
Thinking	loopily																	and	cumulatively

sounds natural to me!

for a while +=

Today			Loops	 have		arrived…	

hw	#6	due			Mon.,	Oct.	25

Next	week:				putting	loops	to	good	use:

Coding	in	circles!
hw5's	circuits	due	tonight!

Jumping	for	Conditionals
100 INPUT X
110 INPUT Y

130 IF X < Y THEN GOTO 170
140 PRINT Y
150 PRINT X
160 GOTO 190
170 PRINT X
180 PRINT Y
190 STOP

00 read r1
01 read r2
02 sub r3 r1 r2
03 jltzn r3 07
04 write r2
05 write r1
06 jumpn 09
07 write r1
08 write r2
09 halt

BASIC	— Dartmouth	College,	1963Hmmm	—	Assembly

00 read r1
01 read r2
02 sub r3 r1 r2
03 jltzn r3 07
04 write r2
05 write r1
06 jumpn 09
07 write r1
08 write r2
09 halt

Jumping	for	Conditionals
100 INPUT X
110 INPUT Y

130 IF X < Y THEN GOTO 170
140 PRINT Y
150 PRINT X
160 GOTO 190
170 PRINT X
180 PRINT Y
190 STOP

x = int(input())
y = int(input())

if x < y:
 print(y)
 print(x)
else:
 print(x)
 print(y)

BASIC	— Dartmouth	College,	1963Python

Factorial	Revisited

100 INPUT N
110 LET R = 1
120 IF N == 0 THEN GOTO 160
130 LET R = R * N
140 LET N = N - 1
150 GOTO 120
160 PRINT R
170 STOP

00 read r1
01 setn r2 1
02 jeqzn r1 06
03 mul r2 r2 r1
04 addn r1 -1
05 jumpn 02
06 write r2
07 halt

BASIC	— Dartmouth	College,	1963Hmmm	—	Assembly

Factorial	Revisited

100 INPUT N
110 LET R = 1
120 IF N == 0 THEN GOTO 160
130 LET R = R * N
140 LET N = N - 1
150 GOTO 120
160 PRINT R
170 STOP

00 read r1
01 setn r2 1
02 jeqzn r1 06
03 mul r2 r2 r1
04 addn r1 -1
05 jumpn 02
06 write r2
07 halt

BASIC	— Dartmouth	College,	1963Hmmm	—	Assembly

The	epic	battle	for“Structured	Programming”

Factorial	Revisited

100 INPUT N
110 LET R = 1
120 IF N == 0 THEN GOTO 160
130 LET R = R * N
140 LET N = N - 1
150 GOTO 120
160 PRINT R
170 STOP

00 read r1
01 setn r2 1
02 jeqzn r1 06
03 mul r2 r2 r1
04 addn r1 -1
05 jumpn 02
06 write r2
07 halt

BASIC	— Dartmouth	College,	1963Hmmm	—	Assembly

The	epic	battle	for…whatever…

Factorial	Revisited

100 INPUT N
110 LET R = 1
120 IF N == 0 THEN GOTO 160
130 LET R = R * N
140 LET N = N - 1
150 GOTO 120
160 PRINT R
170 STOP

n = int(input())
r = 1
while n != 0:
 r = r * n
 n = n - 1

print(r)

BASIC	— Dartmouth	College,	1963 Python

Invent	the	while	loop…Lots	in	common	with	if

• Inspired	by	machine
• Modify	old	variables
• Repeat	using	loops

Two	ways	to	program…

Imperative	code!

• Inspired	by	math
• Make	new	variables
• Repeat	using	
recursion

Functional	code!

What	we're	doing	now… What	did	in	week	one…

Happy	birthday	to...	?	

"Birthday	room	experiment..."

Happy	birthday	to...	?	

"Birthday	room	experiment..."

9/24

11/30
2/28

7/8
1/21

A	common	pattern…
foods = ["apple", "banana", "cherry"]

i = 0
while i < len(foods):
 food = foods[i]
 print(food)
 i = i + 1

A	common	pattern…
foods = ["apple", "banana", "cherry"]

i = 0
while i < len(foods):
 food = foods[i]
 print(food)
 i = i + 1

for food in foods:
 print(food)

Invent	the	
for	loop…

A	better	wa
y?

for loops:		four	examples…

for i in [0,1,2]:
 print("i is", i)

This	slide	is	
four		for		for!

