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Problem Statement

Given alinear differential operator P(D) and a polynomial-exponential forcing function f, we wish to find
1. thegeneral solution to the homogeneous equation P(D)[y] = 0
2. one solution to the driven equation P(D)[y] = f by means of an ansatz

We can then solve any IVP for P(D), but

3. we need to enter P(D) into Mathematica
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Ingredients

In[11]:=

4. Solve]

5. CoefficientList[]

6. ComplexExpand[], Re[], Im[] (if dealing with complex and or trigonometric equations)
7

. Some magic code:

Cl ear [DPI usS]

DPl usS /: Power [DPlusS[t_, s_:01, n_] := Function[f,Nest [(D[#, t] + s #)& f, nl]
DPlusS[t_, s :01*n_[f___ ] ”~:= DPlusS[t, s]"[f]

DPl usS[t_,s_:0]([f_1:=D[f,t]+s f

Unprot ect [Plus, Tinesl];

Plus /: Plus[ (a_:1) ol _Function , cruft__J[f_1 :=a ol1[f] + Plus[cruft][f]

Plus /: Plus[ (a_:1)DPlusS[t_, s__ 1, cruft__J[f_]1 :=a DPlusS[t, s][f] + Plus[cruft][f]
Tines /: Tines[a_, DPlusS[t_,s__ 1 1[f_] := a DPlusS[t,s][f]

Tinmes /: Tines[a_, ol _Function ][f_] := a ol[f]

Protect [Plus, Tines];
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Playing with DPlusS[t,s] = D +s

m The basic operator
ini1}= DPlusS[t, s][y[t]]

ou1]= SYI[t] +y'[t]

= Monomials

Positive powers:

in2;= DPlusS[t, 01"2[y[t]]
DPl usS[t 172y [t]]

outzz= Y [t]

out[23]= Y[t ]

Positive powers with shift:

in24]:= DPlusS[t, s]1”2[y[t]] // Expand
oufzal= SZY[t]+2sy [t] +y”[t]

The identity operator

in2s):= DPlusS[t, s]"O[y[t]]

out25]= Y [t ]

= A polynomial

inf26]:= Cl ear [Pof D]

DPl usS[t, s1°
C

Pof D[t _, s_ : 0] := LDPlusS[t, s]*"2 + RDPlusS[t, s] +

Pof D[t, O][y[t]]
y(t]

out[28]= +Ry’ [t]+Ly”"[t]

injzo)= PofD[t, 4 w][y[t1] // Sinplify

1
out[29]= 6+w (iR-Lw)|y[t]+ (R+2iLw)y [t]+Ly"[t]
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Step 1: Finding the basic solution set

= Simple roots
Assuming a constant coefficient operator, we know the solution is given by the characteristic roots

o= PofD[t_, s_ : 0] := DPlusS[t, s]12+5DPl usS[t, s] +6DPlusS[t, s]1°
The characteristic polynomial is obtain with D — 0, i.e., computing P(D)[1]
in31:= Pof D[t, s1[1]
Solve[% = 0, s]
Exp[st] /. %
ouz]= 6 +5s +52
ouz2)= {{s » -3}, {s > -2}}

oupza- {e®', e?'}

So, we have our basic solution set.

m Repeated roots

in34y= PofD[t_, s_ : 0] := DPlusS[t, s1%2+4DPlusS[t, s]+4DPlusS[t, s1°
Pof D[t, s]1[1]
Solve[% = 0, s]
ExpIst] /. %

out[35]= 4+45s +s?

ouz6l= {{S » -2}, {s > -2}}
oufar= {e?', e?'}

Our set is linearly dependent, we need to replace one vector with t €72
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Step 2: Find the particular solution (real case)

in[3g:= Cl ear [Pof D]
Pof D[t _, s_ : 0] := DPlusS[t, s]?>+5DPlusS[t, s]+6DPlusS[t, s1°

A couple of forcing functions

t2 +3
Exp[7t] (t +2)

o= FA[E_]
f2rt_1

lfl

We know that the particular solution has the same form as the driving polynomial in the case of a simple polynomial driving
term.

