CS 5 Today

娄 infinitely nested structure...

Homework 6/7 Last part due Today!
Homework 8 Loops! due March 26

Today: Thinking in loops

for

while

Today: Thinking in loops

for

for x in "range (42): print(x)

while

$$
x=1
$$

$$
\text { while } \mathbf{x}<42:
$$

print(x)

$$
x \text { *= } 2
$$

What are the design differences between these two types of Python loops?

Loop design...

HOW TO BREATHE EASIER

1 Inhale deeply through your nose.
2 Hold your breath for 5 long seconds counting "1-Mississippi, 2-Mississippi, etc."
3 DO NOT EXHALE. Breathe in another short breath and hold for 5 long seconds.

4 DO NOT EXHALE. Repeat one more time.
5 Exhale SLOWLY to a slow count of io long seconds.
6 Repeat the whole sequence until you feel the stress, anger or frustration exit your body.

MORE TIPS?

wwww-cuc.claremont-edu/heo/balance
find your balance!

Loop design...

HOW TO BREATHE EASIER

1 Inhale deeply through your nose.
2 Hold your breath for 5 long seconds counting "1-Mississippi, 2-Mississippi, etc."
3 DO NOT EXHALE. Breathe in another short breath and hold for 5 long seconds.

4 DO NOT EXHALE. Repeat one more time.
5 Exhale SLOWLY to a slow count of io long seconds.
6 Repeat the whole sequence until you feel the stress, anger or frustration exit your body.

```
MORE TIPS?
```

wuww-cuc-claremont-edu/heo/balance

Are these for or while loops?

Thinking in loops

for

definite iteration

a.k.a "bounded iteration"

For a known sequence (specific number of iterations)

indefinite iteration

For an unlknown number of iterations

Homework 8 preview

\#0

\#2
\#3
\#4

(Extra) ASCII Art
(Web extra)
\#1 ~ lab The Mandelbrot Set
When Algorithms Discriminate...

Pi from Pie TTS Securities Loopy thinking

π day!

3/14/15 9:26:53

M Inbox (47) -zdodds@gma \times 巴 How to Survive the Colleg $\times 8$ Pi Day - Google Search \times $\leftarrow \rightarrow \mathbf{C}$ https://www.google.com/search?q=Pi+Day\&oq=Pi+Day\&aqs=chrome..69i57j015.1039j0j4\&sourceid=chrome\&es_sm=93\&ie=UTF-8

Google Pi Day

Web Images Maps News Videos More v Search tools

About $128,000,000$ results (0.35 seconds)

Saturday, March 14
Pi Day 2015

In the news
$\pi=3,1$
Happy Pi Day! Watch these stunning videos of kids reciting 3.14
USA TODAY - 1 hour ago
This March 14 is a very special Pi Day that comes hurt
a century. That's right, it's
Pi Day Isn't Juct Ma-
"Best π day" ever was in 2015!

```
can! C:\Windowslsystem32\cmd.exe - python
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. Al
C:\Users\Owner>import math
    'import' is not recognized as an internal or
    operable program or batch file.
    C:\Users\Owner>python
    Python 2.7.6 (default, Nov 10 2013, 19:24:18)
    Type "help", "copyright", "credits" or "licen
    >>> import math
    >>> math.pi
    3.141592653589793
>>>
```


(1) Daylight Saving Time began on Sunday, March 08, 2015 at 2:00 AM. The clock went forward 1 hour at that time.

Hw8 Pr3

This couldn't be just a coincidence!

Estimating π from pie?

What if we just throw darts at this picture?

Pi-design challenge...

$(1,1)$

$(-1,-1)$

Estimating π from pie?

(1) Suppose you throw 1000 darts at the square. (All of them do hit the square.)
(2) Suppose 800 of them end up as hits in the circle.
(3) What is the estimated value of π from this \# of hits (800) \& throws (1000)?

Hints

How big is a side of the square? its area?

How big is the radius of the circle? its area?

How do these help!?!!

Pi-design challenge...

Name(s)
$(1,1)$

Box

Estimating π from pie?

(1) Sunnom

Hints

How big is a side of the square? its area?

How big is the radius of the circle? its area?

How do these help!?!!

Pi-design challenge...
$(1,1)$

Loops: for or while?

pi_one(e)
$e==$ how close to π we need to get
pi_two(n)

n == number of darts to throw

Which function will use which kind of loop?

