=5 P
8 W voNolli

We must go
deeper

Last time: Python slices...

-

= 0 1 2 3 4

S = 'alien'

indexing S [0] —— i ey

slicing S [1 .] == B \\\er\‘

N

] =

and?

Computation's Dual Identity

Computation Z Data Storage
| 41 42
| <t::j> name: X name: y
type: int type: int
| LOC: 300 LOC: 304
> memory location 300 memory location 304
variables ~ boxes

stuff on this side
look like ?

—

ftime
But what does the l ﬁ‘

This week's reading data vs theory...

Are we w1tnessmg the
\\\

dawn of post-theory
science?

Does the advent of machine learning mean
the classic methodology of hypothesise,
predict and test has had its day?

by Laura Spinney

saac Newton apocryphally discovered his second law - the one about
gravity - after an apple fell on his head. Much experimentation and
data analysis later, he realised there was a fundamental relationship
between force, mass and acceleration. He formulated a theory to

Sun 9 Jan 2022 04.00 EST
[l
f v = 927
describe that relationship - one that could be expressed as an equation,
F=ma - and used it to predict the behaviour of objects other than apples. His
predictions turned out to be right (if not always precise enough for those
who came later).

Contrast how science is increasingly done today. Facebook’s machine
learning tools predict your preferences better than any psychologist.
a New AlphaFold, a program built by DeepMind, has produced the most accurate
Q Newton! predictions yet of protein structures based on the amino acids they contain.
Both are completely silent on why they work: why you prefer this or that
information; why this sequence generates that structure.

This week's reading data vs theory

a Empirical scaling of scientific machine learning models & & & 0 B O ©
File Edit View Insert Format Tools Extensions Help

Q © ¢ (= A, Eg’ 100% ~ Normal text ~ Roboto ¥ | — + : 7~

[JIT
Imagq

|Lawrence Livermore National Laboratory
Empirical scaling of scientific machiné Jearning models

LLNL / Harvey Mudd College 2023 clinic project description T h i S Ye a r 1 S
sponsor: LLNL LlV L.
Points of contact: Blake, Robert <plake14@lInl.gov> ermore Cl 1NnI1C '

Sun 9 . .
un e Jan Project Description:

f
Scientific simulation is increasingly looking to replace computationai\y expensive
mathematical approximations with computationai\y cheap neural networks. This is
especially true in multiscale simulations which integrate simulators across extreme
scales (i.e. from atomic-interaction scales to climate pianet—wide scales.) During these
multiscale simulations approximations are necessary in order for the problem to be
computationally tractable. Typically we replace expensive accurate computations with
static lookup tables or faster inaccurate approximations. There is hope that machine
learning can replace these approximations with maohine—iearned interpolations trained on
a New the most accurate computations. However, it's hard to know in advance if machine
g Newton!
[Y R

learning will be @ good fit. If the network required for interpolation is 100 large, then the
cost of running and training the network inline could be prohibitive. Refore starting the
— project, it would be nice 1o know how much data will be required and how big the neural
network should be for a specific problem.

—

Computation's Dual Identity

accessed through functions...

/

Computation Data Storage
41 42
<l__$> name: X name: y
type: int type: int
LOoC: 300 LOC: 304

300 memory location 304

iables ~ boxes

uncﬂOUS‘-

It's no coincidence

this starts with fun! t
L}

—

Functioning across disciplines

procedure structure
def g(x): _ 100
Do e g(x) = x
return x**100
CS's googolizer Math's googolizer
defined by what it does defined by what it relates

+ what follows behaviorally + what follows logically

Functions!

In [2]: verbify(
Out[2]: 'randomize'

In [3]: nounify(
Out[3]: 'eater'

)

)

Functions!

I .
Ozt[|: verbify('random")
[2]: 'randomize’

In [3]: nounify('eat")
Out[3]: 'eater'

def verbify(noun):
return noun + 'ize’

def nounify(noun):

return noun * er

Functions!

In [2]: verbify('random")
Out[2]: 'randomize'

In [3]: nounify('eat")
Out[3]: 'eater' .
def yerbify(noun):

| - e'
return noun =« .

In [4]: nounify(' 'bake")
Out[4]: 'bakeer'

def nounify (noun):

return noun *

|er\

Functions!

