
Things	are	awfully	messy	'round	here…
An example of a happy

Ripple-Carry Adder...

taking
the

circuit
"canvas"
literally

…

CS	5

logic gates

switches: transistors

bitwise functions

arithmetic

1-bit memory: flip-flops

main memory

computer

Hmmm...

registers

Python

A
B
S
T
R
A
C
T
I
O
N

O
U
R

C
S

P
A
T
H

hw5	~	composing	 circuits

4-bit Ripple-Carry Adder

4-bit Multiplier

3x2-bit Divider

12 nGbits of memory (RAM)

extra credit

Prime tester

Optimized
Prime

using "minterm expansion"

3-bit Full Adder

Prime-tester...

pure	"minterm	expansion":				one AND for each '1' output

How many AND

gates to build

prime-tester

using minterm?

Prime-optimizer?!

How few gates can

correctly implement

prime-tester?

this is an open problem in cs:

"circuit complexity"

This one is
problem 5, EC

pure	"minterm	expansion":				one AND for each '1' output

Wiring	tips…

draw	away	from	gates,	toward	rails...

3-bit Full Adder
almost...

Worst-case,	so	far...

Save
often !

truth	tables		↔			circuits				

x y

0 0
0 0
0 1
0 1

0
0
1
0

IN OUT

c

0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

1
0
1
1

circuit output

A

B

C
D

(the	truth	table) (the	circuit)

hw5's take-home skill:

truth-table ↔ circuit!

truth	tables		↔			circuits				

x y

0 0
0 0
0 1
0 1

0
0
1
0

IN OUT

c

0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

1
0
1
1

circuit output

A

B

C
D

(the	truth	table) (the	circuit)

hw5's take-home skill:

truth-table ↔ circuit!

truth	tables			<->			circuits				

x y

0 0
0 0
0 1
0 1

0
0
1
0

IN OUT

c

0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

1
0
1
1

circuit output

A

B

C
D

(the	truth	table) (the	circuit)

truth	tables			<->			circuits				

AND gate for
each 1 in the
truth table's

output
x y

0 0
0 0
0 1
0 1

0
0
1
0

IN OUT

c

0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

1
0
1
1

circuit output

A

B

C
D

(the	truth	table) (the	circuit)

Challenge 1: There is a mismatch between this function (truth table) and circuit.

Challenge 2: Fix it on BOTH sides: Draw how to make the circuit match the table + how to make the table match the circuit

Name(s) __________________________

Extra Challenge: This "minterm" approach can implement any function. But functions miss most of what computers do! What's missing?

x y c

truth	tables			<->			circuits				

AND gate for
each 1 in the
truth table's

output
x y

0 0
0 0
0 1
0 1

0
1
1
0

IN OUT

c

0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

1
0
1
1

circuit output

A

B

C
D

(the	truth	table) (the	circuit)

Challenge 1: There is a mismatch between this function (truth table) and circuit.

Challenge 2: Fix it on BOTH sides: Draw how to make the circuit match the table + how to make the table match the circuit

Try this on the other page first...

Row 6 (110) has no AND gate!

Row 1 (001) does have an AND gate!

C

all three wires

need to be

"reversed"

Extra Challenge: This "minterm" approach can implement any function. But functions miss most of what computers do! What's missing?

MEMORY!

0

x y c

truth	tables			<->			circuits				

AND gate for
each 1 in the
truth table's

output
x y

0 0
0 0
0 1
0 1

0
0
1
0

IN OUT

c

0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

1
0
1
1

circuit output

A

B

C
D

(the	truth	table) (the	circuit)

Challenge 1: There is a mismatch between this function (truth table) and circuit.

Challenge 2: Fix it on BOTH sides: Draw how to make the circuit match the table + how to make the table match the circuit

Name(s) __________________________

Extra Challenge: This "minterm" approach can implement any function. But, functions miss most of what computers do! What's missing?

