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1 Theorem Summary

1.1 Linear Algebra Theorems

1.1.1 Dimension Theorem

Let T : V n → Wm be a linear map from an n-dimensional vector space to an m-dimensional
vector space. Then the following are true

(a) kerT = {x ∈ V n | Tx = 0} is a subspace of V n.

(b) ranT = {x ∈Wm | ∃ y ∈ V 3 x = Ty} is a subspace of Wm.

(c) If we let nuly T = dim kerT and rankT = dim ranT , then nuly T + rankT = n.

1.1.2 Invertible Operator Theorem

Let T ∈ L(V ) be a linear operator on an n-dimensional vector space. The following condi-
tions are equivalent (if any one is true, all the others must be true):

(a) T is invertible (that is T−1 : V → V is well-defined),

(b) T is injective,

(c) kerT = {0} (“the kernel is trivial”),

(d) nuly T = 0,

(e) rank T = n (“T has full rank”),

(f) ran T = V , (equivalently, T is surjective)

(g) T maps bases to bases,

(h) detT 6= 0, and

(i) 0 /∈ σ(T ) (σ(T ) is the spectrum of T ).

1.1.3 Cauchy-Schwarz Inequality

If v and w are vectors in an inner product space V , then

| 〈v |w〉 | ≤ ‖v‖‖w‖,
where ‖v‖ =

√

〈v |v〉. Moreover, equality holds iff v or w is a (possibly zero) multiple of
the other. An immediate consequence of this theorem is the triangle inequality, which can
be written in two forms: either ‖v + w‖ ≤ ‖v‖ + ‖w‖ or d(v, w) ≤ d(v, x) + d(w, x), where
d(v, w) = ‖v − w‖. The first shows that one side of a triangle cannot be longer the sum of
lengths of the other two sides, whereas the second states that the shortest distance between
two points is a straight line.
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1.2 Spectral Theorem

We have encountered no less than 6 different versions of spectral theorem, which have been
a unifying theme in the course. They are listed below.

1.2.1 Ultra Baby Spectral Theorem

A matrix A is orthogonally diagonalizable if and only if it is symmetric. In other words,
if A is symmetric, then it can be written A = ODO−1, where O is orthogonal and D is
real and diagonal. The entries of D are the eigenvalues of A and the columns of O are the
corresponding unit eigenvectors. Conversely, if A = ODO−1 where D is real and diagonal
and O is orthogonal, then A is symmetric. Moreover, any real-valued function of A can be
calculated by the formula f(A) = Of(D)O−1.

1.2.2 Super Baby Spectral Theorem

A matrix A is unitarily diagonalizable with real eigenvalues if and only if it is Hermitian.
In other words, if A is Hermitian, then it can be written A = UDU−1, where U is unitary
and D is real and diagonal. The entries of D are the eigenvalues of A and the columns
of U are the corresponding unit eigenvectors. Conversely, if A = UDU−1 where D is real
and diagonal and U is unitary, then A is Hermitian. Moreover, any function of A can be
calculated by the formula f(A) = Uf(D)U−1.

1.2.3 Baby Spectral Theorem

A matrix A is unitarily diagonalizable if and only if it is normal. In other words, if A is
normal, then it can be written A = UDU−1, where U is unitary and D is diagonal. The
entries of D are the eigenvalues of A and the columns of U are the corresponding unit
eigenvectors. Conversely, if A = UDU−1 where D is diagonal and U is unitary, then A is
normal. Moreover, any function of A can be calculated by the formula f(A) = Uf(D)U−1.

1.2.4 Spectral Theorem (Finite Dimensions)

Let A be a Hermitian operator on an n-dimensional inner product space V
n over C . Then

A has n linearly independent eigenvectors, which can be chosen to be mutually orthogonal,
and all its eigenvalues are real. Moreover, the action of A on any vector v can be represented
by

Av =
∑

λ∈ σ(A)

λ 〈vλ |v〉 vλ =
∑

λ∈ σ(A)

λPλv,

where vλ is a unit eigenvector corresponding to eigenvalue λ and Pλ is the projection onto
the eigenspace. Finally, any function of A can be computed by the following formula:

f(A)v =
∑

λ∈ σ(A)

f(λ) 〈vλ |v〉 vλ =
∑

λ∈ σ(A)

f(λ)Pλv.
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1.2.5 Spectral Theorem (Infinite Dimensions)

