
Letting	the	user	choose…

Possible	
hardware

Plus,	if	you've	got
	a	time	machine…

Interactive	programs!

(and	more	loopiness!)

User	input…

What	will	Python	think?

meters = input('How many m? ')

cm = meters * 100

print("That's", cm, 'cm.')

I	think	I	like	these	units	better	
than	light	years	per	year!

User	input…

What	will	Python	think?

meters = input('How many m? ')

cm = meters * 100

print("That's", cm, 'cm.')

I	think	I	like	these	units	better	
than	light	years	per	year!

input ALWAYS			return
s	a	string	–

	

no	matter	w
hat's	typed

!

Fix	#1:		convert	to	the	right	type
m_str = input('How many m? ')

meters = float(m_str)

cm = meters * 100
print("That's", cm, 'cm.')

name: meters
type: float

name: cm
type: float

42.0 4200.0

name: m_str
type: string

'42'

... but crash-able

Fix	#2:		convert	and	check
m_str = input('How many m? ')

try:
 meters = float(m_str)
except:
 print("What? Didn't compute!")
 print("Setting meters = 42")
 meters = 42.0

cm = meters * 100
print('That\'s', cm, 'cm.')

crash-able

try-except lets you try code

and – if it crashes – catch an

error and handle it

Fix	#2:		convert	and	check
m_str = input('How many m? ')

try:
 meters = float(m_str)
except:
 print("What? Didn't compute!")
 print("Setting meters = 42")
 meters = 42.0

cm = meters * 100
print('That\'s', cm, 'cm.')

crash-able

try-except lets you try code

and – if it crashes – catch an

error and handle it

User-errors	are	called	ex
ceptions.

This	is	exception	handli
ng.

I	except!

Fix	#3:		eval	executes	Python	code!

m_str = input('How many m? ')

meters = eval(m_str)

cm = meters * 100
print('That is', cm, 'cm.')

What could go wrong here?

Fix	#3:		eval	executes	Python	code!

What could REALLY go wrong here?

m_str = input('How many m? ')

try:
 meters = eval(m_str)
except:
 print("What? Didn't compute!")
 print("Setting meters = 42")
 meters = 42.0

cm = meters * 100
print('That is', cm, 'cm.') Eval? More like

Evil !!

Using return to return early from a function
def loopy0():
 for i in range(1,10):
 print(i)
 if i % 3 == 0:

return
 print("All done!")

Using break to exit a loop early
def loopy1():
 for i in range(1,10):
 print(i)
 if i % 3 == 0:

break
 print("All done!")

More	loop	control…

I need a break!

Using return
to return early

 from a functio
n

def loopy0():

 for i in r
ange(1,10):

 print(
i)

 if i %
3 == 0:

return

 print("All
done!")

Using continue to start a new iteration
def loopy2(): for i in range(1,10): if i % 3 == 0:

continue print(i) print("All done!")# Using break to exit a loop earlydef loopy1():
 for i in range(1,10): print(i)
 if i % 3 == 0:

break
 print("All done!")

Using pass to do
 nothing

def loopy3():

 for i in range
(1,10):

 if i % 3
== 0:

pass

 else:

 print
(i)

 print("All do
ne!")

More	loop	control…

Mystery	sequences…

[1, 11, 21, 1211, 111221, ?]

[-35, -24, -13, -2, 9, 20, 31, ?]

[26250, 5250, 1050, 210, ?]

[90123241791111, 93551622, 121074, 3111, ?]

What's	next?
I'm	glad	you	asked!

A	larger	application	...
def menu():
 """ prints our menu of options """
 print("(0) Continue")
 print("(1) Enter a new list")
 print("(2) Analyze")
 print("(9) Break (quit)")

def main():
 """ handles user input for our menu """

 while True:
 menu()
 uc = input('Which option? ')

 try:
 uc = int(uc) # was it an int?
 except:
 continue # back to the top!

Perhaps uc the
reason for this?

Calls a helper
function

def main():
 """ handles user input for our menu """
 L = [30,10,20] # a starting list

 while True:
 menu() # print menu
 uc = input('Which option? ')

 if uc == 9:

break

 elif uc == 0:
continue

 elif uc == 1:
 ... input ... eval ...

 elif uc == 2:

(9) Quit

(1) Get new list

(2) Analyze !

(0) Continue

... and so on ...

def main():
 """ handles user input for our menu """
 L = [30,10,20] # a starting list

 while True:
 menu() # print menu
 uc = input('Which option? ')

 if uc == 9:

break

 elif uc == 0:
continue

 elif uc == 1:
 ... input ... eval ...

 elif uc == 2:

(9) Quit

(1) Get new list

(2) Analyze !