Pass	thos
e	

outdoorw
ards!

"It's	not	real	unless	
it	can	be	done	in	
Minecraft."

Composing	 circuits
Full Adder
~ minterm

this FA gets "boxed up"

one FA for
each column

of binary
addition

Composing	 circuits

0 1 1 1
 1 1 0 1+

4-bit Ripple-Carry Adder

8	bits	in

5	bits	out

one FA for
each column

of binary
addition

5	"sum"	bits

5	full	adders one FA for
each column

of binary
addition

C3 C2 C1 C0
 Y3 Y2 Y1 Y0
 X3 X2 X1 X0+

4-bit Ripple-Carry Adder

8	bits	in

5	bits	outZ4 Z3 Z2 Z1 Z0

keep	
abstracting!

C3 C2 C1 C0
 Y3 Y2 Y1 Y0
 X3 X2 X1 X0+

4-bit Ripple-Carry Adder

8	bits	in

5	bits	outZ4 Z3 Z2 Z1 Z0

keep	
abstracting!

a	ripple-carry	"
bus"!

our ripple-carry schoolbus

Y3 Y2 Y1 Y0
 X3 X2 X1 X0+

8	bits	in

5	bits	outZ4 Z3 Z2 Z1 Z0

Composing	 circuits

4-bit Ripple-Carry Adder

Now	let's	make	lots	of	them!!

keep	
abstracting!

hw5pr3:		A	4-bit	multiplier

 1 1 0 1 Multiplicand

 x 0 1 1 0 Multiplier

 0 0 0 0 4 partial products

 1 1 0 1

 1 1 0 1

+ 0 0 0 0

 1 0 0 1 1 1 0 Final answer…

(Q3)	How	could	THREE	4-bit	ripple-carry	adders	help	here?

(Q2)	What	bit	would	be	correct	for	the	starred	spot										?

(Q1)	What	circuit	could	you	use	to	create	the	four	"partial	products"	??

0

Be	sure	you	"see"	
the	16	bits	you'll	
need	to	create!

Each	bit	will	
have	a	wire!

Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

X3 X2 X1 X0

Y3 Y2 Y1 Y0

The	Challenge...
understanding each bit!

hw5pr3:		A	4-bit	multiplier

 1 1 0 1 Multiplicand

 x 0 1 1 0 Multiplier

 0 0 0 0 4 partial products

 1 1 0 1

 1 1 0 1

+ 0 0 0 0

 1 0 0 1 1 1 0 Final answer…

(A1)	Use	a	4x1-bit	helper	circuit	to	find	the	four	partial	products…

(A3)	You	need	three	(3)	ripple-carry	adders	to	finish:	see	above…

(A1)	The	AND	gate	is	single-bit	multiplication.

0

(A2)	 ==	0

Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Division?		 hw5pr4

Ideas
?

bit

"principled"
design Minterm	Division

(0)	All	computation	can	be	expressed	as	bits...

(1)	Any	function	of	bits	can	be	made	a	truth	table

INPUTS

Y2 Y1 Y0 X1 X0

OUTPUT

Z2 Z1 Z0 E

0 0anything

0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 0 1

1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

1

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0

1 1 0 0
1 0 1 0

1 1 1 0

0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0
0 1 0 0

0 1 1 0
0 1 0 0

0 1 1 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0

0 1 0 0
0 0 1 0

0 1 0 0

(2)	Consider	the	output,	one	bit	at	a	time...

(5)	If	not,	use	an	AND	gate	to	select	each	input	
for	which	the	output	should	be	1			(a	minterm!)

(3)	The	circuit	will	output	0	by	default!

(6)	OR	the	outputs	from	step	(5)	together.

anything

(7)	optimize	your	circuit	later	--	or	never	

To	implement	the	red	1,	how	many	
inputs	will	its	AND	gate	need?? What	division	is	that	line?