Let A be an operator on an infinite-dimensional (Hilbert) inner-product space V
∞ over C. If

A is self-adjoint (that is, Hermitian on a sufficiently large subspace of V
∞) and A has at most

a countable infinity of eigenvalues, then the eigenvalues of A are real and its eigenvectors can
be chosen to form an orthonormal basis for V

∞. Moreover, the action of A on any vector v
can be represented by

Av =
∑

λ∈ σ(A)

λ 〈vλ |v〉 vλ =
∑

λ∈ σ(A)

λPλv,

where vλ is a unit eigenvector corresponding to eigenvalue λ. Finally, any function of A can
be computed by the following formula:

f(A)v =
∑

λ∈ σ(A)

f(λ) 〈vλ |v〉 vλ =
∑

λ∈ σ(A)

f(λ)Pλv.

1.2.6 Generalized Spectral Theorem

Let A be an operator on a (Hilbert) inner-product space V over C. If A is self-adjoint (that
is, Hermitian on a sufficiently large subspace of V) then the eigenvalues of A are real, and
the action of A on any vector v can be represented by

Av =

∫

σ(A)

λdPλv.

The operators dPλ are called orthogonal projection operators or projectors, and dPλv is a
generalization of 〈vλ |v〉 vλ. Moreover, any function of A can be computed by the following
formula:

f(A)v =

∫

σ(A)

f(λ)dPλv.

1.3 Fourier Series

Let an, bn and cn be the unnormalized Fourier coefficients of f , defined by the equations

an =
1

π

∫ π

−π

cos(nx)f(x)dx; bn =
1

π

∫ π

−π

sin(nx)f(x)dx; cn =
1

2π

∫ π

−π

e−inxf(x)dx.

Notice that n ∈ {0, 1, 2, 3, . . .} for an, n ∈ N for bn, and n ∈ Z for cn. Also notice, that with
the exception of a0, all the above formulas simply give the scalar projection (i.e., component)
of f onto the non-unit vectors cosnx, sinnx, and einx. The reason that a0 is not a projection
is so that its formula looks like the formula for the other an, but the price we pay is that a0

gets special treatment in the formula for the Fourier series itself:

fn =
a0

2
+

n
∑

k=1

ak cos kx+ bk sin kx =
n

∑

k=−n

cke
ikx.
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The subscript n denotes that this is the nth partial sum, a notation we will use in all of the
following theorems. We can normalize the orthogonal functions used in defining the Fourier
series, which give rise to two sets of functions:

{en}∞n=−∞ =

{

einx

√
2π

}∞

n=−∞

and {En}∞n=1 =

{

1√
2π
,

sinx√
π
,

cos x√
π
,

sin 2x√
π
,

cos 2x√
π
, . . .

}

.

Using these, we define the normalized Fourier coefficients of f , called ãn, b̃n, and c̃n via
projection:

ãn = 〈E2n+1 |f〉 ; b̃n = 〈E2n |f〉 ; c̃n = 〈en |f〉 .
As these are the components of f relative the unit vectors, we can rewrite fn as

fn =
ã0√
2π

+
n

∑

k=1

ãk cos kx√
π

+
b̃k sin kx√

π
=

n
∑

k=−n

c̃ke
ikx

√
2π

.

Since fn = fn no matter which way we write it, these formulas give use the relationship
between the normalized and unnormalized coefficients.

1.3.1 Dirichlet Theorem

Suppose f obeys the following conditions

(a) f is single valued on [−π, π],

(b) f has a finite number of discontinuities on [−π, π],

(c) f has a finite number of extrema on [−π, π],

(d)

∫ π

−π

|f(x)|dx <∞, and

(e) and f is periodic of period 2π on the real line.

Then fn → f pointwise where f is continuous, and fn(x) → (f(x+) + f(x−))/2 where f is
discontinuous. In other words, at each point x the sequence of numbers fn(x) converges to
the number f(x) when f is continuous at x and converges the average of the left and right
limits if f is discontinuous there. If f meets conditions (a)–(d) but not (e), then fn → f
pointwise for x ∈ (−π, π).

1.3.2 Differentiation Theorem

Here we collect a few disparate facts about Fourier series and differentiation:

(a) If f has a continuous first derivative [−π, π], then fn converges pointwise to f on the
interval (−π, π) (whether or not f and f ′ obey Dirichlet’s Theorem). However, the
Fourier series of f ′ may not converge.