In [2]: verbify('random")
Out[2]: 'randomize'

In [3]: nounify('eat")

Out[3]: 'eater' .
def verbify(noun):

|ize‘
In [4]: nounify('bake") return noun "
Out[4]: 'baker'
. b):
noUﬂlfy(Ver ' '
def (vePb) + er

return stem

More Functions!

def stem(word) :

In [2]: verblfyg random') if word[-1] - o
Out[2]: 'randomize' .
return word[:-1]

: , : else:
In [3]: nounify('eat")
Out[3]: 'eater’ return worq

de -

In [4]: nounify('bake") i Vepblfy(noun):
Out[4]: 'baker' return stem(noun) + ‘ize!

def nounify(verp).

return stem(verb) + ‘er!

['m happy
about this, too!

Use variables!

insertOh(s) :
m = len(s)//2
return s[m:] + 'OH' + s[:m]

these two functions Ok, we humans work better when naming things...

do the "same” thing... ..why might computers "prefer" the top version?!

insertOh(s) :
return s[len(s)//2:] + 'OH' + s[:len(s)//2]

N

Aargh!

More Functions!

def convLengthPrint(inches):
""" convert inches to customary length units

input: inches, an 1int

miles = inches // (8 * 10 * 22 * 3 * 12) # 8 furlongs per mile

inches = inches % (8 * 10 * 22 * 3 * 12)

furlongs = inches // (10 * 22 * 3 * 12) # 10 chains per furlong

inches = inches % (10 * 22 * 3 * 12)

chains = inches // (22 * 3 * 12) # 22 yards per chain
inches = inches % (22 * 3 * 12)

yards = inches // (3 * 12) # 3 feet per yard
inches = inches % (3 * 12)

feet = inches // 12 # 12 inches per foot

inches = inches % 12
print(miles, "miles,", furlongs, "furlongs,", chains, "chains,",

yards, "yards,", feet, "feet, and", inches, "inches.")

What's

the difference?

def convLength(inches):

mimnn

input: inches, an 1int

mimnn

More Functions!

convert inches to customary length units

inches // (8 * 10 * 22 * 3 * 12) # 8 furlongs per mile

10 chains per furlong

22 yards per chain

3 feet per yard

miles =

inches = inches % (8 * 10 * 22 * 3 * 12)
furlongs = inches // (10 * 22 * 3 * 12)
inches = inches % (10 * 22 * 3 * 12)
chains = inches // (22 * 3 * 12)

inches = inches % (22 * 3 * 12)

yards = inches // (3 * 12)

inches = inches % (3 * 12)

feet = inches // 12

inches = inches % 12

12 inches per foot

return [miles, furlongs, chains, yards, feet, inches]

return Vs. print

dbl (x) : dblPR (x) :
return 2*x print (2*x)
ans = dbl (20) ans = dblPR(20)

What's the difference ?!

return

dbl (x) :

return 2*x

ans = dbl(20) + 2

this is a value for further use! t yes '
| |

return conveys
the function's value

... which the terminal then prints!

print
dblPR (x) :
print (2*x)

ans = dblPR(20)+2

this turns lightbulbs on!
t ouch!

print changes only
pixels-on-the-screen

return >> print

how software passes changes the pixels
information from (little lightbulbs)
function to function... on your screen

return >> print

how software passes changes the pixels
information from (htt /z/ I
function to function...

Terminology

def convLength(inches): Slgnature hne

""" convert 1inches to customary length]
input: inches, an int docstrlng

mimnn

ﬁuﬂcﬁon
n‘ame pa'f

amete?

miles = inches // (8 * 10 * 22 * 3 * 12) # 8 furlongs per mile
inches = inches % (8 * 10 * 22 * 3 * 12)

furlongs = inches // (10 * 22 * 3 * 12) # 16 chains per furlong
inches = i-ches % (10 * 22 * 3 * 12)

| hes // (22 * 3 * 12) # 2: In-Jj o
de b\ogk 0 * % he Comme
cO _> = inches % (22 * 3 * 12) \Option P Nts
yards = inches // (3 * 12) # 3 feet pc, ? In CSS

inches = inches % (3 * 12)
feet = inches // 12 # 12 inches per foot

inches = inches % 12

return [miles, furlongs, chains, yards, feet, inches]

return statement

follow the data!

undo (s) :
""" this "undoes" its input, s """
'de' + s

>>> undo ('caf')

follow the data!

undo (s) :
""" this "undoes" its input, s """
'de' + s

>>> undo ('caf')

'decaf'

>>> undo (undo('caf'))

strings, lists, numbers ...
all data are fair game

follow the data!

undo (s) :
""" this "undoes" its input, s """
'de' + s

>>> undo ('caf')

'decaf'

>>> undo (undo('caf'))
'dedecaf’

strings, lists, numbers ...
all data are fair game

Big Ideas

We can write functions

* Those functions can make decisions
We can call functions

We can write functions that call functions
we've written and use their results

Variables in functions belong to the
function and vanish when it's done!