(0) Continue

... and so on ...

break breaks out of the loop...

uses eval (+check) for a new L

continue jumps back to the top...

other functions as needed...

[1] Which line of code handles an input of 5 ?

[3] What does input 3 print that 0 does not?

[6a] What could
you input for

newL that would
reach line 235?

[6b] how about
reaching line 239?

[EC] How could a user learn the value of secret_value if they guessed that
variable name and could run the program -- but didn't have this source code?

[4] What line of code runs after
this break ? and continue ?

main function

while True:

input

secret_value

Big-picture view!
[2] Which line below handles an input of 7 ?

[5] Where is
predict defined?

input
(new list)

(option from menu)

[0] Which line of code handles an input of 1 ?

Full-program menu-interaction example

Try it!

[1] Which line of code handles an input of 5 ?

[3] What does input 3 print that 0 does not?

[6a] What could
you input for

newL that would
reach line 235?

[6b] how about
reaching line 239?

[EC] How could a user learn the value of secret_value if they guessed that
variable name and could run the program -- but didn't have this source code?

[4] What line of code runs after
this break ? and continue ?

main function

while True:

input

secret_value

Big-picture view!
[2] Which line below handles an input of 7 ?

[5] Where is
predict defined?

input
(new list)

(option from menu)

[0] Which line of code handles an input of 1 ?

Full-program menu-interaction example

Try it!

227

254

[1] Which line of code handles an input of 5 ?

[3] What does input 3 print that 0 does not?

[6a] What could
you input for

newL that would
reach line 235?

[6b] how about
reaching line 239?

[EC] How could a user learn the value of secret_value if they guessed that
variable name and could run the program -- but didn't have this source code?

[4] What line of code runs after
this break ? and continue ?

main function

while True:

input

secret_value

Big-picture view!
[2] Which line below handles an input of 7 ?

[5] Where is
predict defined?

input
(new list)

(option from menu)

[0] Which line of code handles an input of 1 ?

Try it!

Full-program menu-interaction example

227

254
258

line 262

264
206/207

188

"42"
~or~
42

Python?

I prefer
Java

[1] Which line of code handles an input of 5 ?

[3] What does input 3 print that 0 does not?

[6a] What could
you input for

newL that would
reach line 235?

[6b] how about
reaching line 239?

[EC] How could a user learn the value of secret_value if they guessed that
variable name and could run the program -- but didn't have this source code?

[4] What line of code runs after
this break ? and continue ?

main function

while True:

input

secret_value

Big-picture view!
[2] Which line below handles an input of 7 ?

[5] Where is
predict defined?

input
(new list)

(option from menu)

[0] Which line of code handles an input of 1 ?

Sols...

Full-program menu-interaction example

227

254
258

line 262

264
206/207

188

"42"
or
42

Python?

I prefer
Java

input [0, 1, 2, secret_value]

[1] Which line of code handles an input of 5 ?

[3] What does input 3 print that 0 does not?

[6a] What could
you input for

newL that would
reach line 235?

[6b] how about
reaching line 239?

[EC] How could a user learn the value of secret_value if they guessed that
variable name and could run the program -- but didn't have this source code?

[4] What line of code runs after
this break ? and continue ?

main function

while True:

input

secret_value

Big-picture view!
[2] Which line below handles an input of 7 ?

[5] Where is
predict defined?

input
(new list)

(option from menu)

[0] Which line of code handles an input of 1 ?

Sols...

Full-program menu-interaction example

227

254
258

line 262

264 206/207

188

"42"
or
42

Python?

I prefer
Java

input [0, 1, 2, secret_value]

Loops
def fac(N):
 result = 1
 for x in range(1,N+1):
 result *= x
 return result

Recursion
def fac(N):
 if N == 1:
 return 1
 else:
 return N*fac(N-1)

Is	one	more	reasonable	
than	the	other?

sequences!

self-similar
ity

Basic	d
esign	

strateg
ies

Basic	d
esign	

strateg
ies

Loops
def fac(N):
 result = 1
 for x in range(1,N+1):
 result *= x
 return result

Recursion
def fac(N):
 if N == 1:
 return 1
 else:
 return N*fac(N-1)

Is	one	more	reasonable	
than	the	other?

Strategy:		look
	for	

repetition	+	
use	it…	.