2= Y1[t_1 1= a2t? + alt + a0
We must substitute in and solve for the coefficients. CoefficientList[] to the rescue!
in43):= CoefficientList [f1[t], t]

CoefficientList [Pof D[t ][yl[t]], t]

Sol ve [% == %%, {a0, al, a2}]
y1l[t] /. First [%]

ouaz= {3, 0, 1}

oufa4= {6a0+5al+2a2, 6al+10a2, 6a2}

73 5 1
out45]= {{aO - —>al--—, a2 - 7}}
108 18 6
73 5t t?
out[46lz —— - — + —
108 18 6

m f,
When there is an exponentia term, it is conventional to separate the solution into its polynomial and exponentia parts.
n471:= Cl ear [y2, h2]

h2[t _] alt + a0

y2[t_] h2[t] Exp[7t]

We then equate the polynomial part of the driving terms with the shifted operator acting on the polynomia ansatz:
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o= CoefficientList [f2[t] /Exp[7t], t]
Coef ficientlList[Pof D[t, 7][h2[t]], t]
Solve[% = %%, {a0, al}]
y2[t] /. First [%]

outs0]= {2, 1}
ous1)= {90 a0 +19al, 90 al}

161 1

out[52]= a0 ——, al - —
{{ 8100 90 }}
161 t
7t
Out[53]= € + —
8100 90)

= Alternate solution

Whileit is conventional to do the separation, it isnot strictly required. CoefficientList[] will consider the exponential part of the
"coefficient”, allowing its cancellation.
ins4):= CoefficientList [f2[t], t]

CoefficientList [PofD[t][y2[t]], t]

Sol ve[% == %%, {a0, al}]
y2[t] /. First [%]

oupsai= {2€’", e’'}
oupssl= {90a0e’' +19ale’’, 90ale’"}

161 1

out[56]= {{aO - % al » %}}

Out[57]= te7 t

161 t
3
8100 90
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Step 2: Find the particular solution (trig/complex cases)

m Sinusoidal driving term
inse):= Cl ear [Pof D, f]
Pof D[t _, s_ : 0] := DPlusS[t, s]?>+5DPlusS[t, s]+6DPlusS[t, s]°
fLt_ ] :=Sin[7t] (t+2)
Since it we have asinusoid, we need to complexify the problem, solving with adriving term f(t) = (t + 2) e”*".

1= Cl ear [yc, hc]

hc[t_]1 := alt + a0
fec[t_] := Exp[7it] (t +2)
yc[t_] := hc[t] Exp[74t]

Finding the complex solution is as before.

ines)= CoefficientList [fc[t]/Exp[74at], t]
CoefficientlList[Pof D[t, 74][hc[t]], t]
Sol ve[% == %%, {a0, al}]
yc[t_] = yc[t] /. First[%]

ouesl= {2, 1}

outeel= {(-43+351) a0+ (5+141) al, (-43+351) al}

56 336 119483 i 43 351
out[67]= {{ao - - - ,al s> -— - }}
2362369 4724738 3074 3074
75t 56 336 119483 i 43 351
outegl= e " [ - - _ [ N t ]
2362369 4724738 3074 3074

We can then find the solution by taking the imaginary part of our complex solution.
neo= Y[t_1 = Conpl exExpand[I mlyc[t]]] // Sinplify

7 (17069 + 7685t ) Cos[7t] - (112672 +66091t) Sin[7t ]
4724738

out[69]=

Notice that the ComplexExpand[] is essential, since the value aboveis not valid if t is complex.
in7ol:= I myc[t]] // Sinmplify

1505 156 i ‘
et ((56+911i)+ (35+431i)t)

out[70}= | m[ (— +
4724738 2362369

For free, we a so get the solution for a cosine driving term.
in71:= Compl exExpand[Re[yc[t]1]1] // Simplify