Names:

®What is demo (15) here?

15

!

def demo (x) :
y = x//3

z = g(y)
return z + y + x

def g(x):
result = 4*x + 2
return result

How f'ns work... Qu iZ

@ l’ What here?
def f (x):

[might have
a guess...

if x == t

return 12
else:
return f£(x-1) + 10*x

return 0 + vwl(s[1l:])

Names:

Whatis demo (15) here?

15

!

def demo (x) :
y = x//3

z = gl(y)
return z + y + x

def g(x):
result = 4*x + 2
return result

How f'ns work... Qu iZ

‘1’ Whatis £(2) here?
def £ (x): I might have
if x == 4
return 12 -

else:
return f£(x-1) + 10*x

Whatis vwl("alien") here?

v

def vwl(s):

if s = "'
return 0

elif s[0] in 'aeiou':
return 1 + vwl(s[1l:])

else:
return 0 + vwl(s[1l:])

Names:

Whatis demo (15) here?

15
1
def demo (x) :

y = x//3

z = gl(y)
return z + y + x

def g(x):
result = 4*x + 2
return result

How f'ns work... Qu iZ

‘1’ Whatis f£(2) here?
def £ (x): ! might have
return 12 -
else:

return f£(x-1) + 10*x

Whatis vwl("alien") here?

v

def vwl(s):

if s == '':
return 0

elif s[0] in 'aeiou':
return 1 + vwl(s[1l:])

else:
return 0 + vwl(s[1l:])

Python Tutor: Visualize code in Python

Write code in | Python 3.6 v

def demo(x):
y = xX/3

z = g(y)
return z + y + X

1
2
3
4
5
6 def g(x):

/ result = 4*x + 2

8 return result

9

10 result = demo(15)

11 print("demo(15) is", result)

12

One snapshot...

Python 3.6 Print output (drag lower right corner to resize)

(known limitations)

def demo(Xx):

y = x/3
Frames Objects
z = g(y)
return z +y + X Global frame function
demo (x)
demo
def g(x):
_ " + 9 g function
result = 4*x g(x)
- return result
demo
result = demo(15) x |15
print("demo(15) is", result) y 5.0
Edit this code .
line that just executed
== next line to execute x 5.0
[] result 22.0
<<First | | <Prev | [Next>| | Last>> | RS;TJZ 22.0

Step 10 of 13

Customize visualization

" How functions work...

!

def demo (x) :
y = x/3

z = g(y)
return z + y + X

def g(x):
result = 4*x + 2
return result

they stack.

5 How functions work...

!

def demo (x) :

y = x/3 stack frame
z = g(y)
return z + y + X

def g(x):
result = 4*x + 2
return result

they stack.

15

!

def demo (x) :
y = x/3
z = g(y)

return z + y + X

def g(x):

result =

4*x + 2

return result

call: demo (15)

local variables:

call: g(5)
local variables:

How functions work...

"the stack"

stack frame

N & ¥
n
(&,

4

I
v
v
v
v
v

stack frame

x =5
result = 22
returns 22

they stack.

15

!

def demo (x) :
y = x/3

z = g(y)
return z + y + X

def g(x):
result = 4*x + 2
return result

How functions work...

"the stack"
call: demo (15) stack frame
local variables: % = 15

y =95
Z = ?7?7?7?9

call: g(5) sta@rame
local variables:
x =5
result
returns 22

22

they stack.

5 How functions work...

!

def demo (x) :

y = x/3 stack frame
z = g(y)
return z + y + X

def g(x):
result = 4*x + 2
return result

they stack.

5 How functions work...

l "the stack"
def demo (x) :
y = x/3 call: demo (15) stack frame
z = g(y) local variables:
x = 15
returnz+y+x« y =5
zZ = 22
def g(x): return 42

result = 4*x + 2
return result

they stack.

