CS 5

taking the circuit "canvas" literally

hw5 ~ composing circuits

3-bit Full Adder
 4-bit Ripple-Carry Adder

Prime tester

using "minterm expansion"

4-bit Multiplier

3x2-bit Divider

Prime-tester...

circuit for PRIME (x,y,z,w)

truth table for PRIME (x,y,z,w)

How many AND gates to build prime-tester using minterm?

pure "minter expansion": one AND for each '1' output

Prime-optimizer?!

Main

This one is

 problem 5, ECcircuit for PRIME(x,y,z,w)
truth table for PRIME(x,y,z,w)

How few gates can correctly implement prime-tester?
this is an open problem in cs:
"circuit complexity"
pure "minterm expansion": one AND for each '1' output

Wiring tips...

Worst-case, so far...

truth tables \leftrightarrow circuits

truth tables \leftrightarrow circuits

truth tables <-> circuits

truth tables <-> circuits

Challenge 1: There is a mismatch between this function (truth table) and circuit.
Challenge 2: Fix it on BOTH sides: Draw how to make the circuit match the table + how to make the table match the circuit

truth tables <-> circuits

Challenge 1: There is a mismatch between this function (truth table) and circuit.
Row 1 (001) does have an AND gate!
Challenge 2: Fix it on BOTH sides: Draw how to make the circuit match the table + how to make the table match the circuit

[^0]
truth tables <-> circuits

Challenge 1: There is a mismatch between this function (truth

Composing circuits

Full Adder
 ~ minterm

This will be a fulladder circuit (FA), implemented from fundan 1 logic gates.

Composing circuits

4-bit Ripple-Carry Adder

$\triangleleft 8$ bits in
$\Rightarrow 5$ bits out
5 full adders $\boldsymbol{W}_{\text {eane }}$ onflumn of binary
5 "sum" bits

4-bit Ripple-Carry Adder

abstracting!

$$
\begin{array}{r}
\begin{array}{r}
\mathbf{Y}_{3} \mathbf{Y}_{2} \mathbf{Y}_{1} \mathbf{Y}_{0} \\
+\quad \mathbf{X}_{3} \mathbf{X}_{2} \\
\mathbf{X}_{1}
\end{array} \mathbf{X}_{0} \\
\hline \mathrm{Z}_{4} \mathrm{Z}_{3} \mathrm{Z}_{2} \mathrm{Z}_{1} \mathrm{Z}_{0}
\end{array} \Rightarrow 8 \text { b bits in }
$$

4-bit Ripple-Carry Adder

keep

abstracting!

	\mathbf{Y}_{3}	\mathbf{Y}_{2}	\mathbf{Y}_{1}	\mathbf{Y}_{0}
+	\mathbf{X}_{3}	\mathbf{X}_{2}	\mathbf{X}_{1}	\mathbf{X}_{0}
\mathbf{Z}_{4}	\mathbf{Z}_{3}	\mathbf{Z}_{2}	\mathbf{Z}_{1}	\mathbf{Z}_{0}

a ripple-carry "bus"!

Composing circuits

4-bit Ripple-Carry Adder

abstracting!

hw5pr3: A 4-bit multiplier

(Q3) How could THREE 4-bit ripple-carry adders help here?
(Q2) What bit would be correct for the starred spot ?
(Q1) What circuit could you use to create the four "partial products" ??

The Challenge...

understanding

CircuitVerse

$$
\text { Project } \sim \text { Circuit } \geqslant \text { Tools } \sim \text { Help }
$$

hw5startercircuits

Gates

Decoders \& Plexers
Sequential Elements
Memory Elements
Test Bench
Misc

Circuit : mult

Clock Time : 500 ms

Clock Enabled : \square
Lite Mode :

hw5pr3: A 4-bit multiplier

(A1) The AND gate is single-bit multiplication.
(A2) $\hat{i}==0$
(A1) Use a 4 x 1 -bit helper circuit to find the four partial products...
(A3) You need three (3) ripple-carry adders to finish: see above...

Division?
 hw5pr4

Circuit Optimization?

Figure 5: A 2-bit multiplier generated by a human designer
16 gates

Figure 7: A 2-bit multiplier generated by a GA using our approach

$$
7 \text { gates }
$$

for exploring genetic algorithms...

Time-optimized circuits: Carry lookahead adders

The following circuit is called a carry lookahead adder.

By adding more hardware, we reduce the number of levels in the circuit and speed things up.
We can "cascade" carry lookahead adders, just like ripple carry adders.
We'd have to do carry lookahead between the adders too.

How much faster is this?

For a 4-bit adder, not much. There are 4 gates in the longest path of a carry lookahead adder, versus 9 gates for a ripple carry adder.

But if we do the cascading properly, a 16-bit carry lookahead adder could have only 8 gates in the longest path, as opposed to 33 for a ripple carry adder.

Newer CPUs these days use 64-bit adders. That's 12 vs. 129 gates or $10 x$ speedup!
The delay of a carry lookahead adder grows logarithmically with the size of the adder, while a ripple carry adder's delay grows linearly.

The thing to remember about this is the trade-off between complexity and performance.
Ripple carry adders are simpler, but slower. Carry lookahead adders are faster but more complex.