- (112672 +66091t) Cos[7t] +7 (17069 +7685t) Sin[7t ]
4724738

Out[71]=

= Alternate solution

As before, we are not obligated to separate out the polynomial if we don't want to.
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n721= YC[t_1 1= hc[t] Exp[74it]
CoefficientList [fc[t], t]
CoefficientList [Pof D[t][yc[t]], t]
Sol ve[% == %%, {a0, al}]

outf73}= {2 it 7 11}

oura- {(-43+35i)a0e’ ' + (5+14i)ale’’!, (-43+351i)ale '}

56 336 119483 1 43 351
out[75]= {{aO - - - , al - H
2362369 4724738 3074 3074
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Bonus slide: additional cases

m Degeneracy

A degeneracy occurs when the characteristic polynomial has a repeated root, and/or the shift equals one of the roots.

in[7el:= Cl ear [Pof D, f]
Pof D[t _, s_ : 0] := DPlusS[t, s]?>+4DPlusS[t, s]+4DPlusS[t, s]°
flt_] := (t"2+2t +3) Exp[-21]

in7o;= Cl ear [y, h]
hit_] := a2t”~2+alt + a0
y[t_] 1= h[t] Exp[-2t]

Now, what happens if we proceed with our normal ansatz without paying attention to the degeneracy?

ing2;:= CoefficientList [f[t]/Exp[-2t], t]
Coef ficientList [Pof D[t, -2][h[t]], t]
Sol ve [% == %%, {a0, al, a2}]

ougzl= {3, 2, 1}

outs3l= {2 a2}

outg4l= {}

We get no solution: something has gone wrong. But, there is more information. The two lowest terms have dropped out
entirely: we have adouble degeneracy (repeated root equal to shift)

Hence, we use a polynomial of degree two higher (but possessing the same number of terms).

nesi= h[t_]1 := a4t"4+a3t"3 + a2t"2
CoefficientList [f[t]/Exp[-2t], t]
CoefficientlList [Pof D[t, -2][h[t]], t]
Solve[% = %%, {a2, a3, a4}]
y[tl /. First[%]

outgel= {3, 2, 1}

ous7)= {2 a2, 6a3, 12 a4}

3 1 1
out[8s]= {{aZ 5 —, a3 > —, a4 - _}}
2 3 12
ot 3t2 3 t4
outjgg]= €~ by
2 3 12

= Higher order operators

ino:= Cl ear [Pof D, f]
Pof D[t _, s_ : 0] : =
DPl usS[t, s]*+ 4DPlusS[t, s]1®+3DPlusS[t, s]>-4DPlusS[t, s] -4DPlusS[t, s]°
frt_1 := (t"2+2t +3) Exp[-t]

Characteristic rootsare -2, -2, 1, and -1.
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ino3= Pof D[t, s1[1] // Sinplify
oufes= (2 +5)2 (71+52)

We have single degenerac: shift equal to a simple root. So we need a polynomial of one degree higher. Rest of processis
unchanged.

in4:= Cl ear [y, h]
hit ] := a3t”3 +a2t"2+ alt
y[t_] 1= h[t] Exp[-t]
CoefficientList [f[t]/Exp[-t], t]
CoefficientlList [Pof D[t, -1][h[t]], t]
Sol ve[% = %%, {al, a2, a3}]
yItl /. First[%]

ouo7= {3, 2, 1}
ouesl= {-2al-6a2, -4a2-18a3, -6a3}

9 1 1

out[99]= al--—, a2 > —, a3 > - —
{{aro-  a2o 0 1
9t t? 8
ouf100}= €' |- — + — - —
4 4 6

m RLC circuit (complete example from lecture notes)

An RLC circuit obeys
. . q
LG+ RY + — =& 1)
C
If we wanted to express the relationship in terms of current, we would need to differentiate the previous equation to get:
. A B
LI + RI + —=&). )
C

Getting equation (2) is helpful because expressing charge in terms of current involves a definite integral: q(t) = q(tg) + ﬁ () ds.

If we substitute this equation into equation (1), we'd get a so-called integro-differential equation. Differentiating both sides with
respect to t gives usaplain old differential equation.

