
CS	5	Today
Piece	of	pie	bud?

infinitely	nested	structure…

from	finitely	nested	loops

Homework	8							Loops!				due	March	26

Homework	6/7							Last	part	due	Today!

In	celeb
ration	o

f	Pi	day	
(3/14)

…we	go	a	little	
loopy	and	a	little	

random

Today:		Thinking	in		loops

for while

Today:		Thinking	in		loops

What	are	the	design	differences	between	
these	two	types	of	Python	loops?

for x in range(42):

 print(x)

x = 1

while x < 42:

 print(x)

 x *= 2

for while

list

Loop	design...

Careful	here!

Table	tent	...	from	a	past	year	at	the	Hoch

Is	this	a	
for	or	a	
while	
loop?

Are	these	
for	or		
while	
loops?

Loop	design...

Thinking	in		loops

definite	
iteration

indefinite	
iteration

For	a	known	sequence
(specific	number	of	iterations)

For	an	unknown	
number	of	iterations

for while

a.k.a	“bounded	iteration”

Lots	of	loops!

Homework	8	preview

The	Mandelbrot	Set

TTS	Securities

Pi	from	Pie

When	Algorithms	Discriminate...

ASCII	Art

Loopy	
thinking

(Extra)

#4

#1	~	lab

#3

#0

CSS:	Cascading	Style	Sheets(Web	extra)

#2

π day! 3/14/15 9:26:53

“Best	π	day
”	ever	

was	in	201
5!

π	from	Pie?
Hw8	Pr3

p

This	couldn't	be	just	a	coincidence!

Pie

Box

Honoring	“π	day”

Estimating	
π	from	pie?

Hw8	Pr3

What	if	
we	just	
throw	
darts	at	
this	

picture?

(-1,-1)

(1,1)

(0,0)

Pie

Box

Estimating	
π	from	pie?

(-1,-1)

(1,1)

Hints

How	big	is	a	side	of	the	
square?			its	area?

How	big	is	the	radius	of	
the	circle?			its		area?

How	do	these	help!?!!

Pi-design	challenge...

Pie

Box
(1)	Suppose	you	throw	
1000	darts	at	the	square.										
(All	of	them	do	hit	the	square.)

(2)	Suppose	800	of	them	
end	up	as	hits	in	the	circle.

(3)	What	is	the	estimated	
value	of	π from	this	#	of									
hits	(800)	&	throws	(1000)?

Name(s)		________________________

(0,0)

800

1000

Estimating	
π	from	pie?

(-1,-1)

(1,1)

Hints

How	big	is	a	side	of	the	
square?			its	area?

How	big	is	the	radius	of	
the	circle?			its		area?

How	do	these	help!?!!

Pi-design	challenge...

Pie

Box
(1)	Suppose	you	throw	
1000	darts	at	the	square.										
(All	of	them	do	hit	the	square.)

(2)	Suppose	800	of	them	
end	up	as	hits	in	the	circle.

(3)	What	is	the	estimated	
value	of	π from	this	#	of									
hits	(800)	&	throws	(1000)?

Name(s)		________________________

(0,0)

800

1000

Go	full	circl
e	by	

handing	th
ese	back!

(-1,-1)

(1,1)Pi-design	challenge...

Pie

Box

(0,0)

800

1000

Estimating	
π	from	pie?

*

area
area

=

π ~
hits

hits
4

π
4

Hw8	Pr3

pi_two(n)

pi_one(e)

n == number of
darts to throw

e == how close to π
we need to get

Which function will use which kind of loop?

Loops:	for or while?

Loops:	for or while?

pi_two(n)

pi_one(e)

n == number of
darts to throw

e == how close to π
we need to get

for

while

There's a loop for all seasons!

Better	π	with	less	work?

𝜋
4 = 1 −

1
3 +

1
5 −

1
7 +

1
9 −⋯ = ∑

!"#

$ (−1)!