Loops: for or while?

pi_one (e)
pi_two(n)
$e==$ how close to π we need to get
$n==$ number of darts to throw

There's a loop for all seasons!

Better π with less work?

Leibniz's formula...

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1},
$$

Better π with less work?

Leibniz's formula...

$$
\begin{aligned}
& \frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1}, \\
& \text { def leibniz_pi(k): } \\
& \text { total = } 0 \\
& \text { for i in range(k): } \\
& \text { total += (-1)**i / (2*i+1) } \\
& \text { return total * } 4 \\
& \text { def leibnizpi_lc(k): } \\
& \mathrm{LC}=\left[(-1) *{ }^{*} \mathrm{i} /(2 * i+1) \text { for } i \text { in range }(k)\right] \\
& \text { return sum(LC) * } 4
\end{aligned}
$$

Better π with less work?

Better π with less work?

$\sum_{i=0}^{k-1}\left(\frac{1}{k} \sqrt{1-\left(\frac{i+\frac{1}{2}}{k}\right)^{2}}\right)$
approximates this integral

$$
\int_{0}^{1} \sqrt{1-x^{2}} d x
$$

Better Pi with less work?

Prof Melissa's approach...

 def slicepi(k):$$
\begin{aligned}
& \text { total }=0 \\
& \text { width }=1 / k
\end{aligned}
$$

for i in range (k) :
$x=(i+0.5) / k$

height $=$ math.sqrt (1-x**2)
total $+=$ height $*$ width
def slicepi_lc(k):
$L C=\left[\right.$ math.sqrt $\left(1-(i+0.5) / k^{* *}\right) / k$ for i in range $\left.(k)\right]$
return $\operatorname{sum}(L C) * 4$

Better Pi with less work? ... how about a bit of Gauss!

The Gauss-Legendre iterative algorithm: Initialize

$$
a_{0}=1, \quad b_{0}=\frac{1}{\sqrt{2}}, \quad t_{0}=\frac{1}{4}, \quad p_{0}=1
$$

Iterate

$$
\begin{aligned}
& a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n} b_{n}} \\
& t_{n+1}=t_{n}-p_{n}\left(a_{n}-a_{n+1}\right)^{2}, \quad p_{n+1}=2 p_{n}
\end{aligned}
$$

Then an estimate for π is given by

$$
\pi \approx \frac{\left(a_{n}+b_{n}\right)^{2}}{4 t_{n}}
$$

Better Pi with less work? ... how about a bit of Gauss!

def gausspi(k):

The Gauss-Legendre iterative algorithm:
Initialize

$$
a_{0}=1, \quad b_{0}=\frac{1}{\sqrt{2}}, \quad t_{0}=\frac{1}{4}, \quad p_{0}=1
$$

Iterate

$$
\begin{aligned}
& a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n} b_{n}} \\
& t_{n+1}=t_{n}-p_{n}\left(a_{n}-a_{n+1}\right)^{2}, \quad p_{n+1}=2 p_{n}
\end{aligned}
$$

Then an estimate for π is given by

$$
\pi \approx \frac{\left(a_{n}+b_{n}\right)^{2}}{4 t_{n}}
$$

$$
a=1
$$

$$
\begin{aligned}
& a=1 \\
& b=1 /(2 * * 0.5)
\end{aligned}
$$

$$
t=0.25
$$

$$
p=1
$$

$$
\begin{aligned}
& p=1 \\
& \text { for i in range }(k):
\end{aligned}
$$

$$
\begin{aligned}
& \text { i in range (K): } \\
& a_{\text {_next }}=(a+b) / 2 \\
& b-(a * * 0.5
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a}=(\mathrm{n} * \mathrm{~b}) * * 0.5 \\
& \mathrm{~b}=(\mathrm{a}-\mathrm{a} \text { next }) * * 2 \\
& \mathrm{t}-\mathrm{p}
\end{aligned}
$$

$$
a=a _n e x t
$$

$$
\begin{aligned}
& \mathrm{p}^{*=} \overline{2}^{2} \\
& \text { return }(\mathrm{a}+\mathrm{b})^{* * 2 /(4 * t)}
\end{aligned}
$$

$$
p^{*}=2
$$

Homework 8 preview

\# 0
\#1 ~ lab
\#2
\#4
(EC5)
Text menus...
The Mandelbrot Set
Lots of loops!
Pi from Pie

ASCII Art When Algorithms Discriminate...
,

PythonBat loop practice...

google for "PythonBat" then...