(b) If f ′ has a (pointwise) convergent Fourier series, then f has a convergent Fourier
series, and the term-by-term derivative of f ’s Fourier series is f ′’s Fourier series. In
particular, if f ′ obeys the first four conditions of Dirichlet’s theorem, then term-by-term
differentiation is justified.
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1.3.3 Decay Theorem

The following is perhaps the simplest of a number of results which could be called decay
theorems, being essentially a combination of Dirichlet’s Theorem and the Differentiation
Theorem. However, note that, for all its complexity, it still does not give us a sharp iff
result. Contrast this with the nice, sharp corollary to Parseval’s Theorem, below. This is
another reason why spaces of square-integrable functions are often more useful than spaces
of continuous functions.

Consider a function f on [−π, π]. Let l be the largest integer for which every f (i) ∈
{f, f ′, f ′′, . . . , f (l−1)} satisfies

(a) f (i) is continuous, and

(b) f (i) obeys periodic boundary conditions f (i)(−π) = f (i)(π).

Suppose further that f (l) obeys the first four conditions of the Dirichlet Theorem. Then
there exists a positive real number qf (which depends on the function f) for which

|an| ≤
qf
nl+1

; |bn| ≤
qf
nl+1

; |cn| ≤
qf
nl+1

.

In other words, if f and its first l − 1 derivatives are continuous and periodic on [−π, π],
and f ’s lth derivative is “nice”, then the coefficients of f decay like 1/nl+1 for large n.
Conversely, if the Fourier coefficients of f obey a formula like the preceding for some integer
l, then f and its first l − 1 derivatives are continuous (but we can’t conclude much about
the lst derivative). By the differentiation theorem, the first l− 2 derivatives (notice it is not
l − 1, the prime deficiency of this theorem) have pointwise convergent Fourier series.

1.3.4 Parseval’s Theorem—Coefficients Version

If f ∈ L2([−π, π]), i.e.
∫ π

−π
|f(x)|2dx <∞, then the following formulas hold:

〈f〉 :=
1

2π

∫ π

−π

|f(x)|2dx =
|a0|2

4
+

1

2

∞
∑

n=1

(

|an|2 + |bn|2
)

=
∞

∑

n=−∞

|cn|2

and

‖f‖2 :=

∫ π

−π

|f(x)|2dx = |ã0|2 +
∞

∑

n=1

(

|ãn|2 + |b̃n|2
)

=
∞

∑

n=−∞

|c̃n|2.

Corollary: A function and its first l derivatives are in L2([−π, π]) iff

∞
∑

n=0

|nlcn|2 <∞.

This is simply a result of Parseval’s theorem and integration by parts. Since the integral
of any ordinary function is continuous, we also have that f and its first l − 1 derivatives
are continuous if l > 0. The lth derivative is square integrable, but it may or may not be
continuous (or any other nice property).
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1.3.5 Parseval’s Theorem—Basis Version

The two sets of functions {en} and {En} defined at the start of this section are both or-
thonormal bases for L2([−π, π]) (there are many others, of course). If f ∈ L2([−π, π]), then
fn → f in the L2 sense (even if f does not meet the criteria of the Dirichlet Theorem). In
other words, if

∫ π

−π
|f(x)|2dx <∞, and we define the error in the nth partial sum as

En := ‖f − fn‖ =

√

∫ π

−π

|f(x) − fn(x)|2dx,

then En → 0 as n→ ∞. Finally, the two sets of functions
{

einx
}∞

n=−∞
and {1, sin x, cos x, sin 2x, cos 2x, . . .}

are both complete sets—meaning each is an orthogonal basis but is not orthonormal.

1.3.6 Parseval’s Theorem—High Falutin’ Version (for Cocktail Parties Only)

Fourier series are an isometric isomorphism from the (Hilbert) space L2([−π, π]) of square-
integrable functions to the (Hilbert) space l2 (“little el-two”) of square-summable sequences.

1.3.7 Other Domains

For simplicity, the above discussion was all in terms of the domain [−π, π]. However, all of
the above results remain valid for any symmetric domain [−L,L], as long as we replace eikx

but eiπkx/L and similarly for the sines and cosines. Of course, all normalizations of π, 2π,√
π, and

√
2π become L, 2L,

√
L, and

√
2L.