15

!

def demo (x) : -

y = x/3
z = g(y)
return z + y + X

output

def g(x):
result = 4*x + 2
return result

How functions work...

they stack.

2 How functions work...
l what's £ (2) ?

def f£(x):
if x ==

return 12

else:
return f£(x-1) + 10*x

So many x’es... !

Python 3.6
(known limitations)

def f(x):
if x ==
= return 12
else:
return f(x-1) + 10*x

result = f(2)
print("f(2) is", result)

Edit this code

line that just executed
=) next line to execute

0
<<First | | <Prev | [Next>] | Last>> |
Step 12 of 15

Customize visualization

Print output (drag lower right corner to resize)

Frames Objects
Global frame function
f(x)
f
f
X |2
f
x |1
f
x |0
Return 12

value

2 How functions work...

!

def f£(x):

return 12

else:
return f£(x-1) + 10*x

1 How functions work...

!

def £ (x):
return 12

else:
return f£(x-1) + 10*x

0
def f£(x):
if x ==

return 12
else:
return f£(x-1) + 10*x

call: £(2)

local variables:

call: £(1)

local variables:

call: £(0)

local variables:

How functions work...

"the stack"

stack frame

X = 2
need f(1)

stack frame

x =1
need f(0)

stack frame

x =0
returns 12

0
def f£(x):
if x ==

return 12
else:
return f£(x-1) + 10*x

call: £(2)

local variables:

call: £(1)

local variables:

call: £(0)

local variables:

How functions work...

"the stack"

stack frame

X = 2
need f(1)

stack frame

x =1
need f(0)

rame
x =0

returns 12

1
def f£(x):
1f x ==

return 12
else:

return f£(x-1) + 10*x

How functions work...

call: £(2)
local variables:

call: £(1)
local variables:

"the stack"

stack frame

X = 2
need f(1)

stack frame

x =1
f(0)= 12
result =

How do we
compute the
result?

1
def f£(x):
1f x ==

return 12
else:

return f£(x-1) + 10*x

How functions work...

call: £(2)
local variables:

call: £(1)
local variables:

"the stack"

stack frame
X = 2
need f(1)

stack frame

x =1
f(0)= 12
result = 22

Where does
that result go?

1 How functions work...

l’ "the stack"
def f(x):
if x == 0: call: £(2) stack frame
return 12 i
local variables:
else: X = 2
return f(x-1) + 10*x need f(1)
call: £(1) sta me
local variables:
x =1
f(0)= 1

result = 22

2 How functions work...

!

def f£(x):
return 12

else:
return f£(x-1) + 10*x

What's this
return value?

2 How functions work...

!

def f£(x):
return 12

else:
return f£(x-1) + 10*x

which then
gets returned...

2 How functions work...

!

def f£(x):
if x ==
return 12

else:
return f£(x-1) + 10*x

the result then
gets returned...

2 How functions work...

L 42
def f£(x):

if x == output

return 12

else:
return f£(x-1) + 10*x

functions stack.

2 How functions work...

l 4. 2 "the stack"

def f(x):

ty
- —_— Q- tput ck is emp
if x == 0: outpu qqain Cl- another
return 12 butl’eady lf led
. tion is €@
else: func

return f£(x-1) + 10*x

functions stack.

2 How functions work...

l 4. 2 "the stack"

def f£(x):
if x == 0: output ack 1S empty
return 12 It red
else:

functions stack.

Functions' conceptual challenge?

You need to see BOTH the
internal details AND the
world-facing interface

simultaneously!

Recursion’s conceptual challenge?

You need to see BOTH the
self-similar pieces AND the
whole thing simultaneously!

Q Nature loves recursion!

@ ... because it's completely self-sufficient!

Like broccoli, recursion is
o o "Good for You"

A

romanesco broccoli

How to Eat Chocolate

One piece at a time...

This is a fundamental idea!

Let's write factorial!

deS (oc(n) -

6!=6 X5 X 4 X3 X2 X1
or

6!=6 X(5 X4 X3 X2 X1)
_— \/

Recurse!

def fac(N):

mwin

fac(3) MEE returns factorial of N

mwin

if N ==
A return 1

else:
8 return N * fac(N-1)

What does fac (3) return?

When working,

 How many times does line A run?