Homework 8 preview

\#
\#1 ~ lab
The Mandelbrot Set
\#2
Lots of loops!
\#3
Pi from Pie
\#4
Text menus...
Thurs.
Not just loops... Nested loops

Nested loops are familiar, too!

for $m n$ in range (60):
for s in range (60):
tick()

Nested loops are familiar, too!

Nested loops

Life
clock

for y in range (years_in_life): for m in range(12): for d in range $(f(m, y))$: for h in range(24): for mn in range(60): for s in range(60): tick()

Creating 2D structure \sim in ASCII

for row in "range(3): for col in "range(4): print("\#")

Creating 2D structure \sim in ASCII

for row in "range (3): for col in "range (4): print("\#", end=' ')

Creating 2D structure

[0,1,2]

for row in range(3):

$$
[0,1,2,3]
$$

for col in range(4): print('\#',end='') >
print()

$$
\begin{aligned}
& \text { row }=0 \\
& \text { col }=0 \\
& \operatorname{col}=1 \\
& \operatorname{col}=2 \\
& \operatorname{col}=3
\end{aligned}
$$

row $=1$

$$
\begin{aligned}
& \operatorname{col}=0 \\
& \operatorname{col}=1 \\
& \operatorname{col}=2 \\
& \operatorname{col}=3
\end{aligned}
$$

row $=2$

$$
\operatorname{col}=0
$$

$$
\text { col }=1
$$

$$
\operatorname{col}=2
$$

$$
\operatorname{col}=3
$$

Creating 2d structure

for row in range(3): for col in range(4):
if col == row:
print('\#',end='') else:
print(' ',end='')
print()


```
row =0
    col = 0
    col = 1
    col = 2
    col = 3
row = 1
    col = 0
    col = 1
    col = 2
    col = 3
```

row $=2$
$\mathrm{col}=0$
$\mathrm{col}=1$
$\mathrm{col}=2$
col $=3$
row $=2$
$\mathrm{col}=0$
$\mathrm{col}=1$
$\mathrm{col}=2$
$\mathrm{col}=\mathbf{3}$

```
for r in range(3):
    for c in range(6):
        if c >= r:
        print('#',end=")
        else:
        print(' ',end=")
    print()
```

```
for r in range(3):
    for c in range(6):
        if c%2 == 1:
B print('#',end=")
        else:
        print(' ',end=")
    print()
```

```
for r in range(3):
    for c in range(6):
        if c%2 == r%2:
C print('#',end=")
        else:
        print(' ',end=")
    print()
```

1	0	1	2	${ }^{3}$	$4^{\text {cols }}{ }_{5}$
0	$\#$	$\#$	$\#$	$\#$	$\#$
1	$\#$	$\#$	$\#$	$\#$	
${ }^{2}$	$\#$	$\#$	$\#$		

4		1			
	cols				
0		\#		\#	4^{5}
1		\#		\#	\#
2		$\#$		\#	\#

```
for r in range (3): [0,1,2]
    for c in range(6):
    if c >= r: [0,1,2,3,4,5]
A print('#',end=")
    else:
        print(' ',end=")
    print()
```

```
for r in range(3):
    for c in range(6):
        if c%2 == 1:
B print('#',end=")
        else:
        print(' ',end=")
    print()
```

```
for r in range(3):
    for c in range(6):
        if c%2 == r%2:
C print('#',end=")
    else:
    print(' ',end=")
    print()
```


Nested
loops: from ASCII Art

That's my type of alien!
 iiiiiiiiiiiiiifiilililif: : $\mathrm{i} i \mathrm{ii;} \mathrm{;}$
 :, , , ,, ; ; ; ; ; ; ; ;ii;;:

Python and images

from cs5png import *
inputs are width and height
im $=$ PNGImage (300,200)
im.plotPixel (10, 100)

Python and images

from cs5png import *
inputs are width and height im $=$ PNGImage (300, 200)

objects are new types that can contain their own functions, often called methods
im.plotPoint(10, 100)
im.plotPoint ($\underset{\text { col } \times \text {, }}{42} \underset{\text { row } y}{42, ~} \underset{\text { red }}{(255,0,0)}$ green blue
im.saveFile()

These functions are clearly
plotting something - if only I knew what they were up to...