1.4 Fourier Transform

In the following theorems, we assume that f : R → C (i.e, f is a complex valued function
on the entire real line) and consider the symmetric Fourier pair

f̂(k) =
1√
2π

∫ ∞

−∞

e−ikxf(x)dx f(x) =
1√
2π

∫ ∞

−∞

e+ikxf̂(k)dk.

As long as f is integrable on R, then its Fourier transform is defined. However, the inverse
transform of f̂ may not exist or be equal to f for badly behaved functions.

1.4.1 Fourier Integral Theorem

If f satisfies

(a) conditions (a)–(c) of the Dirichlet Theorem on every finite domain [−L,L], and

(b)

∫ ∞

−∞

|f(x)|dx <∞,

then
∫ ∞

−∞
|f̂(k)|dk < ∞. This means the inverse transform is well defined. In particular,

ˇ̂
f(x) = f(x) where f is continuous and the average of the left and right limits where it is
discontinuous. This is the analog of the Dirichlet Theorem.
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1.4.2 Multiplication and Differentiation Theorem

The relationship between differentiation and the Fourier transform is both simpler and more
complicated than the relationship between differentiation and Fourier series. On the one
hand, no amount of differentiability guarantees that f̂ can be inverse transformed back to f
(unlike Fourier series, where a continuos first derivative guarnteed convergence of the series),
because behaviour at infinity can result in various problems. On the other hand, since f̂(k)
is defined for every real k, there is a symmetric relationship between differentiation and
multiplication. In particular, if both f and f ′ are integrable (i.e.,

∫ ∞

−∞
|f(x)|dx < ∞ and

∫ ∞

−∞
|f ′(x)|dx <∞), then they both have a Fourier transforms and

(

df

dx

)ˆ

(k) = ikf̂(k)

Conversely, if both f(x) and xf(x) are integrable, than f̂ is differentiable, and

i
d

dk
f̂(k) = (xf )̂(k).

Turning differentiation into multiplication is what makes the Fourier transform so useful in
solving PDEs. While these formulas can be proven directly (for “nice” functions the first via
integration by parts, the second by differentiation under the integral sign), they can also be
understood in terms the Generalized Spectral Theorem applied to the differentiation operator
p̂ = −i d

dx
. This is because ek = eikx/

√
2π is an almost-eigenvector of p̂ with eigenvalue k,

but it is not square-integrable. Thus, the Fourier inversion formula can be written as

f(x) =

∫ ∞

−∞

eikx

√
2π

f̂(k)dk =

∫ ∞

−∞

ek 〈ek |f〉 dk =

∫ ∞

−∞

k0dPkf = If,

where I = p̂0 is the identity operator, and dPk is our one example of the projectors of the
generalized spectral theorem. Moreover, we have that

p̂f(x) = −i df
dx

=

∫ ∞

−∞

kek 〈ek |f〉 dk =

∫ ∞

−∞

kdPkf,

which simultaneously expresses both of the above relationships.

1.4.3 Decay Theorem

Suppose f and its first l − 1 derivatives are continuous and satisfy the conditions of the
Fourier Integral Theorem, and f (l) obeys the hypotheses of the Fourier Integral Theorem.
The there exists a positive real number qf such that

|f̂(k)| ≤ qf
kl+1

.

In other words, f̂(k) decays like 1/kl+1 for large k. Conversely, if f̂(k) decays like 1/kl+1 for
some l, then f has at least l − 1 continuous, integrable derivatives.
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1.4.4 Parseval’s Theorem

If f ∈ L2(R), i.e.,
∫ ∞

−∞
|f(x)|2dx < ∞, then f̂(k) and

ˇ̂
f(x) well-defined whether or not

f satisfies the the hypotheses of the Fourier Integral Theorem. Moreover, f̂ ∈ L2(R) and
‖f‖2 = ‖f̂‖2. In equations,

∫ ∞

−∞

|f(x)|2dx =

∫ ∞

−∞

|f̂(k)|2dk.

This shows that the Fourier transform is a unitary operator on L2(R). Moreover, f has l− 1
derivatives which are continuous, integrable, and square-integrable, and an lst derivative
which is merely square integrable (although it may be continuous) iff

∫ ∞

−∞
|klf̂(k)|2dk <∞.