Strategy:					Lo
ok	for		

self-similarit
y	+	use	it…	.

for:	two	"loop	patterns"

L = [3, 15, 17, 7]

x

"deceptively easy"

for x in L:
 total += x element-based	loops

elements

for:	two	"loop	patterns"

L = [3, 15, 17, 7]

for x in L:
 total += x

element-based	loops
—	access	data	directly

for i in range(len(L))
 total += L[i]

index-based	loops
—	access	data	indirectly,	
								(by	its	index)

i

0 1 2 3

L[3]L[2]L[1]L[0]

elements

indices
("indexes")

element-based	loops
—	access	data	directly

index-based	loops
—	access	data	indirectly,	
								(by	its	index)

for x in L:
 total += x

for i in range(len(L))
 total += L[i]

for:	two	"loop	patterns"

L = [3, 15, 17, 7]

i

0 1 2 3

L[3]L[2]L[1]L[0]

Elements	vs	Inde
xes

Indices

x

for x in L:
 total += x

for i in range(len(L))
 total += L[i]

for:	two	variables

L = [3, 15, 17, 7]

element-based	loops

index-based	loops

i

0 1 2 3

L[3]L[2]L[1]L[0]

Elements	vs	Inde
xes

Indicesx
ix

"Get into a rut...
and stay there!"

hw8pr4:				T.	T.	Securities	(TTS)

(0) Input a new list
(1) Print the current list
(2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan
(9) Quit
Enter your choice:

hw8pr4:				T.	T.	Securities	(TTS)

L = [40, 80, 10, 30, 27, 52, 5, 15]

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

Analyzing	a	sequence	of		...				anything!

x

i

elements

indices	

tasks

(0) Input a new list
(1) Print the current list
(2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan
(9) Quit
Enter your choice:

hw8pr4:				T.	T.	Securities	(TTS)

L = [40, 80, 10, 30, 27, 52, 5, 15]

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

Analyzing	a	sequence	of		...				stock	prices?!

x

i

elements

indices
("indexes")

tasks

Imple
ment	

a	

(text)
	menu

:

(0) Input a new list
(1) Print the current list
(2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan
(9) Quit
Enter your choice:

hw8pr4:				T.	T.	Securities	(TTS)

L = [40, 80, 10, 30, 27, 52, 5, 15]

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

x

i

webbrowser.open_new_tab(url)

elements	~	prices

indices	~	days
Analyzing	a	sequence	of		...				stock	prices?!

let's	see...

One	motivation	for	TT	securities…

The	TTS-strategy:
Your	stock's	prices: L = [40, 80, 10, 30, 27, 52, 5, 15]

Day Price
 0 40.0
 1 80.0
 2 10.0
 3 30.0
 4 27.0
 5 52.0
 6 5.0
 7 15.0

*To make our business plan realistic, however, we only allow selling after buying.

Important fine print:

elementindex
[1] What is the best TTS investment strategy for this list, L?

[2] How could nested loops help us find the
best TTS strategy? (a "code sketch...") this	all	seems	sketch...

[0] T.T. Securities's customer pledge:
"We select the day to buy and day to sell that

will maximize your price-difference..."*

It's NOT 75!

Name(s) ______________________________

[1b] Which day would you _buy_ (and at what price) ?

[1c] Which day would you _sell_ (and at what price) ?

[1d] What is the per-share profit in this best case? (!!!) It's 42 ⋮-)

[1d] What is the per-share profit in this best case? (!!!)

The	TTS-strategy:
Your	stock's	prices: L = [40, 80, 10, 30, 27, 52, 5, 15]

Day Price
 0 40.0
 1 80.0
 2 10.0
 3 30.0
 4 27.0
 5 52.0
 6 5.0
 7 15.0

*To make our business plan realistic, however, we only allow selling after buying.

Important fine print:

elementindex
[1] What is the best TTS investment strategy for this list, L?

[2] How could nested loops help us find the
best TTS strategy? (a "code sketch...") this	all	seems	sketch...

It's NOT 75!

Name(s) ______________________________

[1b] Which day would you _buy_ (and at what price) ?

[1c] Which day would you _sell_ (and at what price) ?

maximum price-
difference: 42

buy on day 2

sell on day 5

It's 42 ⋮-)

[0] T.T. Securities's customer pledge:
"We select the day to buy and day to sell that

will maximize your price-difference..."*

[1d] What is the per-share profit in this best case? (!!!)

The	TTS-strategy:
Your	stock's	prices: L = [40, 80, 10, 30, 27, 52, 5, 15]

Day Price
 0 40.0
 1 80.0
 2 10.0
 3 30.0
 4 27.0
 5 52.0
 6 5.0
 7 15.0

*To make our business plan realistic, however, we only allow selling after buying.