 How many times does line B run?

* How many N's are alive at once?!

oo}

Recurse!

fac(3) n=3

3 * fac(2)

2 * fac(l)

1 * fac(0)

1

def fac(N):

""" returns factorial of N

if N ==
A return 1

N =2, next...

N =1, next... else .
8 return N * fac(N-1)

N =0, next...

fac (3) returns_ 6

* How many times does line A run?m
* How many times does line B run?m
 How many N's are alive at once?! M

pythontutor.com

Print output (drag lower right corner to resize)

Factorial!

Global frame

fac

fac

fac

fac

Frames

fac

Return
value

[

Objects

function

fac(N)

There are many
different values of N -

all alive simultaneously,

' 4

in the stack

how would you
design this?

Planning recursively...

def

‘ EMPTY case

General case!

f acC (N) : Caution: A base case is "always" needed...
1f N == . Base
return 1 . butit'snotalways1! case
else: X
R .
return N * fac (N—l) > ecursive

J

case

Empty case! So many ways... I?

a-K-& "W’ C&Se:‘
EMPTY case BASE case
' o \
the empty integer - ————)
oYe) Lo

the empty float - =——)

([1N

the empty string - ——)

the empty list — t 4

Thinking recursively...

def

‘ EMPTY case

k‘lﬂl

‘ General case!

fac (N) :

1f N == 0:
return 1

else:

return N * fac(N-1)

A

Base
case

Recursive
case

Crazy! How can we multiply N times something that hasn't happened yet?!

Acting recursively

def fac(N): def fac(N):
1f N == . if N ==
return 1 return 1
else: else:

return N*fac (N-1) return N*rest

N\ N\

this recursion happens first! hooray for variables!

{ rest = fac (N-1)

Conceptual Actual

Recursion example: vwl(S)

#

vwl example
human explanation

- of what's wanted!
def wwi(S): '
"""vwl returns the number of vowels in S

input: S, which will be a string

. human explanations - of
' what's happening
‘ if S == "": # if S is the empty string

return 0 # it has no vowels
- elif S[@] in 'aeiou': # if first-of-S is a vowel
syntactic alger:
stuff! : ,
return 0 + vwl(S[1:]) # otherwise, don't add 1

return 1 + vwl(S[1:]) # add 1 to # of vwls in rest-of-S
the © + 1is nice, but not needed

syntactic

definition
- today: bridging these! -

The idea...

viwl (S), the total # of vowels in
S = '"alien'
is 'a'a of vowels in
+ - T
vowel? lien
—

first

rest

The idea...

viwl (S), the total

S = '"alien'

of vowels in

\IW-\-(S"l:X)

of vowels in

'lien'

rest

—

The idea...

viwl (S), the total

S = '"lien'

of vowels in

VW\(S‘liX)

of vowels in

'ien'

rest

4

The idea...

viwl (S), the total

S = "i1en'

of vowels in

VW\(S‘l:X)

of vowels in

'en'

rest

4

The idea...

viwl (S), the total

S = 'en'

of vowels in

VW\(S‘l:X)

of vowels in

'n'

rest

4

The idea...

viwl (S), the total # of vowels in
S —_ n T
is'n' a of vowels in
+ | B |
vowel?
—
first rest

The idea...

viwl (S), the total
S =

of vowels in

if S ==
return 0

vowel?

first

it has no vowe ls

-

of vowels in

| I |

if S 1S the empty string

rest

4

The idea, in one slide:

viwl (S), the total # of vowels in

S
ISS[O] a 4 of vowels in
vowel? S[1:]

first rest

Recursion example: vwl(S)

total # of vowels in
S
ISS[O] a of vowels in
vowel? S[l]

first

Indexing + slicing!

