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Problem Statement 

Given a linear differential operator PHDL and a polynomial-exponential forcing function f , we wish to find

1. the general solution to the homogeneous equation PHDL@yD = 0

2. one solution to the driven equation PHDL@yD = f  by means of an ansatz

We can then solve any IVP for PHDL, but

3. we need to enter PHDL into Mathematica
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Ingredients

4. Solve[]

5. CoefficientList[]

6. ComplexExpand[], Re[], Im[] (if dealing with complex and or trigonometric equations)

7. Some magic code:

In[11]:= Clear@DPlusSD
DPlusS �: Power@DPlusS@t_, s_:0D, n_D := Function@f,Nest@HD@ð, tD + s ðL&, f, nDD
DPlusS@t_, s_:0D^n_@f___D ^:= DPlusS@t, sDn@fD
DPlusS@t_,s_:0D@f_D:=D@f,tD+s f
Unprotect@Plus, TimesD;
Plus �: Plus@ Ha_:1L o1_Function , cruft__D@f_D := a o1@fD + Plus@cruftD@fD
Plus �: Plus@ Ha_:1LDPlusS@t_, s___D , cruft__D@f_D := a DPlusS@t, sD@fD + Plus@cruftD@fD
Times �: Times@a_, DPlusS@t_,s___D D@f_D := a DPlusS@t,sD@fD
Times �: Times@a_, o1_Function D@f_D := a o1@fD
Protect@Plus, TimesD;
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Playing with DPlusS@t , sD = D + s

� The basic operator

In[21]:= DPlusS@t, sD@y@tDD

Out[21]= s y@tD + y¢@tD

� Monomials

Positive powers:

In[22]:= DPlusS@t, 0D^2@y@tDD
DPlusS@tD^2@y@tDD

Out[22]= y¢¢@tD

Out[23]= y¢¢@tD

Positive powers with shift:

In[24]:= DPlusS@t, sD^2@y@tDD �� Expand

Out[24]= s2 y@tD + 2 s y¢@tD + y¢¢@tD

The identity operator

In[25]:= DPlusS@t, sD^0@y@tDD

Out[25]= y@tD

� A polynomial

In[26]:= Clear@PofDD

PofD@t_, s_ : 0D := L DPlusS@t, sD^2 + R DPlusS@t, sD +
DPlusS@t, sD0

C
PofD@t, 0D@y@tDD

Out[28]=
y@tD

C
+ R y¢@tD + L y¢¢@tD

In[29]:= PofD@t, ä ΩD@y@tDD �� Simplify

Out[29]=
1

C
+ Ω Hä R - L ΩL y@tD + HR + 2 ä L ΩL y¢@tD + L y¢¢@tD
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Step 1: Finding the basic solution set

� Simple roots

Assuming a constant coefficient operator, we know the solution is given by the characteristic roots

In[30]:= PofD@t_, s_ : 0D := DPlusS@t, sD2 + 5 DPlusS@t, sD + 6 DPlusS@t, sD0

The characteristic polynomial is obtain with D ® 0, i.e., computing PHDL@1D

In[31]:= PofD@t, sD@1D
Solve@% � 0, sD
Exp@s tD �. %

Out[31]= 6 + 5 s + s2

Out[32]= 88s ® -3<, 8s ® -2<<

Out[33]= 9ã
-3 t, ã

-2 t=

So, we have our basic solution set.

� Repeated roots

In[34]:= PofD@t_, s_ : 0D := DPlusS@t, sD2 + 4 DPlusS@t, sD + 4 DPlusS@t, sD0

PofD@t, sD@1D
Solve@% � 0, sD
Exp@s tD �. %

Out[35]= 4 + 4 s + s2

Out[36]= 88s ® -2<, 8s ® -2<<

Out[37]= 9ã
-2 t, ã

-2 t=

Our set is linearly dependent, we need to replace one vector with t e-2 t
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Step 2: Find the particular solution (real case)

In[38]:= Clear@PofDD
PofD@t_, s_ : 0D := DPlusS@t, sD2 + 5 DPlusS@t, sD + 6 DPlusS@t, sD0

A couple of forcing functions

In[40]:= f1@t_D := t2 + 3
f2@t_D := Exp@7 tD Ht + 2L

� f1

We know that the particular solution has the same form as the driving polynomial in the case of a simple polynomial driving
term. 