For	loops	d
efine	and	

assign	a	va
riable!!!

The	variable	haseach	value	in	turn	from	some	sequence

There's	an	inden
ted	

block	of	code	it'l
l	

execute	each	tim
e

for x in [40,41,42]:
 print(x)for

Imperative	design	in	Python

x = 42
while x > 0:
 print(x)
 x -= 1

while

variables	vary
x = 41
x += 1

addn r1 1

a lot!

the initial value is often not
the one we want in the end

But we change it as we go…

Loops!

for loops:		four	examples…
for i in [0,1,2]:
 print("i is", i)

This	slide	is	
four		for		for!

For	loops	d
efine	and	

assign	a	va
riable!

for loops:		four	examples…
for i in [0,1,2]:
 print("i is", i)

This	slide	is	
four		for		for!

i is 0

i is 1

i is 2

For	loops	d
efine	and	

assign	a	va
riable!!

for loops:		four	examples…
for i in [0,1,2]:
 print("i is", i)

This	slide	is	
four		for		for!

for i in range(0,3):
 print("i is", i)

i is 0

i is 1

i is 2

For	loops	d
efine	and	

assign	a	va
riable!!!

[0,1,2]

for loops:		four	examples…
for i in [0,1,2]:
 print("i is", i)

This	slide	is	
four		for		for!

for i in range(0,3):
 print("i is", i)

for i in
 print('Happy birthday!')

There	are	a	range	of	answers	to	this	one…	

for x in [2,5,2024]:
 print("x is", x)

i is 0

i is 1

i is 2

x is 2
x is 5
x is 2024

[0,1,2]

How	could	we	get	
this	to	run	42	times?

for loops:		four	examples…
for i in [0,1,2]:
 print("i is", i)

This	slide	is	
four		for		for!

for i in range(0,3):
 print("i is", i)

for i in
 print('Happy birthday!')

There	are	a	range	of	answers	to	this	one…	

for x in [2,5,2024]:
 print("x is", x)

i is 0

i is 1

i is 2

x is 2
x is 5
x is 2024

[0,1,2]

How	could	we	get	
this	to	run	42	times?

range(42)

range(0,42)
range(1,43)

for fun(ctions)

def funA():
 for i in range(0,3):
 print("i is", i)
 return

[0,1,2]
def funB():
 for i in range(0,3):
 print("i is", i)
 return

[0,1,2]

i is 1

i is 2

for fun(ctions)

def funA():
 for i in range(0,3):
 print("i is", i)
 return

[0,1,2]
def funB():
 for i in range(0,3):
 print("i is", i)
 return

[0,1,2]

i is 1

i is 2

for	vs.	ret
urn	?	

Who	wins?
??

Epic	keyword	battle...

for fun(ctions)

def funA():
 for i in range(0,3):
 print("i is", i)
 return

[0,1,2]
def funB():
 for i in range(0,3):
 print("i is", i)
 return

[0,1,2]

i is 1

i is 2

for	vs.	ret
urn	?	

Who	wins?
??

Epic	keyword	battle...

retu
rn

Wins!

for fun(ctions)

def funA():
 for i in range(0,3):
 print("i is", i)
 return

[0,1,2]
def funB():
 for i in range(0,3):
 print("i is", i)
 return

[0,1,2]

i is 1

i is 2

i is 0

i is 1

i is 2
retur

n!

i is 0
retur

n!

def fun1():
 for i in range(1,6):
 if i%2 == 0:
 print("i is", i)
 return

def fun2():
 for i in range(1,6):
 if i%2 == 0:
 print("i is", i)
 return

def fun3():
 for i in range(1,6):
 if i%2 == 0:
 print("i is", i)
 return

def fun4():
 for i in range(1,6):
 if i%2 == 0:
 print("i is", i)
return

four	fors
what prints:what prints:what prints: what prints:

i is 2
i is 4

i is 2

The loop runs 5 times,
then the function returns
i=1, i=2, i=3, i=4, i=5

synt
ax

erro
r

The loop runs 2 times,
then the function returns
i=1, i=2, i=3, i=4, i=5

The loop runs 1 time,
then the function returns
i=1, i=2, i=3, i=4, i=5

no printing...

The loop never runs...
The function never runs...

A

of times the
for loop runs?

of times the
if-test is True?