Important fine print:

elementindex
[1] What is the best TTS investment strategy for this list, L?

[2] How could nested loops help us find the
best TTS strategy? (a "code sketch...") this	all	seems	sketch...

It's NOT 75!

Name(s) ______________________________

[1b] Which day would you _buy_ (and at what price) ?

[1c] Which day would you _sell_ (and at what price) ?

maximum price-
difference: 42

buy on day 2

sell on day 5

It's 42 ⋮-)

[0] T.T. Securities's customer pledge:
"We select the day to buy and day to sell that

will maximize your price-difference..."*

Pass	these
	into	their

	own	futur
e!

Implement	a	text	menu:
(0) Input a new list
(1) Print the current list
(2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan
(9) Quit
Enter your choice:

hw8pr4:				T.	T.	Securities	(TTS)

L = [40, 80, 10, 30, 27, 52, 5, 15]

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

Analyzes	a	sequence	of		"stock	prices"

x

i

Implement	a	(text)	menu:
(0) Input a new list
(1) Print the current list
(2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan
(9) Quit
Enter your choice:

hw8pr4:				T.	T.	Securities	(TTS)

L = [40, 80, 10, 30, 27, 52, 5, 15]

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

Analyzes	a	sequence	of		"stock	prices"

x

i

Functions	you'll	write All	use	loops…

def average(L)Menu

(0) Input a new list
(1) Print the current list
(2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan
(9) Quit
Enter your choice:

def stdev(L)

def minprice(L)

def maxday(L)

(L[i] - Lav)
2S

len(L)
i

webbrowser.open_new_tab(url) also, max...

Min	price

What's	the	idea	for	finding	the	smallest	(minimum)	price?

m =

track the value of the minimum so far as you loop over L

m is the
"min so far"

Just	call	min	?

L = [40, 80, 10, 30, 27, 52, 5, 15]

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

Min	price	vs.	min	day

def minprice(L):
 m = L[0]
 for x in L:
 if x < m:
 m = x
 return m

L = [40, 80, 10, 30, 27, 52, 5, 15]

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

What about tracking BOTH
the day of the minimum

price and that min price?

m =
40

m =
10

m =
5 5 is

returned

L = [40, 80, 10, 30, 27, 52, 5, 15]

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

=
40

=
10

=
5

6 is
returned

= 0 = 2 = 6

def min_prc_day(L):
 minprc = L[0]
 minday = 0
 for i in range(len(L)):
 if

 return minprc, minday

track	price	and	day

check	one	and	
update	both

(as	needed)

loop	over	locs	(i)

minprc

minday

i

return	both!

5 is
returned

L = [40, 80, 10, 30, 27, 52, 5, 15]

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

6 is
returned

= 0 = 2 = 6

track	price	and	day

check	one	and	
update	both

(as	needed)

loop	over	locs	(i)

minday

i

return	both!

def min_prc_day(L):
 minprc = L[0]
 minday = 0
 for i in range(len(L)):
 if L[i] < minprc:
 minprc = L[i]
 minday = i
 return minprc, minday

=
40

=
10

=
5minprc

5 is
returned

Investment analysis for the 21st century … and beyond

Software	side	…

(0) Input a new list
(1) Print the current list
(2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan
(9) Quit
Enter your choice:

T.	T.	Securities

Hardware	
side…

The	TTS	advantage!
Your	stock's	prices:

What	is	the	best	
TTS	investment	
strategy	here?

L = [40, 80, 10, 30, 27, 52, 5, 15]

Day Price
 0 40.0
 1 80.0
 2 10.0
 3 30.0
 4 27.0
 5 52.0
 6 5.0
 7 15.0

To make our business plan realistic, however, we only allow selling after buying.

Important fine print:

(0) Input a new list
(1) Print the current list
(2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan
(9) Quit
Enter your choice:

Day Price
 0 40.0
 1 80.0
 2 10.0
 3 30.0
 4 27.0
 5 52.0
 6 5.0
 7 15.0

Important fine print:

for each buy-day, b:

 for each sell-day, s:

 compute the profit

 if profit is > max-so-far:

 remember it in a variable!

return profit, its b-day, and s-day

The	TTS	advantage!
Your	stock's	prices:

What	is	the	best	
TTS	investment	
strategy	here?