For convenience, we put a bunch of assumptions into the global variable $Assumptions which will shorten many Simplify[]
commands.

in101]:= $Assunptions = {aeReals, R>0, w >0, L>0, C>0, t € Real s}

oufi01)- {a € Reals, R>0, w>0, L>0, C>0, t € Real s}

We define our differential operator

in102):= Cl ear [Pof D]
Pof D[t _, s_: 0] := LDPlusS[t, s]*2 + RDPlusS[t, s] + DPlusS[t, s]°/C

We want to solve equation (2) assuming &(t) = acos(wt). First, we must find the characteristic roots:



12 | JMM2011.nb

in[104= Sol ve[Pof D[t, s][1] ==0, s] // Sinplify
R+ |-2L, R SR+ |-t
[ C \ C
- s —
T YR

Aslong as R isnon-zero (i.e., there actualy is aresistor in the circuit), the characteristic roots have non-zero rea part and hence
cannot equal s=iw. This eliminates degenerate cases of undetermined coefficients. We use Mathematica to find the solution,
but as in example 3 thisis unnecessary.  Since the polynomial multiplying the cosine is a constant, the polynomial h(t) in the
driven solution is

Out[104]= {{S - -

h(t) =

PG w)
We ask Mathematica to verify:

npos;= Clear [h, y, z]
hit_]1 := a0
Sol ve[Coef ficientList [Pof D[t, 4 w][h[t]], t] == {a}, a0]
z[t_] = h[t1e**" /. %[[1]]

—]

Out[107]= {{aO - .
o i Rw - L w?

aeﬂt 0]
out[108)r ———
Z+1Rw-Lw?
c

Since we're focused on a cosine driving term, we need to take the real part of z. The following would be the steps corresponding
to finding the real part by hand.
We make the denominator real by multiplying by its complex conjugate:

1 1
In[109]:= [—+J‘1Rw—Lw2] (——iRw—sz] //7 Sinplify
(@ C

1 2Ld?

ouf[109)= — - + R W+ L2 w?
c? C

We do the same thing to the numerator and use Euler's identity to convert to sines and cosines.

, 1
in[110):= EXpToTri g[a ety [(—; —iRw-sz]] // Expand

a Cos [t w] iaSint w] } ]
ouf110 ——— -iaRwCos[t w] —aLw?Cos[t w]+ ——— +aRwSin[tw]-ialLw?®Sinft w]
C C

We then take combine the numerator and denominator. Since the denominator is now real, this simply means take the real part
of the numerator and keep the denominator unchanged.

]

aC((1-CLw?) Cos[t w] +CRwSIN[tw])

Re [%]

in[i11= yprovisional = Full Si nplify[

o =
ut[111] 1+ Cw2 (CRZ i L (,2+CL w2>)

Notice that we could have gotten to Ypovisiona in 0ne step using ComplexExpand[]:
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in[112:= yprovi si onal = Conpl exExpand[Re[z[t]]]

aCos [t w] al w? Cos [t w] aRwSiNn[t w]

Oout[112]= Pyl 5 + 5
C(R2w2+(1—Lw2)) R2w2+(1—Lw2) R2m2+(£—Lm2)

C C (03
Also, here istheimaginary part. It looks similar, but the roles of sine and cosine have been reversed:
in[113):= Conpl exExpand [I m[z [t ]]]

aRwCos [t w] asSinft w] aLw?Sint w]

Out[113]= - + —
R2w2+(%—Lw2)2 C(R2w2+(%—Lw2)2) R2w2+(%—Lw2)

2
Letd= arctan(é —Lw? —Rw).

1
in14= @ = ArcTan [— - L w?, —Rw]

C

1
outj114]= ArcTan [ — _L?, - Rw}
C
e Thetwo-variable arctangent gives an angle between —7 and 7, taking into account the quadrant of the point.