Details!
A 4-bit carry-lookahead adder circuit

Flows!

A 4-bit carry-lookahead adder circuit

A 4-bit ripple-carry adder circuit

What information is needed? Where? How?

speed vs. complexity tradeoffs \sim the "cs facets" of engineering

What's inside gates?

What's the other half of computation?

Today's gates?

Microprocessor chip (actual size) in its ceramic package

are from silicon-based switches ~ transistors

a single etched transistor labeled with base (b), emitter (e), and collector (c)

are from silicon-based switches ~ transistors

a single etched transistor labeled with base (b), emitter (e), and collector (c)

One transistor!

One transistor!

open-on-high type transistor

Lots of transistors!

E85's transistors

The First
Then
Graphic: Transistor Production Has Reached Astronomical Scales

A look at Moore's Law in action

By Dan Hutcheson

"high"
 $a+5 v$ voltage here

https://en.wikipedia.org > wiki > Transistor_count !
Transistor count - Wikipedia

open-on-high type transistor
single-electron tunneling, or SET transistor

Two types of transistors...

Two types of transistors...

Rotations are common...

Building a NOT gate

Building a NOT gate from transistors:

$$
\text { Ground = } 0 v
$$

a NOT gate

Ground $=0 v$

Transistors!

(1) What will be output?

Fill out the truth table to the right
 current gates:
(3) Extra! How could you alter the transistor-level design to make the design above into an AND gate?

(2) Challenge: What gate is the above diagram? It's one of these four:

Their Mark 1

an early, relay-based computer

Grace Hopper + Howard Aiken, Harvard ~1944

Transistors as disruptive technology

point contact transistor

copyright: Lucent / Bell Labs

1947: Bell Labs

seeking better amplifiers for phone lines team of physicists: W. Brattain, W. Shockley, and J. Bardeen

1948: junction transistor
much more robust design
1956: Shockley Semiconductor Co.
in hometown of Palo Alto...
in a few months... the "traitorous eight" left to found

1957: Fairchild Semiconductor Co.

What's inside gates?

What's the other half of computation?

Half a computer: the $\mathbf{C P U}$

transistors
\downarrow
gates
\downarrow
arithmetic

For systems, a face-lift is to add

 an edge that creates a cycle, not just an additional node.\author{

- also Alan Perlis
}

- The circuit starts with \mathbf{R} being $\mathbf{0}+\mathbf{S}$ being $\mathbf{0}$

$$
\text { and } \mathrm{Q} \text { starts at } \quad 0 \quad \begin{aligned}
& \text { the "loopback wire" } \\
& \text { from } \mathrm{S} \text { to } \mathrm{R} \text { will be } 1
\end{aligned}
$$

- The circuit starts with \mathbf{R} being $\mathbf{0}+\mathbf{S}$ being $\mathbf{0}$

Memory!

- What if \mathbf{S} stays $\mathbf{0}$ and \mathbf{R} is set to $\mathbf{1}$?

Q is then set to __ $\quad \mathbf{O}_{2}$

- What happens if \mathbf{S} stays $\mathbf{0}$ and \mathbf{R} is set back to $\mathbf{0}$?

Q still stays (!) at \qquad

- 0
- What happens if \mathbf{R} is $\mathbf{0}$ and \mathbf{S} is set to $\mathbf{1}$?

Q is then set to \qquad

- What happens if \mathbf{S} is $\mathbf{0}$ and \mathbf{R} is set back to $\mathbf{0}$?

Q still stays (!) at \qquad 1

Why does "S" stand for "Set" and R for "Reset" ? S "sets" Q to 1; R "resets" it back to 0.

Take a look at this circuit:
The D (data) line holds a single bit we want to store (either a 0 or a 1).

How does the strobe bit help store the bit D into Q?

Hint: What happens when the "strobe" is 1 ?

The flip-flop

Demo!

1 bit of memory!

The flip-flop

Demo!

But there
than 1 bit of of storage

the flip-flop's diagram
1 bit of memory!

Random Access Memory
 Demo!

Extra: Design 12 nano-Giga-bits of RAM

Inputs

4

Outputs
3 data output bits

3 bits stored at location 00
3 bits stored at location 01
3 bits stored at location 10
3 bits stored at location 11

Ex Cr

3 data input bits
0. Make data input bits 101

1. Give 01 to the decoder (the $\mathbf{1}$ goes on)
2. Make the "Write Enable" high
3. How do the * AND gates make sure that the value does go into memory location \#1?
4. How do the * AND gates make sure that the value does NOT go into memory location \#0?

STORE

the value 5 into mem. loc. \#1
0. Suppose 101 is in Location \#1

1. Give 01 to the decoder (the $\mathbf{1}$ goes on)
2. Make the "Read Enable" high
3. Which gates will ensure bits from memory location \#1 are read out?
4. Which gates will ensure bits from memory location \#0 are not read out?
5. Draw where the "Read Enable"
wire should go!

3 data input bits

LOAD
take data from mem. location \#1
and \#2 and \#3

[^0]: Extra Challenge: This "minterm" approach can implement any function. But functions miss most of what computers do! What's missing?