Imagining Images

$\mathrm{HT}=200$
im = PNGImage (WD, HT)
for row in range (HT): for col in range(WD):
if col == row: im.plotPoint(col, row)
im.saveFile()

Complex Numbers!

$\sqrt{-1}=i$

i can't believe this!

$$
1 j * 1 j==-1
$$

DOES ANY OF THIS REALLY HAVE TO DO WITH THE SQUARE ROOT OF -1? OR DO MATHEMATICIANS JUST THINK THEY'RE TOO COOL FOR REGULAR VECTORS?

COMPLEX NUMBERS AREN'T JUST VECTORS. THEY'RE A PROFOUND EXTENSION OF REAL NUMBERS, LAYING THE FOUNDATION FOR THE FUNDAMENTAL THEOREM OF ALGEBRA AND THE ENTIRE FIELD OF COMPLEX ANALYSIS.

AND WERE TOO COOL FOR REGULAR VECTORS.

Complex Numbers!

$$
\sqrt{-1}=i
$$

$$
\operatorname{In}[]: c=-2+1 j
$$

$$
1 j * 1 j=-1
$$

$$
(-2+1 j) *(-2+1 j)
$$

$$
\operatorname{In}[]: c * * 2
$$

$$
(3-4 j)
$$

Complex Numbers!

Lab 8: the Mandelbrot Set

Consider an update rule for all complex numbers \boldsymbol{c}

$$
\begin{aligned}
& z_{0}=0 \\
& z_{n+1}=z_{n}^{2}+c
\end{aligned}
$$

$$
{ }^{\bullet} \mathbf{c}=.3+.4 \mathbf{j}
$$

Real axis

Mandelbrot Definition

Consider an update rule for all complex numbers \boldsymbol{c}

$$
\begin{aligned}
& z_{0}=0 \\
& z_{n+1}=z_{n}^{2}+c
\end{aligned}
$$

Imaginary axis

Small values of ckeep the sequence near the origin, 0+0j.
$z=z * * 2+c$; print(z)

Mandelbrot Definition

Consider an update rule for all complex numbers \boldsymbol{c}

$$
\begin{aligned}
& z_{0}=0 \\
& z_{n+1}=z_{n}^{2}+c
\end{aligned}
$$

Mandelbrot Definition

Consider an update rule for all complex numbers \boldsymbol{c}

$$
\begin{aligned}
& z_{0}=0 \\
& z_{n+1}=z_{n}^{2}+c
\end{aligned}
$$

Lab 8: the Mandelbrot Set

Consider an update rule for all complex numbers \boldsymbol{c}

$$
\begin{aligned}
& z_{0}=0 \\
& z_{n+1}=z_{n}^{2}+c
\end{aligned}
$$

Lab 8: the Mandelbrot Set

Consider an update rule for all complex numbers \boldsymbol{c}

$$
\begin{aligned}
& z_{0}=0 \\
& z_{n+1}=z_{n}^{2}+c
\end{aligned}
$$

```
Click to choose c.
c is -0.757929883139 + -0.172932330827 * 1j
```


Mandelbrot Set \sim points that stick around

The shaded area are points that do not diverge for $\mathbf{z}=\mathbf{z * *} \mathbf{2}+c$

Higher-resolution M. Set

The black pixels are points that do not diverge for $z=z * * 2+c$

Chaos?

Input interpretation:

$$
\text { plot } \quad y=\sin \left(\frac{1}{x}\right) \quad x=-0.7 \text { to } 0.7
$$

Input interpretation:

$$
\text { plot } \quad y=\sin \left(\frac{1}{x}\right) \quad x=0.01 \text { to } 0.012
$$

Complex things always consisted of simple parts...

Before the M. Set, complex things were made of simple parts:

Chaos!

This was a "naturally occurring" object where zooming uncovers more detail, not less:

The M. Set pixels are points that do not diverge for $z=z * * 2+c$

Atlas of the M. Set

Disk 3's
Scepter
Valley

Numbers in yellow indicate the number of dendrites or spiral arms found in each region, and in the corresponding Julia fractals for each region.