How	many	NOT'ed?

dividend divisor quotient error

(4)	Are	there	subcircuit	patterns	to	notice?

div. b
y 1

div. by 2

div. by 0

Circuit	Optimization?

Perhaps	artistically	
optimized! Optimizing		for	what?!

16	gates
7	gates

for	exploring	genetic	algorithms...

Welcome to Electrical and Computer Engineering!

Time-optimized	circuits:	Carry	lookahead	adders

The following circuit is called a carry lookahead adder.

By adding more hardware, we reduce the number of levels in the circuit and speed things up.

We can "cascade" carry lookahead adders, just like ripple carry adders.
We'd have to do carry lookahead between the adders too.

How much faster is this?
For a 4-bit adder, not much. There are 4 gates in the longest path of a carry lookahead
adder, versus 9 gates for a ripple carry adder.

But if we do the cascading properly, a 16-bit carry lookahead adder could have only 8 gates
in the longest path, as opposed to 33 for a ripple carry adder.

Newer CPUs these days use 64-bit adders. That's 12 vs. 129 gates or 10x speedup!

The delay of a carry lookahead adder grows logarithmically with the size of the adder, while a
ripple carry adder's delay grows linearly.

The thing to remember about this is the trade-off between complexity and performance.

Ripple carry adders are simpler, but slower. Carry lookahead adders are faster but more complex.

“carry-out”,	
not	“c-zero”

A		4-bit	carry-lookahead	adder	circuit

Sum	bits

Carry	bits

carry-in

xor

xor xor xor xor

xorxorxor

Details!

A	4-bit	carry-lookahead	
adder	circuit

A	4-bit	ripple-carry	
adder	circuit

speed vs. complexity tradeoffs ~ the "cs facets" of engineering

What	information	is	needed?	Where?	How?

Flows!

What's	inside		gates?

What's	the	other	half	
of	computation?

Today's	gates?

https://www.youtube.com/watch?v=2z9qme_ygRI
https://www.youtube.com/watch?v=Fxv3JoS1uY8

are	from	silicon-based	switches	~	transistors

a single etched transistor labeled with
base (b), emitter (e), and collector (c)

switch?
gate?
door?

switches?

are	from	silicon-based	switches	~	transistors

a single etched transistor labeled with
base (b), emitter (e), and collector (c)

control

switch?
gate?
door?
portcullis!

control

flow

sig
na

l f
lo

w in

signal flow out

One	transistor!

Then

1947

One	transistor!

open-on-high	type	transistor
single-electron	tunneling,	or	SET	transistor

20	nm

E85's	transistors

Then
Now

a	+5v	voltage	here

allows	current	here

"high"

1947

open-on-high	type	transistor
single-electron	tunneling,	or	SET	transistor

20	nm

E85's	transistors

Then
Now

a	+5v	voltage	here

allows	current	here

"high"

Lots	of		transistors!

1947

Two	types	of	transistors...

20	nm

a	+5v	voltage	here

allows	current	here

0v

0v	"opens"	this	wire

Transistors	are	
current	gates:

5v	"cuts"	this	wire

5v

0v

0v	"cuts"	this	wire 5v	"opens"	this	wire

5v

open-on-low			(pmos)

open-on-high			(nmos)

open-on-high-type	transistor

"high"

an	input	of	1	opens	the	portcullis...

Two	types	of	transistors...

20	nm

a	0v	voltage	here

blocks	current	here

0v

0v	"opens"	this	wire

Transistors	are	
current	gates:

5v	"cuts"	this	wire

5v

0v

0v	"cuts"	this	wire 5v	"opens"	this	wire

5v

open-on-low			(pmos)

open-on-high			(nmos)

open-on-high-type	transistor

"low"

an	input	of	0	closes	the	portcullis!

Rotations	are	common...