the first-of-S the rest-of-S
isS[O0] a of&elsin

vowel? T S[1:]

first rest

you worked on lab and submit prl+pr2: th

you'll get full credit for pr1 + pr2 = pesuret su\ozm'\t
o \-_h pr 1+pf

you should complete the two lab problems, prl + pr2

: submit prl + pr2

& s o complete and submit hwlpr3 + start hw2pr4

.
M

Excnostion Non-template

strand of DNA

RNA nucleotides

\ Goo g

Igpay Atinlay

Ebway Imagesway Oupsgray Irectoryday
I o o I o Advancedway Earchsa

= s Eferencespray
[Google Earchsay][I'mway Eelingfay Uckylay] Anguagelay Oolsta

Extra Credit: Pig Latin / CodingBat

(“downstream”) " Template DN A transcription

strand of DNA

4 Vo ‘.{»1"‘
N S R g
\ >
| Direction of transcription

you worked on lab and submit prl+pr2: hW1

to submit
you'll get full credit for prl + pr2 bbz\x\epmpﬂ

you should complete the two lab problems, prl + pr2

submit prl + pr2

R complete and submit hwlpr3 + start hw2pr4

.
—

| .
Elongstion Non-template

strand of DNA
RNA nucleotiri~-

uuuuu
C Advancedway Earchsa
Eferencespray
| Yoogle Earchsay][I'mway Eelingfay Uckylay] Anguagelay Oolsta

Extra Credit: Pig Latin / CodingBat

strand of DNA

& ’
[?_irection of trt'a‘nscription . .
N (e Template DNA transcription

you worked on lab and submit prl+pr2: hW1
you'll get full credit for pr1 + pr2

you should complete the two lab problems, prl + pr2

submit prl + pr2

= complete and submit hwlpr3 + start hw2pr4

Use PythonBat!

due f‘W \<2

pythontutor.com

There are six different
(oo imitaons) values of S - all alive
e simultaneously, in the

def vwl(S):)
" vwl counts vowels Frames Objects Stack
input: a string s Global frame function
output: # of vowels ‘///’ﬂ___>vw1(5)
vwl
if g == 1. result |3

return 0
elif S[O] in 'aeiou':
return 1 + vwl(S[1:])
else:
return vwl(S[1:])

result = vwl('alien')
print("result is", result)

Edit this code

kt executed
execute

Done running (33 steps)
ization (NEW!)

-
-
-
-
-

GE this function to
s? That s, it

Variations!
How could we CHAN

nkeep" all of the vowel
d return 1aie’ instead of 3

def wvwl(s):

mwiiw ret
urns # of vowels in s

wiuww

1if §s == '"':

re
turn O EMPTY case
g BASE case
elif s[0] in 'aeiou':
return 1 + .
- vwl(s[1:]) Specific case

else:
return
0 \\;+ vwl(s[1l:]) General case!

Writing keepvwl, to return 'aie’

here's keepvwl

instead of 3

def keepvwl(S):
if len(S) ==

EMPTY case return '’ EMPTY output

elif S[0] in 'aeiou':

return S[0] + keepvwl (S[1:]) | Specificoutput

Specific case

else:
General case return '' + keepvwl(S[1:]) General output!
ﬁ dropvwl?
vwl?
cVcVc?

others?!

1
here's keePVW| [A] What is keepvwl (' recursion') ? .

def keepvwl(S):

i (B]
if len(S) == O0: [B] When running [A], how many times does this base-case line return?
return '' <«
: ; ; C] Wh ing [A], h ti does this eli li turn? .
elif S[0] in 'aeiou': [C] ennmnmg[],ownmmrmmslfi_gefamenwretmn.
return S[0] + keepvwl (S[1:]) —
: : : : (D]
else: [D] When running [A], how many times does this else-case line return?

return '' + keepvwl (S[1l:]) e

Extra! For what word w does keepvwl (w) return 'aeiou’ ?

create drpvwi

Fill in the code at left in order to...

def dropvwl(S):

if len(S) ==

return ... first, finish drpvwl
elif S[0] in 'aeiou': then...

return + dropvwl(S[1:]) ...changeto v_w_ 1
else: nen

return + dropvwl (S[1:]) ... change to cVcVc

1
here's keepvwl [A] What is keepvwl('recursion"') ? 'euio’ .

def keepvwl(S):

i (B]
if len(S) == O0: [B] When running [A], how many times does this base-case line return?
return '' <«
: ; ; C] Wh ing [A], h ti does this eli li turn? .
elif S[0] in 'aeiou': [C] ennmnmg[],ownmmrmmslfi_gefamenwretmn.
return S[0] + keepvwl (S[1:]) —
: : : : (D]
else: [D] When running [A], how many times does this else-case line return?

return '' + keepvwl (S[1l:]) e

Extra! For what word w does keepvwl (w) return 'aeiou’ ?

create drpvwi

Fill in the code at left in order to...