1.4.5 Convolution Theorem

Let f : R → C and g : R → C both satisfy the conditions of the Fourier Integral Theorem,
and put h = fg. It follows that h also obeys the conditions of the Fourier Integral Theorem,
and the Fourier transform of h can be computed by the convolution integral:

ĥ(k) = f̂(k) ? ĝ(k) =:
1√
2π

∫ ∞

−∞

f̂(k − z)ĝ(z)dz.

Similarly, if H is the convolution of f(x) and g(x), then its Fourier transform is f̂(k)ĝ(k):

H(x) := f(x) ? g(x) =
1√
2π

∫ ∞

−∞

f(x− z)g(z)dz ⇒ Ĥ(k) = f̂(k)ĝ(k).

2 Eigenvectors

Eigenvectors are solutions to the eigenvector equation, Av = λv, where A is a matrix or
linear operator, and λ is a scalar. Eigenvectors are vectors which are not rotated when the
operator/matrix acts on them.

2.1 Finite Dimensional Case

If the vector space has dimension n <∞, we first find the eigenvalues, then the eigenvectors.
Let pλ = det(A − λI), where I is the identity matrix. Notice that pλ is an polynomial of
degree n in λ, called the characteristic polynomial. The eigenvalues are the solutions of the
equation pλ = 0. We then find the solutions of (A− λI)vλ = 0 by row-reduction. While any
solution vλ is an eigenvector, in most applications we need to normalize it by dividing by
its norm.

2.2 Infinite Dimensional Case

The infinite dimensional case is more complex. Typically we have to first find potential
eigenvectors by solving a differential equation. We then apply boundary conditions, which
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will restrict us to certain eigenvalues. At the end we normalize to get our eigenvectors. All
potential eigenvectors which obey the boundary conditions must be included in the list of
eigenvectors in order to use the spectral theorem. We studied in detail the eigenvectors of
the operator H = − d2

dx2 .

2.2.1 A-type Boundary Conditions

A-type boundary conditions, or periodic boundary conditions as they are more formally
known, corresponds to a problem on a circle. For an n-th order differential operator, we
must impose ψλ(−π) = ψλ(π) and the same on all derivatives up to order n − 1. Since
n = 2 for H, we must also have ψ′

λ(−π) = ψ′
λ(π). The result is λ = n2 for n ∈ {0, 1, 2, . . .},

and that non-zero eigenvalues are order two (meaning they have two linearly independent
eigenvectors). The eigenvectors are nothing but the Fourier basis:

ψ0 =
1√
2π

ψn,1(x) =
cos(nx)√

π
and ψn,2(x) =

sin(nx)√
π

.

Notice that we have switched to the conventional labeling where we label according to where
in the list the eigenvector appears, even though the actual eigenvalue is n2 (so the notation
really should be ψn2 in order to be consistent with ψλ).

2.2.2 B-type Boundary Conditions

B-type boundary conditions, or Dirichlet boundary conditions as they are more formally
known, correspond to holding the variable (temperature, displacement, wavefunction) fixed
at the end points. The eigenvectors can be written in two ways:

ψn−1/2 =
cos ((n− 1/2)x)√

π
; ψn =

sinnx√
π

or

ψn =
cos(nx/2)√

π
(n odd) ψn =

sin(nx/2)√
π

(n even)

for n ∈ N. In the first way of writing the eigenvalues are (n − 1/2)2 and n2, while in the
second notation λ = n2/4. Notice that λ = 0 is not an eigenvalue.

2.2.3 C-type Boundary Conditions

C-type boundary conditions, or Neumann boundary conditions as they are more formally
known, corresponds to holding the gradient of the variable (e.g., heat flow for temp, tension
for oscillating string) fixed at the end points. The eigenvectors can be written in two ways:

ψ0 =
1√
2π

; ψn−1/2 =
sin ((n− 1/2)x)√

π
; ψn =

cosnx√
π

,

or

ψ0 =
1√
2π

; ψn =
sin(nx/2)√

π
(n odd) ψn =

cos(nx/2)√
π

(n even)
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for n ∈ N. In the first way of writing the eigenvalues are 0, (n − 1/2)2 and n2, while in
the second notation λ = n2/4. Notice that λ = 0 is an eigenvalue, just like for A-type
eigenfunctions.

3 Useful Tools

3.1 Projection

Projection means to find the part of one vector which is parallel to another vector or the
space spanned by a set of vectors. Large portions of this course can be understood as an
extended exercise in projection.