0v

0v	"opens"	this	wire

Transistors	are	
current	gates:

5v	"cuts"	this	wire

5v

0v

0v	"cuts"	this	wire 5v	"opens"	this	wire

5v

open-on-low			(pmos)

open-on-high			(nmos)

(0 or 1)

+5 v

Ground = 0v

INPUT
OUTPUT
(1 or 0)

0v	"opens"	this	wire

Transistors	are	
current	gates:

5v	"cuts"	this	wire

0v	"cuts"	this	wire 5v	"opens"	this	wire

open-on-low			(pmos)

open-on-high			(nmos)

POWER

0v 5v

0v 5v

Building	a	NOT	gate

Building	a	NOT	gate	from	transistors:

outputinput
NOT

a two-
transistor
NOT gate

a	NOT	gate

(0 or 1)

+5 v

Ground = 0v

INPUT
OUTPUT
(1 or 0)

Implemented!

photograph
of a two-
transistor
NOT gate

0v	"opens"	this	wire

Transistors	are	
current	gates:

5v	"cuts"	this	wire

0v	"cuts"	this	wire 5v	"opens"	this	wire

open-on-low			(pmos)

open-on-high			(nmos)

POWER

0v 5v

0v 5v

a two-
transistor
NOT gate

Ground,	0	or	0v

Output:	Z

X Y

NAND

"not and"

OR NOR XOR

"not or"

Z

(3)	Extra!		How	could	
you	alter	the	transistor-level	
design	to	make	the	design	
above	into	an	AND	gate?

Power,		1	or	+5v

"exclusive or"

(1)	Fill	in	this	
circuit's	truth	table

Z

(2) Challenge: What gate is the above diagram? It's one of these four:

Transistors! (1)	What	will	be	output?	
Fill	out	the	truth	table	to	the	right

Z	is	either	0	or	1,	
depending	on	X	,	Y

Y

X

each	is		0	or	1	
independently

Inputs:		X,	Y

X

Y
1

1

let's	follow	these	
inputs	together...

X Y
0 0
0 1
1 0
1 1

each	is		0	or	1	
independently

Ground,	0	or	0v

Inputs:		X,	Y

Output:	Z

X

Y

X Y

NAND

"not and"

OR NOR XOR

"not or"

Z

(3)	Extra!		How	could	
you	alter	the	transistor-level	
design	to	make	the	design	
above	into	an	AND	gate?

Power,		1	or	+5v

"exclusive or"

(1)	Fill	in	this	
circuit's	truth	table

X Y Z
0 0
0 1
1 0
1 1

(2) Challenge: What gate is the above diagram? It's one of these four:

Transistors! (1)	What	will	be	output?	
Fill	out	the	truth	table	to	the	right

Y

X

Answer
s! 1

0
0
0

Swap	the	transistor	TYPES!

Z	is	either	0	or	1,	
depending	on	X	,	Y

1

1

0

1

1

0

0

0

0

0

0 0
clos

ed

clos
ed

ope
n

ope
n

these	3	result	in	outputs	
of	0	–	not	detailed	here

Their	Mark	1

http://www-03.ibm.com/ibm/history/exhibits/markI/markI_reference.html

Grace	Hopper	+	Howard	Aiken,		Harvard	~	1944

an	early,	relay-based	computer	

Transistors	as	disruptive	technology

1947:	Bell	Labs
seeking	better	amplifiers	for	phone	lines	

team	of	physicists:		W.	Brattain,	W.	
Shockley,	and	J.	Bardeen	

1948:	junction	transistor

1956:	Shockley	Semiconductor	Co.

1957:	Fairchild	Semiconductor	Co.

much	more	robust	design

in	a	few	months...	
					the	"traitorous	eight"	left	to	found

point	contact	transistor

in	hometown	of	Palo	Alto...

...	and	so	begins	the	valley's	siliconization

What's	inside	gates?

What's	the	other	half	
of	computation?

Half	a	computer:		the	CPU

transistors

6	x	7…	!

arithmetic

gates

For	systems,	a	face-lift	is	to	add	
an	edge	that	creates	a	cycle,	not	

just	an	additional	node.