def dropvwl(S):

if len(S) ==

return ... first, finish drpvwl
elif S[0] in 'aeiou': then...

return + dropvwl(S[1:]) ...changeto v_w_ 1
else: nen

return + dropvwl (S[1:]) ... change to cVcVc

1
here's keePVWI [A] Whatis keepvwl (' recursion') ? 'euio'

def keepvwl(S):

[A]

[B]

if len(S) == O0: [B] When running [A], how many times does this base-case line return? 1
return ''
: : o : [C]
elif S[0] in 'aeiou': [C] When running [A], how many times does this elif-case line return? 4

return S[0] + keepvwl (S[1:])

[D]

else: [D] When running [A], how many times does this else-case line return? 5

return '' + keepvwl(S[1l:])

Extra! For what word w does keepvwl (w) return 'aeiou’ ?

create drpvwi

def dropvwl(S):

Fill in the code at left in order to...

if len(S) == 0:
return

elif S[0] in 'aeiou':
return '* + dropvwl(S[1:])
L] IVI

else:
return s[0@] + dropvwl (S[1:])
s[0] "'

... first, finish drpvwl

then...

...changeto v_w_1

then...

... change to cVcVc

def dropvwl (s):
""" returns only non-vowels in s!

wirw

' —— | I
if s == : base case! return
]

return ' the empty string

elif s[0] in 'aeiou':

def v.w 1(s):
"oy replaces vowels with

mwwn

if s = "'

.
'

return ' "zero" of strings...

elif s[0] in 'aeiou':

base case! return the

return '' + dropvwl(s[1l:]) return ' ' + v_w _1(s[1:])
if vowel, leave it out! if a vowel, replace witha "'
else: else:
return s[0] + dropvwl(s[1l:]) return s[0] + v.w 1(s[1:])
if not a vowel, keep it! if not a vowel, keep it!

def cVcVc(s):
""" yowels -> V, consonants -> c

mman

if s == '':
def VoWeL(s) :

""" SPoNGeBoBBiFy s

return '' base case! return the "zero" of strings...

elif s[0] in 'aeiou': if a vowel
sz = 1. return 'V' + v_w _1l(s[1l:]) replace witha V"
return '' base case! return the "zero" of strings...

else:

elif s[0] in 'aeiouy': return 'c' + v_w _1l(s[1l:])

return s[0] + VoWeL(s[1:]) Ifit'savowel keeps[0], . —
the vowel itself! if not a vowel, replace with a 'c

else:
return s[0] .upper() + VoWeL(s[1:])

if it's not a vowel, make it an UPPERCASE s[0]! Variations!

Warning: this code runs! ¢ oo

def vwl (s):
return vwl (s)

\
=’ stackoverflow

Warning: this code runs! ¢ oo

def fac(N):
return N * fac (N-1)

| wonder how this code
will STACK up?

——

def facBAD (N) :

return N * facBAD (N-1)

Recursion

the dizzying dangers of
having no base case!

This "works" ~ but doesn't work!
fac(N) :
fac (N)

INFINITE REGURSION

INFINITE RECURSION

INFINITE RECURSION

INFINITE RECURSION

You

INFINITE RECURSION

You GOTTA KNOW WHEN TO QUIT

INFINITE RECURSION

YOou GOTTA KNOW WHEN TO QUIT

Go

recursion

Q All [Books [J Images [*] Videos) News ¢ More

About 37,000,000 results (0.50 seconds)

Did you mean: recursion

Dictionary

Search for a word

<4 re-cur-sion
/ra'karZHan/

noun MATHEMATICS -« LINGUISTICS

the repeated application of a recursive procedure or definition.

. arecursive definition.
plural noun: recursions

Translations, word origin, and more definitions

Definitions from Oxford Languages

en.wikipedia.org » wiki > Recursion_(computer_science) v

Recursion (computer science) - Wikipedia

X & Q

Settings Tools

Feedback

In computer science, recursion is a method of solving a problem where the solution depends on
solutions to smaller instances of the same problem. Such problems can generally be solved by

iteration, but this needs to identify and index the smaller instances at programming time. Goog\e’

Types of recursion - Recursive programs - Recursion versus iteration

sequential self-similar

'ltevat‘\()n re cuYf S-\On

problem-solving paradigms

Thinking sequentially

factorial
math 5 ! = 120
s fac(b5) = B5*4*3*2%]

fac (N)

N* (N-1)* .. *3%2%]

Thinking sequentially

factorial
math 5 ! = 120
s fac(b) = B5*4*3*2%1

fac (N) N* (N-1)* .. *3*2*]

Thinking recursively

factorial
math 5 ! = 120
¢ fac(b) =

can we express
fac w/asmaller

version of itself?

fac (N)

fac(5) = 5 * fac(4)

can we express
fac w/asmaller

version of itself?