2𝑘 + 1 ,

Leibniz's	formula…

Better	π	with	less	work?

𝜋
4 = 1 −

1
3 +

1
5 −

1
7 +

1
9 −⋯ = ∑

!"#

$ (−1)!

2𝑘 + 1 ,

Leibniz's	formula…

def leibniz_pi(k):
 total = 0
 for i in range(k):
 total += (-1)**i / (2*i+1)
 return total * 4

def leibnizpi_lc(k):
 LC = [(-1)**i / (2*i+1) for i in range(k)]
 return sum(LC) * 4

Better	π	with	less	work?
Prof	Melissa's	approach…

Figure out an easy way,
math genius not required!

(Not first to think of this way! Uses well-known math ideas!)

This	is	bar-ing!

Better	π	with	less	work?
Prof	Melissa's	approach…

%
!"#

$%&
1
𝑘

1 −
𝑖 + 12
𝑘

'

∫#
, 1 − 𝑥-𝑑𝑥

approximates	this	integral

Better	Pi	with	less	work?
Prof	Melissa's	approach…

def slicepi(k): total = 0 width = 1/k for i in range(k): x = (i+0.5)/k height = math.sqrt(1 - x**2)
 total += height * width return total * 4
def slicepi_lc(k): LC = [math.sqrt(1-(i+0.5)/k**2)/k for i in range(k)]

 return sum(LC) * 4

%
!"#

$%&
1
𝑘

1 −
𝑖 + 12
𝑘

'

Better	Pi	with	less	work?
…	how	about	a	bit	of	Gauss!

Better	Pi	with	less	work?
…	how	about	a	bit	of	Gauss!

def gausspi(k):

 a = 1
 b = 1/(2**0.5

)

 t = 0.25

 p = 1
 for i in rang

e(k):

 a_next =
(a + b) / 2

 b = (a *
b)**0.5

 t -= p *
(a - a_next)**2

 a = a_nex
t

 p *= 2

 return (a + b
)**2 / (4 * t)

Homework	8	preview

The	Mandelbrot	Set

Text	menus...

Pi	from	Pie

When	Algorithms	Discriminate...

ASCII	Art

Thinking	
in	Loops...

(EC5)

#1	~	lab

#3

#0

Lots	of	loops!			#2

#4

PythonBat	loop	practice...

google	for	"PythonBat"	then...

10 required, up to +15 EC points available...

Homework	8	preview

The	Mandelbrot	Set

Text	menus...

Pi	from	Pie

When	Algorithms	Discriminate...

ASCII	Art(EC5)

#1	~	lab

#3

#0

Lots	of	loops!			#2

#4 Not	just	loops...
Nested		loops

Thurs
.

Nested	loops	are	familiar,	too!

for mn in range(60):
 for s in range(60):
 tick()

hour() hour(t=4.2/3600, c=9731)

Nested	loops	are	familiar,	too!

So	close!

Nested	loops Life	
clock

for y in range(years_in_life):
 for m in range(12):
 for d in range(f(m,y)):
 for h in range(24):
 for mn in range(60):
 for s in range(60):
 tick()

for mn in range(60):
 for s in range(60):
 tick()

Double-Nested	
loops'

	2d	structure One	hour	~	3600	seconds

mn == 0

mn == 42

mn == 59

s == 0 s == 59

42nd	minute's
59th	second

hour()

Creating	2D	structure	~	in	ASCII

for row in range(3):
 for col in range(4):
 print("#")

#
#
#

Wait! this needs
something more…

col

ro
w

1 2 30

2

1

0

list

list

Creating	2D	structure	~	in	ASCII

for row in range(3):
 for col in range(4):
 print("#", end='')

#
#
#

Hmmm...

col

ro
w

1 2 30

2

1

0

list

list

for row in range(3):

 for col in range(4):
 print('#',end='')

 print()

row =
col =
col =
col =
col =

row =
col =
col =
col =
col =

row =
col =
col =
col =
col =

[0,1,2]

