0] in 'aeiou':
 return ___ + dropvwl(S[1:])

 else:
 return ___ + dropvwl(S[1:])

... first, finish drpvwl

... change to v_w_l

... change to cVcVc

Fill in the code at left in order to...

then...

then...

here's keepvwl

def keepvwl(S):
 if len(S) == 0:
 return ''

 elif S[0] in 'aeiou':
 return S[0] + keepvwl(S[1:])

 else:
 return '' + keepvwl(S[1:])

[A]		What	is	keepvwl('recursion')	?

[B]	When	running	[A],	how	many	times	does	this	base-case	line	return?

[C]	When	running	[A],	how	many	times	does	this	elif-case	line	return?

[D]	When	running	[A],	how	many	times	does	this	else-case	line	return?

[B]

[C]

[D]

[A]
'euio'

Extra! For what word w does keepvwl(w) return 'aeiou' ?

create drpvwl

def dropvwl(S):
 if len(S) == 0:
 return ___

 elif S[0] in 'aeiou':
 return ___ + dropvwl(S[1:])

 else:
 return ___ + dropvwl(S[1:])

here's keepvwl

def keepvwl(S):
 if len(S) == 0:
 return ''

 elif S[0] in 'aeiou':
 return S[0] + keepvwl(S[1:])

 else:
 return '' + keepvwl(S[1:])

[A]		What	is	keepvwl('recursion')	?

[B]	When	running	[A],	how	many	times	does	this	base-case	line	return?

[C]	When	running	[A],	how	many	times	does	this	elif-case	line	return?

[D]	When	running	[A],	how	many	times	does	this	else-case	line	return?

[B]

[C]

[D]

[A]
'euio'

1

4

5

''

''

s[0]

'_'

s[0]

'V'

'c'

... first, finish drpvwl

... change to v_w_l

... change to cVcVc

then...

then...

Fill in the code at left in order to...

def cVcVc(s):
 """ vowels -> V, consonants -> c
 """
 if s == '':
 return ''

 elif s[0] in 'aeiou':
 return 'V' + v_w_l(s[1:])

 else:
 return 'c' + v_w_l(s[1:])

def dropvwl(s):
 """ returns only non-vowels in s!
 """
 if s == '':
 return ''

 elif s[0] in 'aeiou':
 return '' + dropvwl(s[1:])

 else:
 return s[0] + dropvwl(s[1:])

def VoWeL(s):
 """ SPoNGeBoBBiFy s
 """
 if s == '':
 return ''

 elif s[0] in 'aeiouy':
 return s[0] + VoWeL(s[1:])

 else:
 return s[0].upper() + VoWeL(s[1:])

def v_w_l(s):
 """ replaces vowels with _
 """
 if s == '':
 return ''

 elif s[0] in 'aeiou':
 return '_' + v_w_l(s[1:])

 else:
 return s[0] + v_w_l(s[1:])

if	it's	a	vowel,	keep	s[0],	
the	vowel	itself!

base	case!	return	
the	empty	string

if	it's	not	a	vowel,	make	it	an	UPPERCASE	s[0]!

if	vowel,	leave	it	out!

if	not	a	vowel,	keep	it!

base	case!	return	the	
"zero"	of	strings...

if	a	vowel,	replace	with	a	'_'

if	not	a	vowel,	keep	it!

base	case!	return	the	"zero"	of	strings...

base	case!	return	the	"zero"	of	strings...

if	a	vowel,	
replace	with	a	'V'

if	not	a	vowel,	replace	with	a	'c'

Variations!

Warning:		this	code	runs!

def vwl(s):
 return vwl(s)

but it it doesn't work!

Warning:		this	code	runs!

def fac(N):
 return N * fac(N-1)

I wonder how this code
will STACK up?

but it has problems!

def facBAD(N):
 print("N is", N)
 return N * facBAD(N-1)

def fac(N):
 return fac(N)

Recursion
the	dizzying	dangers	of	
having	no	base	case!

This	"works"		~		but	doesn't	work!

Google,	2
012

Google,	2
021

sequential self-similar
iteration recursion

problem-solving		paradigms

Thinking		sequentially

fac(5) = 5*4*3*2*1

fac(N) = N*(N-1)* … *3*2*1

factorial

5	! = 120math

CS

Thinking		sequentially

fac(5) = 5*4*3*2*1

fac(N) = N*(N-1)* … *3*2*1

factorial

5	! = 120math

CS

Octobe
r	+	

beyond
…

Thinking		recursively

fac(5) = 5*4*3*2*1

fac(N) = N*(N-1)* … *3*2*1

factorial

5	! = 120

fac(5) =

fac(N) =

can	we	express	
fac		w/	a	smaller	
version	of	itself?

math

CS

Thinking		recursively

fac(5) = 5*4*3*2*1

fac(N) = N*(N-1)* … *3*2*1

factorial

5	! = 120

fac(5) = 5 * fac(4)

fac(N) = N * fac(N-1)

can	we	express	
fac		w/	a	smaller	
version	of	itself?

Recursion	~
	

self-similar
ity

We're	done!?

def pow(b,p):
 """
 b**p, defined recursively!
 """

 if p == 0:
 return 1.0

 elif p < 0:
 return 1.0/pow(b,-p)

 else:
 return b*pow(b,p-1)

Extra! Can we also handle negative powers... ?

def pow(b,p):
 """
 b**p, defined recursively!
 """

 if p == 0:
 return 1.0

 elif p < 0:
 return 1.0/pow(b,-p)

 else:
 return b*pow(b,p-1)

Extra! Can we also handle negative powers... ?

Recursion's	advantage:	 It handles arbitrary structural
depth – all at once + on its own!

As	a	hat,	I'm	recursive,	too!

https://www.youtube.com/watch?v=8PhiSSnaUKk @ 1:11
https://www.youtube.com/watch?v=ybX9nVLtNi4 @ 0:08

Are	surveys	the	
broccoli	of	our	
digital	age?

Recursion's	advantage:	 It handles arbitrary structural
depth – all at once + on its own!

As	a	hat,	I'm	recursive,	too!
https://www.youtube.com/watch?v=8PhiSSnaUKk @ 1:11
https://www.youtube.com/watch?v=ybX9nVLtNi4 @ 0:08

Dragon's-blood Tree

Do only plants get
to be recursive?

There	still	has	to	be	a	base	case…

or	else!

or	-	one	
layer	out	

!?

The	key	to	understanding	recursion	
is,	first,	to	understand	recursion.

- former CS 5 student

tutors	@	McGregor:			Th/F/Sa/Su/Mon.

Good	luck
	with	

Homewor
k	#1

It's	the	eeriest!

but	that's	meant	facetiously...

More	examples...