Then the expression in the Evaluate]] in the cell below is equivalent to Yprovisiona - Notice that they have the same denominator,
and the equality of the numerators follows from the angle addition formulas and then basic facts cos(arctan(x, y)) = X,
sin(arctan(x, y)) = y. Just to be sure, we ask Mathematica to verify:

aCos[wt + o]
5= Ful | Sinpl i fy[EvaI uat e[

. /7 Tri gExpand] == yprovi si onal ,
(%—sz) + (Rw)?
Transformati onFuncti ons -

(Automatic, (#/. {Cos[ArcTan[d_, n_]] ->d, Sin[ArcTan[d_, n_]] ->n}) &}]

ou[115]= True

So, the general solution is one of the following The only remaining issue iswhat isthe size of 4L versus C R?, which affects
the homogeneous solution. When 4 L is smaller, we have two decaying exponentials. When 4L islarger, we have two oscillat-
ing, decaying exponentials. When they are equal, we have an exponential and a polynomial exponential. Thisis the electrical

equivalent of acritically damped harmonic oscillator, in which the system returns to equilibrium as quickly as possible. Clearly
it isavery interesting case from an engineering standpoint. So here are the three possible solutions:

R I A
aCos[wt +o] G e

in[116):= yOver Danped[t_] : = > + Cle 2t Yy c2e o
(%—sz) + (Rw)?

o aCosfwt +¢] (;)t (;
yCriticall yDanped[t_] : = + Clelzt/ +c2t elzt

((1—: —Lw2)2+ (Rw)?

yUnder Danped[t_] : =

-CR

aCos[wt +¢] (_)t
+ Cclelzt Oos[

(% -La)z)2 + (Rw)?
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All in three cases, however, the homogeneous solution decays to zero, leaving just the driven solution asymptotically. This

piece has its largest amplitude when the denominator is minimized, which for fixed R occurs at é =Lw? orw= / é . Recal

that \/g iswhat we found for the natural frequency of an LC circuit, so the amplitude is maximized at resonance. Indeed, if
there is no resistance, the amplitude will grow without bound, as we found on problem 3.4.21.

Being finished with our assumptions, we reset them by assigning True to $Assumptions

in[119;= $Assunptions = True

outj119]= True
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Is that a parameter which | see varying before me?

» Who said we need constant coefficients?

in[120):= Cl ear [Pof D, y]

2 2
Pof D[t _] := DPlusS[t]?- — DPlusS[t] + DPl usS[t 1°
t tn2

= Basic solution set

We can construct a basic solution set in the standard manner

inf122):= DSol ve[{Pof D[t 1[y[t]] ==0, y[1] ==1, y'[1] ==0}, y[t], t]
DSol ve[{Pof D[t J[y[t]] ==0, y[1]1 ==0, y'[1] ==1}, y[t], t]
Wonskian[y[t] /. Join[%, %%], t]

ouezl {{y[t] -2t -t?}}

ourza= {{y[t] -t +t?}}

ouf124]= -t 2

By adding and subtracting the first to/from the second, we would get {t, t2} isabasic solution set

inj2s)= Cear [yl, y2]
yl[t_1 =t
y2[t_1 :=1t"2
Pof D[t ] [y1[t]]
Pof D[t ] [y2[t 1]
Wonskian[{yl[t], y2[t]1}, t]

outj1281= O
out[129]= O
out[130]= t?

= Variation of Parameters
Consider alogarithmic forcing function

npa= fIt_] @ = Logt]?

We can construct the
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-y2[s]f[s]
Wonskian[{yl[s], y2[s]}, s]
yl[s1f [s]
Wonskian[{y1[s], Y2[S]}, S]

n[321= yGen[t_]1 = Si rrplify[lntegrate[ . {s, 1, t}]yl[t] +

Integrate] L As, L t}]y2re]

clyl[t] + c2y2[t], Assunptions -t >0] // Expand
1
oufsz 2t +clt -2t2+c2t?2+2t2Log(t ] —tZLog[t]2+§t2Log[t}3

in[133):= Pof D[t 1[yGen[t]] // Sinmplify
yGen[1]
yGen' [1]

ourizz= Log [t 12

out134]= €l +c2

ouff13s5]= €l +2c2

n136:= Pl ot [Evaluate[yGen[t] /. {cl-0, c2-0}], {t, O, 2}]

0.06
0.05

0.04
Out[136]= 0.03 ;
0.02

0.01
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Use and Reception
e Code given as black box to students
e advanced CS students can analyze/appreciate it
e Students assigned these problems, including higher order equations
e Students had little difficulty mastering the use these operators and showed they could self correct if started with wrong polynomial
e Emphasize operator/linear algebra view

e Thereisasingle theory of linear equations!