The if-test is never True The if-test is True 1 time The if-test is True 2 times
The if-test never runs

B C D

Name: ________________ BDay! ________

for!

for x in [2,4,6,8]:

 print('x is', x)

print('Done!')
anatomy?

empty?

x unused?

x is assigned each value
from this sequence

the BODY or BLOCK of the
for loop runs with that x

Code AFTER the loop will not run
until the loop is finished.

1

2

3

4

LOOP back to
the top for

EACH value in
the list

Th
is

 is
 th

e
#1

 fo
r-l

oo
p

er
ro

r!
(w

ha
t?

 w
hy

?)

It's	what	the	fox	
says:		Duck!

for x in [40,41,42]:
 print(x)for

Iterative	design	in	Python

x = 42
while x > 0:
 print(x)
 x -= 1

while

variables	vary
x = 41
x += 1 addn r1 1

a lot!

the initial value is often not
the one we want in the end

But we change it as we go…

Loops!

?
!

That's	why	they're	called	variables

age = 41

age = age + 1

Only	in	code	can	one's	
newer	age	be	older	than	
one's	older	age…	!The "old" value (41)

The "new" value (42)

age += 1

05 addn r1 1Echoes from Hmmm:

age *= 2
age -= 74
age /= 7

00 setn r15 42
01 read r1
02 calln r14 5
03 write r13
04 halt
05 jnezn r1 8
06 setn r13 1
07 jumpr r14
08 pushr r14 r15
09 pushr r1 r15
10 addn r1 -1
11 calln r14 5
12 popr r1 r15
13 popr r14 r15
14 mul r13 r1 r13
15 jumpr r14

Recursive	Hmmm	
factorial,	hw6pr4

Hmmm…	I	think	I'll	
take	Python!

Functional	
programming

Looping	Hmmm	factorial,	
similar	to	hw6pr2	and	pr3

Iterative	
programming

Hmmm

00 read r1
01 setn r2 1
02 jeqzn r1 06
03 mul r2 r2 r1
04 addn r1 -1
05 jumpn 02
06 write r2
07 halt

Loops!

That's	why	they're	called	variables

age = 41

age = age + 1

hwToGo = 7
hwToGo = hwToGo - 1

amoebas = 21000000
amoebas = amoebas * 2

u235 = 84000000000000000;
u235 = u235 / 2

The "old" value (41)

The "new" value (42)

Python shortcuts

amoebas *= 2

hwToGo -= 1

u235 /= 2

age += 1

Only	in	code	can	one's	
newer	age	be	older	than	
one's	older	age…	!

four	questions	for	for

for x in range(1,8):

what list is this!?

find the sum of the list?

printing partial sums?

factorial function?

print('x is', x)

for x in range(1,8):

print('x is', x)

[1,2,3,4,5,6,7]

four	questions	for	for
what list is this!?

find the sum of the list?

printing partial sums?

factorial function?

tsum with for

def tsum(N):

 result = 1

 for x in range(1,5):

 print("x is", x)

 return result

how to use N?

find the sum of the list?

printing partial sums?

create factorial?!
Four	questions...

tsum with for

def tsum(N):

 result = 0

 for x in range(0,N+1):

 result = result + x

 return result

Hey!?		This	is	not	
the	right	answer…	

YET

thought	experiments	w/	return

fac with for

def fac(N):

 result = 1

 for x in range(1,N+1):

 result = result * x

 return result

Hey!?		This	is	not	
the	right	answer…	

YET

thought	experiments	w/	return

fac with for

def fac(N):

 result = 1

 for x in range():

 return result result

how to use N?

find the sum of the list?

printing partial sums?

create factorial?!
Four	questions...

for-loop	"laddering"

result = 1

for x in [2,5,1,4]:

 result *= x

print(result)

result x

meets	up	with	
Jacob's	ladder

Warning:		no	one	
else	uses	this	term…

Quiz What	does	the	loop	say?

i

0
1
2

S[i]

't'
'i'
'm'

S[i-1]

3
4
5

'e'
' '
't'

't'
'i'
'm'
'e'
' '
't' 6

7
8

'o'
' '
't'

'o'
' '

' '

res.
S = 'time to think this over! '

result = ''

for i in range(len(S)):
 if S[i-1] == ' ':
 result += S[i]

print(result)

25

[0,1,2,...,24]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

'tttto'
Looks like a four-'t' "to" to me!