L = [40, 80, 10, 30, 27, 52, 5, 15]

To make our business plan realistic, however, we only allow selling after buying.

set max-so-far = 0

Day Price
 0 40.0
 1 80.0
 2 10.0
 3 30.0
 4 27.0
 5 52.0
 6 5.0
 7 15.0

Important fine print:

for each buy-day, b:

 for each sell-day, s:

 compute the profit

 if profit is > max-so-far:

 remember it in a variable!

return profit, its b-day, and s-day

The	TTS	advantage!
Your	stock's	prices:

What	is	the	best	
TTS	investment	
strategy	here?

L = [40, 80, 10, 30, 27, 52, 5, 15]

To make our business plan realistic, however, we only allow selling after buying.

set max-so-far = 0

"All-Pa
irs"	

Algorit
hm!!!

"N-body" problems (***)
shortest paths...

closest-pair

Day Price
 0 40.0
 1 80.0
 2 10.0
 3 30.0
 4 27.0
 5 52.0
 6 5.0
 7 15.0

Important fine print:

for each buy-day, b:

 for each sell-day, s:

 compute the profit

 if profit is > max-so-far:

 remember it in a variable!

return profit, its b-day, and s-day

The	TTS	advantage!
Your	stock's	prices:

What	is	the	best	
TTS	investment	
strategy	here?

L = [40, 80, 10, 30, 27, 52, 5, 15]

To make our business plan realistic, however, we only allow selling after buying.

set max-so-far = 0

"All-Pa
irs"	

Algorit
hms!!!

"N-body" problems (***)
shortest paths...

closest-pair

"N-body" problems (***)
for N == 3 (or more!)

Hint:		This	uses	nested	loops!

Write mindiff to return the smallest abs. diff.
between any two elements from L.

mindiff([42,3,100,-9,7])

4

L

i
j

1 4

mindiff([42,3,100,-9,7])

4

for i in range(4):
 for j in range(4):

Write mindiff to return the smallest abs. diff.
between any two elements from L.

Track	the	value	of	the	
minimum	so	far	as	you	
loop	over	L	twice…

mindiff([42,3,100,-9,7])

4

L

i
j

1 4

mindiff([42,3,100,-9,7])

4
Hint:		This	uses	nested	loops!

for i in range(4):
 for j in range(4):

def mindiff(L):

 mdiff = abs(L[1]-L[0])

 for i in range(len(L)):
 for j in range(,len(L)):

 if

 return mdiff

Write mindiff to return the smallest abs. diff.
between any two elements from L.

Track	the	value	of	the	
minimum	so	far	as	you	
loop	over	L	twice…

mindiff([42,3,100,-9,7])

4

L

i
j

1 4

Hint:		This	uses	nested	loops!

def mindiff(L):

 mdiff = abs(L[1]-L[0])

 for i in range(len(L)):
 for j in range(i+1,len(L)):

 if abs(L[j]-L[i]) < mdiff:
 mdiff = abs(L[j]-L[i])

 return mdiff

for i in range(4):
 for j in range(4):

Track	the	value	of	the	
minimum	so	far	as	you	
loop	over	L	twice…

mindiff([42,3,100,-9,7])

4
Write mindiff to return the smallest abs. diff.

between any two elements from L.

L

i
j

1 4

Hint:		This	uses	nested	loops!

Day Price
 0 40.0
 1 80.0
 2 10.0
 3 30.0
 4 27.0
 5 52.0
 6 5.0
 7 15.0

Important fine print:

for each buy-day, b:

 for each sell-day, s:

 compute the profit

 if profit is > max-so-far:

 remember it in a variable!

return profit, its b-day, and s-day

The	TTS	advantage!
Your	stock's	prices:

What	is	the	best	
TTS	investment	
strategy	here?

L = [40, 80, 10, 30, 27, 52, 5, 15]

To make our business plan realistic, however, we only allow selling after buying.

set max-so-far = 0

very	similar	
to	mindiff

Day Price
 0 40.0
 1 80.0
 2 10.0
 3 30.0
 4 27.0
 5 52.0
 6 5.0
 7 15.0

Important fine print:

for each buy-day, b:

 for each sell-day, s:

 compute the profit

 if profit is > max-so-far:

 remember it in a variable!

return profit, its b-day, and s-day

The	TTS	advantage!
Your	stock's	prices:

What	is	the	best	
TTS	investment	
strategy	here?

L = [40, 80, 10, 30, 27, 52, 5, 15]

To make our business plan realistic, however, we only allow selling after buying.

set max-so-far = 0

See	"future you"	in	lab!

...	hw8	is	ready	to	help!