NOR
X

NORinputs

outputY

NOR's Truth Table

X YZ Z
0 0
0 1
1 0
1 1

1
0
0
0Let's	e

nginee
r	this	i

nto	

1	bit	o
f	mem

ory!

- also Alan Perlis

Q still stays (!) at __ _0_

Q is then set to __ _1_

Q still stays (!) at __ _1_

Q is then set to __ _0_

• What happens if S stays 0 and R is set back to 0?

• What happens if R is 0 and S is set to 1?

Memory!

Take a look at this circuit:

The D (data) line holds a
single bit we want to store

(either a 0 or a 1).

 How does the strobe bit
help store the bit D into Q?

Why does "S" stand for "Set" and R for "Reset" ?

• What happens if S is 0 and R is set back to 0?

Hint:		What	happens	when	the	"strobe"	is	1?

NOR

NOR

S

R

1

0

0

"Set"

"Reset"

1

Q

• The circuit starts with R being 0 + S being 0

• What if S stays 0 and R is set to 1?

S "sets" Q to 1; R "resets" it back to 0.

"we are ready
to handle the

data"

Q	is	a	single	
bit	of	storage

and Q starts at _0_ the "loopback wire"
from S to R will be 1

NOR

NOR

inputs

The	flip-flop
D data

"strobe"
AND

AND

strobe

D

Q

1	bit	of	memory!

the	flip-flop's	diagram

Demo!

Q
Q	is	1	bit	
of	storage

"we are ready
to handle the

data"

NOR

NOR

inputs

The	flip-flop
D data

"strobe"
AND

AND

strobe

D

Q

1	bit	of	memory!

the	flip-flop's	diagram

Demo!

Q
Q	is	1	bit	
of	storage

But	ther
e's	a	LOT

	more	

than	1	b
it	of	mem

ory…	!

Random	Access	Memory
Extra:			Design	12	nano-Giga-bits	of		RAM

3 data output bits

Inputs

3 data input bits
Simplified
Prototype for
Accessing
Memory

Outputs

2 data address bits

3 bits stored at location 00
 3 bits stored at location 01
 3 bits stored at location 10
 3 bits stored at location 11

12 bits of RAM

Demo!

4
2
5
6

valuesmemory
locations

3
2
1
0

write enable line

read enable line

strobe

D Q

strobe

D Q

strobe

D Q

strobe

D Q

strobe

D Q

strobe

D Q

STORE
the value 5 into

mem. loc. #1

3 data input bits

write enable line

read enable line

0

1

two other memory lines and their flip-flops are not drawn 3 data output bits

2

3

OR

OR

OR

0. Make data input bits 101

3. How do the * AND gates make
sure that the value does go into
memory location #1?

*

*

Ex Cr

memory
location

1. Give 01 to the decoder (the 1 goes on)

2. Make the "Write Enable" high

Binary
Address
Decoder

4. How do the * AND
gates make sure that the
value does NOT go into
memory location #0?

0

1

data address,
in binary

A0
A1

2 → 2; 4 → 3;
6 → 0; 5 → 1;

2
3

strobe

D Q

strobe

D Q

strobe

D Q

strobe

D Q

strobe

D Q

strobe

D Q

LOAD
take data from

mem. location #1

3 data input bits

write enable line

read enable line

data address,
in binary

0

1

Binary
Address
Decoder

two other memory lines and their flip-flops are not drawn 3 data output bits

2

3

OR

OR

OR

0. Suppose 101 is in Location #1

3. Which gates will ensure bits from
memory location #1 are read out?

4. Which gates will ensure bits from
memory location #0 are not read out?

memory
location

1. Give 01 to the decoder (the 1 goes on)

2. Make the "Read Enable" high

5. Draw where the "Read Enable"
wire should go! 0

1
A0

A1

and #2 and #3

2
3