for:	two	types

L = [3, 15, 17, 7]

for x in L:
 print(x)

element-based	loops

x

Elements	vs	Inde
xes

Indices

for:	two	types

L = [3, 15, 17, 7]

for x in L:
 print(x)

element-based	loops

for i in range(len(L)):
 print(L[i])

index-based	loops

i

0 1 2 3

L[3]L[2]L[1]L[0]

list

x

for:	two	types

L = [3, 15, 17, 7]

for x in L:
 print(x)

element-based	loops

for i in range(len(L)):
 print(L[i])

index-based	loops

i

0 1 2 3

L[3]L[2]L[1]L[0]

list

x

printin
g	is	NO

T	espe
cially	

comm
on	in	l

oops	–
	but	it'

s	

good	fo
r	debu

gging!

element-based	loops

L = [3, 15, 17, 7]

i

0 1 2 3

simpler			vs.			flexibler

def sum(L):
 total = 0
 for i in range(len(L))
 total += L[i]
 return total

index-based	loops

def sum(L):
 total = 0
 for x in L:
 total += x
 return total

x

i,j,k,a,bx,y,z,e,a,b

element-based	loops

L = [3, 15, 17, 7]

i

0 1 2 3

simpler			vs.			flexibler

def sum(L):
 total = 0
 for i in range(len(L))
 total += L[i]
 return total

index-based	loops

def sum(L):
 total = 0
 for x in L:
 total += x
 return total

x

i,j,k,a,bx,y,z,e,a,b

Elements	vs	Inde
xes

(indices)

for:	two	types

L = [3, 15, 17, 7]

for x in L:
 print(x)

element-based	loops

for i in range(len(L)):
 print(L[i])

index-based	loops

i

0 1 2 3

L[3]L[2]L[1]L[0]

list

x

printin
g	is	NO

T	espe
cially	

comm
on	in	l

oops	–
	but	it'

s	

good	fo
r	debu

gging!

Hmmm Instructions

System instructions

halt
Stop!

read rX
Place user inp

ut in register rX

write
rX Print content

s of register rX

nop
Do nothing

Setting regist
er data

setn rX N Set register rX
equal to the i

nteger N (-128 to +127
)

addn rX N Add integer N (-128 to 127)
to register rX

copy rX rY Set rX = rY

Arithmetic

add rX rY rZ Set rX = rY + rZ

sub rX rY rZ Set rX = rY - rZ

neg rX rY Set rX = -rY

mul rX rY rZ Set rX = rY * rZ

div rX rY rZ Set rX = rY // rZ (integer divis
ion; rounds d

own; no remainder)

mod rX rY rZ Set rX = rY % rZ (returns the r
emainder of inte

ger division)

Jumps!

jumpn
N Set program counter to ad

dress N

jumpr
rX Set program counter to ad

dress in rX

jeqzn
rX N If rX == 0, then jump to line N

jnezn
rX N If rX != 0, then jump to line N

jgtzn
rX N If rX >0, then jump to line N

jltzn
rX N If rX <0, then jump to line N

calln
rX N Copy addr. of

next instr. int
o rX and then jump tomem. addr. N

Interacting w
ithmemory (RAM)

pushr
rX rY Store content

s of register rX
onto stack po

inted to by reg. rY

popr rX rY Load contents of re
gister rX from stack pointed

to by reg. rY

loadn
rX N Load register rX with the contents o

f memory address N

storen
rX N Store content

s of register rX
into memory address N

loadr
rX rY Load register rX with data from the address lo

cation held in reg. rY

storer
rX rY Store content

s of register rX
into memory address h

eld in reg. rY

Useful Python
Functions

�e following ar
e Python functions we’

ve created in assignments or built-i
n functions tha

t youmay �nd useful.

You can use these fun
ctions in answers you write without

needing to de
�ne/explain them.

abs(x)
Returns the a

bsolute value
of x

count(
e,L)

Returns the n
umber of times e appears i

n L

ind(e,
L)

Returns the in
dex of the �rs

t occurrence
of e in L

len(L)
Returns the n

umber of elements in L

max(L)
Returns the la

rgest element in L

min(L)
Returns the s

mallest element in L

remove
All(e,

L) Removes all occur
rences of e fr

om L

remove
One(e,

L) Removes the �rst
occurrence o

f e from L

remove
Upto(e

,L) Removes all elements from L up to and including the
�rst occurren

ce of e

sort(L
)

Returns a new
list with the elements of L sort

ed

sum(L)
Returns the s

um of the elements in L

What	we	give	you	
on	the	midterm…