3.1.1 The Projection Formula (Vector on Vector)

Given two vectors v and w in an inner product space, the projection of v onto w is given by

v‖ =
〈w |v〉
〈w |w〉 w.

Notice that v‖ is parallel to w, not v. If w happens to be a unit vector, then the denominator
is one and the formula simplifies to

v‖ = 〈w |v〉 w (w a unit vector.)

We then have that the component of v perpendicular to w is

v⊥ = v − v‖.

We often re-express the above two formulas by means of the projection operator P|v> and
P|v>⊥ , which eat vectors and spit out the components parallel to and perpendicular to v. In
bra-ket notation, this is written

P|v> =
|v〉 〈v|
〈v |v〉 and P|v>⊥ = I − P|v>

Notice that the formula for the unnormalized Fourier coefficients an and bn is simply the
projection formula in action, since π = 〈cosnx |cosnx〉 = 〈sinnx |sinnx〉.

3.1.2 Projection onto a Space

If we are projecting onto a space higher than dimension one, we must first find a basis for
that space which is orthonormal (or at least orthogonal). We then apply the projection
formula to each basis vector in turn and sum the results:

v‖ = 〈e1 |v〉 e1 + 〈e2 |v〉 e2 + 〈e3 |v〉 e3 + . . . .

(If the basis {bn} is merely orthogonal, we must divide each term by 〈bn |bn〉 as in projection
formula for vector on vector.) Fourier series are an example of this formula. This relationship
can also be written in terms of operators, namely

Pspace spanned by e1 through ek
=

k
∑

i=1

P|ei> =
k

∑

i=1

|ei〉 〈ei|
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3.1.3 Gram-Schmidt

Gram-Schmidt is an iterative process to generate an orthonormal basis from any other basis.
Let {vi}n

i=1 be non-orthonormal basis. Define

e1 =
v1

‖v1‖
.

If we have found e1, . . . ei−1, then

ei =
bi

‖bi‖
, where bi = vi −

i−1
∑

k=1

〈ek |bi〉 ek.

The set {ei}n
i=1 is an orthonormal basis for the space spanned by {vi}n

i=1.

3.2 Index Notation/δ Function

It may seem a bit strange to combine these two topics, but there is a powerful analogy
between the δ function and the Kronecker δ.

3.2.1 Index Notation: Definitions

In index notation, we write aij for the matrix A. We imagine i and j ranging from 1 to n to
gives us all possible entries of the matrix A. The first subscript refers to the row, the second
to the column. The identity matrix is represent by a special symbol, called the Kronecker δ:

δij =

{

1 if i = j
0 if i 6= j

.

Vectors are matrices with only one row or column, so they just get a single index.

3.2.2 Index Notation: Examples

The product equation C = AB can be written:

cij =
n

∑

k=1

aikbkj.

If the matrix A acts on a vector v, we get w = Av, or

wi =
n

∑

j=1

Aijvj.

If A = I, we get v = Iv, or

vi =
n

∑

j=1

δijvj.

Notice that we can think of the sum over j as “forcing” i to be equal to j because of the
Kronecker delta,, so we end with vi. Transpose interchanges rows and columns, so

(cT )ij = cji.
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3.2.3 δ Function

One definition of the δ function is

δ(x− x0) =

{

∞ if x = x0

0 if x 6= x0
and

∫ ∞

−∞

δ(x− x0)dx = 1.

Notice the similarity to the definition of the Kronecker δ. The variables x and x0 are playing
the role the indices i and j played for the Kronecker δ. An immediate consequence of the
definition is that

f(x0) =

∫ ∞

−∞

f(x)δ(x− x0)dx.

This is the analog of the equation vi =
∑

j δijvj. We also studied two other definitions of δ.
One was in terms of the Fourier transform:

δ(x− x0) =

(

e−ikx0

√
2π

)ˇ

=
1

2π

∫ ∞

−∞

eik(x−x0)dk.

The other was in terms of Gaussians:

δ(x− x0) = lim
σ→0

exp (−(x− x0)
2/ 2σ2)√

2πσ
,

where the limit means a limit in the sense of distributions (see next section).

