Quantum Mechanics: A Different Spin on Linear Algebra

Itai Seggev The University of Mississippi

Motivation

- Quantum mechanics first formulated as "matrix mechanics"
- Students enjoy tackling "real problems" even if they don't know all the details
- * Can combine as many (or few) concepts as wanted in a single problem
- * Gives a concrete interpretation to evalues

Truth in Advertising

- * The class taught was "mathematical physics"
- All students were math or physics majors
- Multivariable calculus and DEs are corequisites; a few had taken linear algebra
- * First half of the course was on linear algebra

Quantum Mechanics for the Ph.D. Mathematician

- 1. Physical states are represented by vectors in a complex Hilbert space
- 2. Physical observables are represented by self-adjoint operators, and measurements correspond to their spectral projectors
- $3. \exists 1-parameter unitary group of evolution$ operators. Its self-adjoint generator is called the Hamiltonian (eigenvectors are "energy levels"; eigenvalues are "energies")

Quantum Mechanics for Linear Algebra Students

- 1. Physical states are represented by vectors in a complex vector space
- 2. Physical observables are represented by Hermitian operators
- 3. Time evolution is given by the Schrödinger equation: $\ddot{\Psi}(t) = e^{-\left(\frac{iHt}{\hbar}\right)}\Psi(0)$

H is called the Hamiltonian, and its eigenvalues are the energies of the system

Use the Force Spin, Luke!

- Position and momentum operators always act on L2–not linear algebra!
- "Angular momentum" or "spin" is a physical property possessed by virtually all objects.
- Familiar to students in the physical sciences and many others
- Other choices possible, but less familiar: quark flavor, neutrino generation, color

All About Spin

Depending on context, spin may be called L, S, or $J = L + S$

"Spin" is always an integer multiple of *^h*¯*/*² ⁼ ⁵×10−³⁵ ^J·^s

A vector in \mathbb{C}^{k+1} represents the state of an object with spin *kh*¯*/*2

Creating Problems

- Electric and magnetic fields affect the energy of and are used to manipulate spin states
- The Hamiltonian is usually a multiple of the spin operator
- * Representative numbers:

Example 1: Diagonalization

A spin-1 nucleus moves through a complicated magnetic field where its interaction Hamiltonian is given by

> $H = E_0$ $\sqrt{2}$ $\overline{}$ 37 14*i* 8 −14*i* 16−4*i* 8 4*i* 46 $\overline{ }$ 1

At t=0 it is in the state $\psi = (1, 0, 0)$, corresponding to a $L_z = +\hbar$ state. Find the state at t=2.

Example 2: Eigenvectors

A spin-1 atoms moves through a complicated electric field where its interaction Hamiltonian is given by

$$
H = E_0 \begin{pmatrix} 37 & 14i & 8 \\ -14i & 16 & -4i \\ 8 & 4i & 46 \end{pmatrix}
$$

Find a vector representing the ground state.

Example 3: Multiplicity

The interaction of the spins of the proton and electron in a Hydrogen atom is given by "fine-structure" Hamiltonian

Determine if there are any degenerate states in this system.

Example 4: Commutator

According to Heisenberg's Uncertainty Principle, two quantities can be simultaneously determined if and only if the corresponding operators commute. The operators for the x, y, and z components of a spin-1/2 particle like the electron are given by

Determine whether any two components of spin can be simultaneously observed.

 $S_x =$

 \hbar

 $/ 0 1$

1 0

 $\overline{}$

 $S_{y} =$

 \hbar

 $\sqrt{2}$

0 −*i*

 $\overline{\ }$

 $S_z =$

 \hbar

 $(1 0$

 $0 -1$

 $\overline{ }$

2

i 0

2

2

Example 5: The Über Problem **PAULUPIC V. 3150**

2. (Double Value Problem) A stream of spin-1 atoms is shot through a uniform magnetic field pointing in the *y*-direction. In a basis where the vector $\psi_1 = (1, 0, 0)$ represents the $L_z = \hbar$ state, $\psi_0 = (0, 1, 0)$ represents the $L_z = 0$ state, and $\psi_{-1} = (0, 0, 1)$ represents the $L_z = -\hbar$ state, the Hamiltonian of the system can be written:

$$
H = E_0 \left(\begin{array}{rrr} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{array} \right).
$$

(The energy E_0 is half of the magnetic dipole energy difference between the $L_y = +\hbar$ and the $L_y = -\hbar$ states.)

(a) Compute the matrix e^{iHt} which takes $\psi(0)$ to $\psi(t)$.

3. Problem 16 on p. 364. Problem 16 on p. 36

(b) Let $\psi(0)$ equal, in turn, each of the above basis vectors. Find the fraction of the atoms which remain in the original state after spending a time *t* in the magnetic field. According to the laws of quantum mechanics, that fraction is given by $|\braket{\psi(0) | \psi(t)}|^2.$

Student Response

- "I really liked that nucleus problem. I just tuned out [proof] problems …"
- "[Schrödinger equation problems] are cool stuff"
- Students found the problems difficult at first but came to enjoy them

Further Reading

- * Townsend, John. A modern approach to quantum mechanics. McGraw-Hill. New York (1992).
- Shankar, R. Principles of quantum mechanics, 2nd ed. Plenum. New York. (1994)
- iseggev@olemiss.edu