‘ . We're done!?

fac(N) = N * fac(N-1)

def pow(b,p):

mwiimw

b**p, defined recursively!

if p == 0:
return 1.0

elif p < 0:
return

else:
return b*pow(b,p-1)

Extra! Can we also handle negative powers... ?

def pow(b,p):

mwiimw

b**p, defined recursively!

if p ==
return 1.0

elif p < O:
return 1.0/pow (b, -p)

else:
return b*pow(b,p-1)

Extra! Can we also handle negative powers... ?

It handles arbitrary structural
depth — all at once + on its own!

Recursion’s advantage:

YOUR PARTY ENTERS THE TAVERN.

T GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE AND
GET OUT SOME PARCHMENT
FOR CHARACTER SHEETS.

\ HEY, NO RECURSING.

/

-

As a hat, 'm recursive, too!

2%

\

https://www.youtube.com/watch?v=ybX9nVLtNi4 @ 0:08
https://www. youtube com/watch?v=8PhiSSnaUKk @ 1:11

Pomona Sends Survey To Students To
' Find Out Why They Don’t Take Surveys

ma Firstyear offer studen!s a chance to express
' those opinions via a general survey,

The survey also addresses ques-

tions of methodology, incentive and sessment scale,” she said. “I had to

1
|
|
l
\

|
l

Dedlining survey response rates
at Pomona College prompted the
administration to send students a
new survey this week, which will
assess students’ previous survey
experiences and ir survey pref-
erences in hopes of explaining—
and reversing—the decline.

“We know Pomona students
have strong opinions about their
education and their campus,”
said Vice President and Dean of
Students Miriam Feldblum. “But
what we find is that when we

we don't get as many responses as
we expect. We want to know why,
and that's why we're sending out
this survey.”

Students will be asked to self-
identify at the start of the survey as
a "frequent responder,” “occasional
responder” or ‘forgot the password
to my Pomona webmall account
three months ago.” According to
Feldblum, these categories will help
the administration create new strate-
gies to engage more of the student
population in responding to surveys.

access. It asks students to rank their
preferences of survey provider, such
as SurveyMonkey, Qualtrics and
Google Forms, and to name their
ideal survey prizes. It also asks stu-
dents whether they would be more
inclined to take school surveys via
email, an iPhone app or voting ma-
chines in the dining halls complete
with ‘I Surveyed!” stickers.

Erika Bennett PO “17 said she
found some of the questions con-
fusing.

“I had to pick my favorite as-

rank “Scale of one to five,” “Strongly
Disagree to Strongly Agree’ and
‘Sad Face to Happy Face’ from least
to most intuitive. But I'm not sure I
did it correctly.”

Bennett added thatshe did appre-
ciate the chance to critique previous
surveys.

“Just last mionth I took a survey
with no progr&baratthebottom
of each page,” she said. “I felt lost
and confused. I'm glad there’s a real

See SURV page 2

- e o w-- P b S o |

Are surveys the
broccoli of our
digital age?

It handles arbitrary structural

Recursion's advantage: depth — all at once + on its own!

OH MY GOD & &

Justin TimMmmy Fallon |

Ultimate Inception | Mug
$15.35 - Etsy
No tax

Jimmy Fallon & Justin Timberlake
Funny Coffee Mug. Ultimate Inception
Coffee Mug. Great ...

$11.99 - Etsy
No tax

T PNETTTN

Dragon's-blood Tree

‘v
s

»

Kl o SOES 74%{
-4

Do only p/ants get i
to be recursive?

-
.

— e

TN SO

There still has to be a base case...

or else!

The key to understanding recursion
Is, first, to understand recursion.

- former CS 5 student

It's the eeriest!

L
ith o
G O O d \UC\{ W 1 but that's meant facetiously...
H Ome\N OY\(H#

tutors @ McGregor: Th/F/Sa/Su/Mon.

More examples...

