#### Quantum Mechanics: A Different Spin on Linear Algebra

Itai Seggev The University of Mississippi

# Motivation

- \* Quantum mechanics first formulated as "matrix mechanics"
- \* Students enjoy tackling "real problems" even if they don't know all the details
- \* Can combine as many (or few) concepts as wanted in a single problem
- \* Gives a concrete interpretation to evalues

# Truth in Advertising

- \* The class taught was "mathematical physics"
- \* All students were math or physics majors
- Multivariable calculus and DEs are corequisites; a few had taken linear algebra
- First half of the course was on linear algebra

#### Quantum Mechanics for the Ph.D. Mathematician

- 1. Physical states are represented by vectors in a complex Hilbert space
- 2. Physical observables are represented by self-adjoint operators, and measurements correspond to their spectral projectors
- 3. ∃ 1-parameter unitary group of evolution operators. Its self-adjoint generator is called the Hamiltonian (eigenvectors are "energy levels"; eigenvalues are "energies")

### Quantum Mechanics for Linear Algebra Students

- 1. Physical states are represented by vectors in a complex vector space
- 2. Physical observables are represented by Hermitian operators
- 3. Time evolution is given by the Schrödinger equation:  $\Psi(t) = e^{-\left(\frac{iHt}{\hbar}\right)}\Psi(0)$

H is called the Hamiltonian, and its eigenvalues are the energies of the system

# Use the <del>Force</del> Spin, Luke!

- \* Position and momentum operators always act on L<sup>2</sup>-not linear algebra!
- \* "Angular momentum" or "spin" is a physical property possessed by virtually all objects.
- \* Familiar to students in the physical sciences and many others
- \* Other choices possible, but less familiar: quark flavor, neutrino generation, color

## All About Spin

\* Depending on context, spin may be called L, S, or J = L + S

\* "Spin" is always an integer multiple of  $\hbar/2$ 

\* A vector in  $\mathbb{C}^{k+1}$  represents the state of an object with spin  $k\hbar/2$ 

# Creating Problems

- Electric and magnetic fields affect the energy of and are used to manipulate spin states
- \* The Hamiltonian is usually a multiple of the spin operator
- \* Representative numbers:

| Atomic energies  | 5 x 10 <sup>-5</sup> eV        | 8 x 10 <sup>-24</sup> J       |
|------------------|--------------------------------|-------------------------------|
| nuclear energies | 500 keV                        | 8 x 10 <sup>-14</sup> J       |
| $\hbar = h/2\pi$ | 6.585 x 10 <sup>-16</sup> eV·s | 1.055 x 10 <sup>-34</sup> J·s |

# **Example 1: Diagonalization**

\* A spin-1 nucleus moves through a complicated magnetic field where its interaction Hamiltonian is given by

 $H = E_0 \begin{pmatrix} 37 & 14i & 8 \\ -14i & 16 & -4i \\ 8 & 4i & 46 \end{pmatrix}$ 

At t=0 it is in the state  $\psi = (1,0,0)$ , corresponding to a  $L_z = +\hbar$  state. Find the state at t=2.

# **Example 2: Eigenvectors**

\* A spin-1 atoms moves through a complicated electric field where its interaction Hamiltonian is given by

$$H = E_0 \begin{pmatrix} 37 & 14i & 8 \\ -14i & 16 & -4i \\ 8 & 4i & 46 \end{pmatrix}$$

Find a vector representing the ground state.

# Example 3: Multiplicity

\* The interaction of the spins of the proton and electron in a Hydrogen atom is given by "fine-structure" Hamiltonian



Determine if there are any degenerate states in this system.

## Example 4: Commutator

\* According to Heisenberg's Uncertainty Principle, two quantities can be simultaneously determined if and only if the corresponding operators commute. The operators for the x, y, and z components of a spin-1/2 particle like the electron are given by

Determine whether any two components of spin can be simultaneously observed.

 $S_{x} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} S_{y} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} S_{z} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 

### Example 5: The über Problem

(Double Value Problem) A stream of spin-1 atoms is shot through a uniform magnetic field pointing in the y-direction. In a basis where the vector  $\psi_1 = (1, 0, 0)$  represents the  $L_z = \hbar$  state,  $\psi_0 = (0, 1, 0)$  represents the  $L_z = 0$  state, and  $\psi_{-1} = (0, 0, 1)$  represents the  $L_z = -\hbar$  state, the Hamiltonian of the system can be written:

$$H = E_0 \left( egin{array}{ccc} 0 & -i & 0 \ i & 0 & -i \ 0 & i & 0 \end{array} 
ight)$$

(The energy  $E_0$  is half of the magnetic dipole energy difference between the  $L_y = +\hbar$ and the  $L_y = -\hbar$  states.)

- (a) Compute the matrix  $e^{iHt}$  which takes  $\psi(0)$  to  $\psi(t)$ .
- (b) Let  $\psi(0)$  equal, in turn, each of the above basis vectors. Find the fraction of the atoms which remain in the original state after spending a time t in the magnetic field. According to the laws of quantum mechanics, that fraction is given by  $|\langle \psi(0) | \psi(t) \rangle|^2$ .

### Student Response



- \* "I really liked that nucleus problem. I just tuned out [proof] problems ..."
- \* "[Schrödinger equation problems] are cool stuff"
- \* Students found the problems difficult at first but came to enjoy them

# Further Reading

- Townsend, John. <u>A modern approach to</u> <u>quantum mechanics.</u> McGraw-Hill. New York (1992).
- \* Shankar, R. <u>Principles of quantum</u> <u>mechanics, 2nd ed.</u> Plenum. New York. (1994)
- \* iseggev@olemiss.edu