3.3 Distributions

The δ “function” is the prototype for a new mathematical object called a distribution or
generalized function. Distributions, rather than assigning complex numbers to real numbers
(or vectors in R

n), assign numbers to certain classes of functions on the reals. This is
typically written in the form of an integral

T (f) =

∫ ∞

−∞

t(x)f(x)dx

where t(x) is some representation of the distribution T . However, as in the case of δ, t(x)
may not be any sort of function in the ordinary sense. The functions which a distribution
maps to a number are called test functions. Different spaces of test functions can be defined
(leading to different types of distributions), but the two most common spaces are the “space
of smooth functions of compact support”

D = {f | f is smooth and equals zero outside of some finite-length interval},

and the “Schwartz space”

S =

{

f | f is smooth and max
x∈R, k∈N

∣

∣xkf(x)
∣

∣ <∞
}

In other words, D consists of smooth (i.e., infinitely differentiable) functions which are lit-
erally zero when far enough away from the origin, whereas S consists of smooth functions
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which do not necessarily vanish but go to zero faster than any power of x as x → ±∞.
Clearly these are both vector spaces, and D ⊆ S.

The space distributions, denoted D′, consists of all continuous linear mapping from
from D to C. This is in some sense the largest space of distributions which can be defined
on the reals. The space of tempered distributions, denoted S ′, contains all continuous linear
mappings from S into C. Because D ⊆ S, it is immediate that any element of S ′ defines an
element of D′ (i.e., S ′ ⊆ D′), but the reverse is not true. Thus S ′ is a more restricted set of
distributions. However, it is more useful in most physics applications, especially quantum
mechanics. The first reason is that most distributions which arise in practice are, in fact,
tempered. The second reason is that the eigenstates of various Hamiltonians, most notably
the simple harmonic oscillator Hamiltonian, live in S, so it makes sense to restrict attention
to distributions which live in S ′.

We defined convergence for distributions to mean that the sequence of numbers Tn(f)
converged to the number T (f) for every test function f . Thus, statement in the previous
section that the limit of normalized Gaussians is the δ function means that the equation

lim
σ→0

∫ ∞

−∞

exp (−(x− x0)
2/ 2σ2)√

2πσ
f(x)dx = f(0)

holds for every test function f . Since the above integral will converge and the limit will
exists for any element f ∈ S, we have that the δ-function is a tempered distribution. This
is important for Fourier theory (see below).

3.3.1 Differentiation and Distributions

The derivative of a distribution is defined using a formula obtained from integration by parts:

T ′(f) :=

∫ ∞

−∞

t′(x)f(x)dx = −
∫ ∞

−∞

t(x)f ′(x)dx = −T (f ′)

If the representation t(x) is differentiable, then integration by parts holds and distributional
derivative coincides with the ordinary derivative. If t(x) is not differentiable, like the step
function, the distributional derivative will not be like ordinary derivative. For example, we
saw that d

dx
H(x− x0) = δx0

, and

δ′x0
(f) =

∫ ∞

−∞

f(x)δ′(x− x0)dx = −f ′(x0),

since f is differentiable (as all test functions are).

3.3.2 Fourier Transforms and Distributions

Not all distributions have Fourier transforms, but every tempered distribution (i.e., member
of S ′) does. These are defined by the relationship û(φ) = u(φ̂). Just as the Fourier transform
is a unitary operator on L2(R), it can be shown that it is also a unitary-like operator on
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S ′. Applying the definition of Fourier transform to the δ-function gives three important
relationships:

δ̂(k) =
1√
2π

(

1√
2π

)ˆ

(k) = δ(k) δ(x− x′) =
1

2π

∫

dkeik(x−x′)

Of course, all three equations are to be understood as holding in the sense of distributions:
the two sides are equal when integrated against a nice function. For example:

∫ ∞

−∞

δ̂(k)f(k)dk =

∫ ∞

−∞

δ(k)f̂(k)dk = f̂(0) =

∫ ∞

−∞

1√
2π
f(x)dx,

where f ∈ S. In the first step, we’ve used the definition of Fourier transform of a distribution,
in the second the definition of δ, and in the third the definition of Fourier transform of an
ordinary function. The equality of the leftmost integral with the rightmost shows that
δ̂ = 1/

√
2π, as claimed above.

3.4 Row Reduction

Row reduction can be used to test for linear independence and solve linear equations. It is
performed using the elementary row operators:

• interchanging two rows;

• multiplying a row by a non-zero scalar;

• adding a multiple of one row to another row.

These row operations change the range of the matrix, but leave the rank, nullity, and null
space unaltered. When we row-reduce, we usually work to reduced row-echelon form. Any
invertible matrix is reduced to the identity. An singular matrix will have one or more zero
rows.