[0,1,2,3]

Creating	2D	structure

col

ro
w

1 2 30

2

1

0

for row in range(3):
 for col in range(4):
 if col == row:
 print('#',end='')
 else:
 print(' ',end='')
 print()

row =
col =
col =
col =
col =

row =
col =
col =
col =
col =

row =
col =
col =
col =
col =

col

ro
w

1 2 30

2

1

0

Creating	2d	structure

0

1

2

0
1
2
3

0
1
2
3

0
1
2
3

Let's take an
alien's-eye view!

 # # # # #
 # # # #

1
cols

2 3 4 50

rows
2

1

0

for r in range(3):
 for c in range(6):
 if c >= r:
 print('#',end='')
 else:
 print(' ',end='')
 print()

for r in range(3):
 for c in range(6):
 if c%2 == 1:
 print('#',end='')
 else:
 print(' ',end='')
 print()

for r in range(3):
 for c in range(6):
 if c%2 == r%2:
 print('#',end='')
 else:
 print(' ',end='')
 print()

1
cols

2 3 4 50

rows
2

1

0 # # #
 # # #

1
cols

2 3 4 50

rows
2

1

0

 # # #
 # # #

1
cols

2 3 4 50

rows
2

1

0

Match! What if-test will create the fourth,
unmatched ASCII pattern?

A B C

1 2

3 4

#
 # # #
 #

1
cols

2 3 40

2

1

#
#

1
cols

2 3 40

2

1

0

*

**

0

* and ** are extra!

rows

rows

if r+c < 5 :

if r+c < 5 :

if r+c < 5 :

 # # # # #
 # # # #

1
cols

2 3 4 50

rows
2

1

0

for r in range(3):
 for c in range(6):
 if c >= r:
 print('#',end='')
 else:
 print(' ',end='')
 print()

for r in range(3):
 for c in range(6):
 if c%2 == 1:
 print('#',end='')
 else:
 print(' ',end='')
 print()

for r in range(3):
 for c in range(6):
 if c%2 == r%2:
 print('#',end='')
 else:
 print(' ',end='')
 print()

1
cols

2 3 4 50

rows
2

1

0

[0,1,2]

[0,1,2,3,4,5]

 # # #

1
cols

2 3 4 50

rows
2

1

0

 # # #
 # # #

1
cols

2 3 4 50

rows
2

1

0

Match! What code creates the fourth,
unmatched ASCII pattern?

A B C

1 2

3 4

#
 # # #
 #

1
cols

2 3 40

2

1

#
#

1
cols

2 3 40

2

1

0

*

**

0

if c+r<=4 if c+r<=4 and c>=r

if not (c==r or c+r==4)

A B

C

answers...if r+c < 5 : D

That's my type
of alien!

Nested	
loops:	from	
ASCII	Art

...		to	"real"	images!
https://www.youtube.com/watch?v=DEqXNfs_HhY

Python	and	images
from cs5png import *

im = PNGImage(300, 200)

inputs are width and height

200

0 0 300

im.plotPixel(10, 100)

(10,100)

(0,0) is
in the
usual
place!

Python	and	images

im.plotPoint(10, 100)

im.plotPoint(42, 42, (255,0,0))

im.saveFile() These functions are clearly
plotting something – if only I
knew what they were up to...

from cs5png import *

im = PNGImage(300, 200)

objects	are	new	types	that	can	contain	
their	own	functions,	often	called	methods

inputs are width and height

red green bluecol x row y

200

0 0

(42,42)

(10,100)

300

Imagining	
Images

from cs5png import *

def testImage():
 """ image demonstration """
 WD = 300
 HT = 200
 im = PNGImage(WD, HT)

 for row in range(HT):
 for col in range(WD):

 if col == row:
 im.plotPoint(col, row)

 im.saveFile()

thicker line?
other diagonal?

stripes ?
thicker stripes?

thatching?