3.4.1 Linear Independence

The non-zero rows of the row-echelon form are linearly independent. If we placed a set of
vectors in the rows of a matrix, the row-reduced rows are a basis for the span those original
vectors. Alternatively, we can put the vectors in columns, and then the pivot columns
indicate a subset of of the original vectors which form a basis for the span.

3.4.2 Solving Equations

If we wish to solve Mx = y, we form the augmented matrix A = [My] and row reduce it (if
y = 0 we often omit it, since we know the last column will remain zero). If rankM < rankA,
there are no solutions. If rankM = rankA = # of unknowns, there is a unique solution is
which given by the the last column of the row-reduced augmented matrix. If rankM =
rankA < # of unknowns, there are infinitely many solutions. Some variables remain free
and the remaining ones can be expressed in terms of the free variables. Alternatively, we
can say an arbitrary solution is the sum of any one solution plus an element of the kernel.
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3.5 Even and Odd Functions

3.5.1 Even Functions

An even function obeys f(−x) = f(x). Graphically, this means that f(x) is symmetric
when reflected across the x = 0 axis. An analytic function is even if and only if its Taylor
polynomial only has even powers of x in it. For even function integrated on a symmetric
domain, we have

∫ a

−a

f(x)dx = 2

∫ a

0

f(x)dx.

3.5.2 Odd Functions

An odd function obeys f(−x) = −f(x). Graphically, this means that f(x) is symmetric
when reflected across the origin. Analytic functions are odd if and only if their Taylor
polynomial only has odd powers of x in it. The integral of an odd function on a symmetric
domain vanishes:

∫ a

−a

f(x)dx = 0.

Notice that this means that the Fourier coefficients an vanish for an odd function, and the
bn vanish for an even function.

3.5.3 General Functions

Not every function is even or odd, but every function can be split into even and odd parts:

f(x) = fE(x) + fO(x); fE(x) =
f(x) + f(−x)

2
; fO(x) =

f(x) − f(−x)
2

.

Notice that fO = 0 if f is even, and fE = 0 if f is odd. Using the result that the integral
of an odd function over a symmetric domain vanishes, we have that only fE contributes to
the an, and only fO contributes to the bn. The use of this fact can sometimes result in a
considerable simplification of the integrals.

3.5.4 Friends of Even and Odd Functions

(a) The product of two even or odd functions is even.

(b) The product of an even function with an odd function is odd.

(c) The derivative of an even/odd function is odd/even, respectively. Notice that this also
gives the same result for the indefinite integral.

(d) The Fourier transform of even/odd functions are likewise even/odd. If f is real and
even/odd, is Fourier transform is real/imaginary.
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3.6 Complex Algebra

3.6.1 Basic Relationships

We can express a complex number in either Cartesian or polar form, which are related by

z = Re z + i Im z = x+ iy = r cos θ + ir sin θ = reiθ.

Notice that Im z does not include the i, so it is a real number. The complex conjugate is the
reflection along the real axis of z:

z̄ = x− iy = r cos θ − ir sin θ = re−iθ.

Complex conjugation commutes with addition and multiplication, i.e.,

zw = z̄w̄ and z + w = z̄ + w̄.

The modulus or absolute value of z is given by

|z| =
√
zz̄ =

√

x2 + y2 = r.

Notice that z2 6= |z|2 unless Im z = 0 Multiplication is a pain in Cartesian form but a snap
in in polar form:

z = reiθ and w = seiϕ ⇒ zw = rsei(θ+ϕ).

This immediately gives |zw| = |z||w|. We also see that zn = rneinθ, which when r = 1 allows
us to derive trigonometric identities for sinnx and cosnx. Taking the n-th root of the polar
form of z gives yields

n
√
z = n

√
reiθ+2πk/n.

3.6.2 Elementary Functions

Most functions of interest are “elementary functions” which can be expressed in terms of the
exponential or logarithm. The most familiar are the circular and hyperbolic functions:

cosx =
eix + e−ix

2
sinx =

eix − e−ix

2i
coshx =

ex + e−x

2
sinhx =

ex − e−x

2
.

From these basic formulas we can derive many useful trigonometric as well as relationships
between circular and hyperbolic functions. We also used the polar form of complex numbers
together the log function to compute arbitrary powers starting from the base formula

log z = log r + i(θ + 2πk).
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