Nothing's too
complex for

Python!Complex	Numbers!

1j * 1j == -1i can't	believe	this!

xkcd no. 2028

Nothing's too
complex for

Python!Complex	Numbers!

1j * 1j == -1

In[]: c = -2+1j

In[]: c**2

(-2+1j)*(-2+1j)

i can't	believe	this!

(3-4j)

Nothing's too
complex for

Python!Complex	Numbers!

i can't	believe	this!

In[]: c = -2+1j

In[]: c**2
(3-4j)

Real axis

Imaginary axis

3-2

1j

2j
3j

-4j

-2	+	1j

3	-	4j

(c**2)**2 vs c = c**2; c**2

Lab	8:		the	Mandelbrot	Set

Consider	an	update	rule	
for	all	complex	numbers	c

z0	=	0

zn+1	=	zn2	+	c

Real axis

Imaginary axis

.3

.4j

z = z**2+c ; print(z)

c	=	.3	+	.4j

c

z0

z1 z2

z3

z4

Real axis

Imaginary axis

Mandelbrot	Definition

Consider	an	update	rule	
for	all	complex	numbers	c

z0	=	0

zn+1	=	zn2	+	c

Small	values	of	c	keep	
the	sequence	near	the	

origin,	0+0j.	

z5

some	"stick	around"	~		
oscillate	or	converge

c = .3 + .4j

z = z**2+c ; print(z)

Mandelbrot	Definition

Real axis

Imaginary axis

Other	values	of	c	
make	the	sequence	
head	to	infinity.	

c

Small	values	of	c	keep	
the	sequence	near	the	

origin,	0+0j.	

c

Consider	an	update	rule	
for	all	complex	numbers	c

z0	=	0

zn+1	=	zn2	+	c

z = z**2+c ; print(z)
c = 3 - 4j

c = .3 + .4j

Which	c's

stick	arou
nd?

Mandelbrot	Definition

Real axis

Imaginary axis

Other	values	of	c	
make	the	sequence	
head	to	infinity.	

-	Mandelbrot

c

Small	values	of	c	keep	
the	sequence	near	the	

origin,	0+0j.	

c

Consider	an	update	rule	
for	all	complex	numbers	c

z0	=	0

zn+1	=	zn2	+	c

z = z**2+c ; print(z)
c = 3 - 4j

c = .3 + .4j

Lab	8:		the	Mandelbrot	Set

Consider	an	update	rule	
for	all	complex	numbers	c

z0	=	0

zn+1	=	zn2	+	c

some c's

stick around

Lab	8:		the	Mandelbrot	Set

Consider	an	update	rule	
for	all	complex	numbers	c

z0	=	0

zn+1	=	zn2	+	c

other c's

diverge

Mandelbrot	Set	~	points	that	stick	around

The	shaded	area	are	points	that	do	not	diverge	for			z = z**2 + c

mid 70's resolution

Higher-resolution	M.	Set

The	black	pixels	are	points	that	do	not	diverge	for			z = z**2 + c

-2 + 1j

-2 - 1j

1 + 1j

1 - 1j

connected

finite	area

¥ perimeter!

Complex	things	always	consisted	of	simple	parts…

Chaos?

Chaos!

http://www.youtube.com/watch?v=0jGaio87u3A

not self-similar, but quasi-self-similar

This	was	a	"naturally	occurring"	object	where	
zooming	uncovers	more	detail,	not	less:

Before	the	M.	Set,	complex	things	
were	made	of	simple	parts:

What	are	these	colors?

The	M.	Set	pixels	are	points	that	do	not	diverge	for			z = z**2 + c

escape	
velocities!

??

Atlas	of	the	M.	Set

In	the	Seahorse	Valley….

Happy	Mandelbrotting!

www.cs.hmc.edu/~jgrasel/projects
http://www.youtube.com/watch?v=0jGaio87u3A