In[42]:= y1@t_D := a2 t2 + a1 t + a0

We must substitute in and solve for the coefficients.  CoefficientList[] to the rescue!

In[43]:= CoefficientList@f1@tD, tD
CoefficientList@PofD@tD@y1@tDD, tD
Solve@% � %%, 8a0, a1, a2<D
y1@tD �. First@%D

Out[43]= 83, 0, 1<

Out[44]= 86 a0 + 5 a1 + 2 a2, 6 a1 + 10 a2, 6 a2<

Out[45]= ::a0 ®
73

108
, a1 ® -

5

18
, a2 ®

1

6
>>

Out[46]=
73

108
-
5 t

18
+
t2

6

� f2

When there is an exponential term, it is conventional to separate the solution into its polynomial and exponential parts. 

In[47]:= Clear@y2, h2D
h2@t_D := a1 t + a0
y2@t_D := h2@tD Exp@7 tD

We then equate the polynomial part of the driving terms with the shifted operator acting on the polynomial ansatz:
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In[50]:= CoefficientList@f2@tD � Exp@7 tD, tD
CoefficientList@PofD@t, 7D@h2@tDD, tD
Solve@% � %%, 8a0, a1<D
y2@tD �. First@%D

Out[50]= 82, 1<

Out[51]= 890 a0 + 19 a1, 90 a1<

Out[52]= ::a0 ®
161

8100
, a1 ®

1

90
>>

Out[53]= ã
7 t

161

8100
+

t

90

� Alternate solution

While it is conventional to do the separation, it is not strictly required.   CoefficientList[] will consider the exponential part of the
"coefficient", allowing its cancellation. 

In[54]:= CoefficientList@f2@tD, tD
CoefficientList@PofD@tD@y2@tDD, tD
Solve@% � %%, 8a0, a1<D
y2@tD �. First@%D

Out[54]= 92 ã
7 t, ã

7 t=

Out[55]= 990 a0 ã
7 t

+ 19 a1 ã
7 t, 90 a1 ã

7 t=

Out[56]= ::a0 ®
161

8100
, a1 ®

1

90
>>

Out[57]= ã
7 t

161

8100
+

t

90
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Step 2: Find the particular solution (trig/complex cases)

� Sinusoidal driving term

In[58]:= Clear@PofD, fD
PofD@t_, s_ : 0D := DPlusS@t, sD2 + 5 DPlusS@t, sD + 6 DPlusS@t, sD0

f@t_D := Sin@7 tD Ht + 2L

Since it we have a sinusoid, we need to complexify the problem, solving with a driving term fcHtL = Ht + 2L ã7 ä t.

In[61]:= Clear@yc, hcD
hc@t_D := a1 t + a0
fc@t_D := Exp@7 ä tD Ht + 2L
yc@t_D := hc@tD Exp@7 ä tD

Finding the complex solution is as before.  

In[65]:= CoefficientList@fc@tD � Exp@7 ä tD, tD
CoefficientList@PofD@t, 7 äD@hc@tDD, tD
Solve@% � %%, 8a0, a1<D
yc@t_D = yc@tD �. First@%D

Out[65]= 82, 1<

Out[66]= 8H-43 + 35 äL a0 + H5 + 14 äL a1, H-43 + 35 äL a1<

Out[67]= ::a0 ® -
56 336

2 362 369
-
119 483 ä

4 724 738
, a1 ® -

43

3074
-
35 ä

3074
>>

Out[68]= ã
7 ä t

-
56 336

2 362 369
-
119 483 ä

4 724 738
-

43

3074
+
35 ä

3074
t

We can then find the solution by taking the imaginary part of our complex solution.

In[69]:= y@t_D = ComplexExpand@Im@yc@tDDD �� Simplify

Out[69]=
-7 H17 069 + 7685 tL Cos@7 tD - H112 672 + 66 091 tL Sin@7 tD

4 724 738

Notice that the ComplexExpand[] is essential, since the value above is not valid if t is complex. 

In[70]:= Im@yc@tDD �� Simplify

Out[70]= ImB -
1505

4 724 738
+

156 ä

2 362 369
ã
7 ä t HH56 + 91 äL + H35 + 43 äL tLF

For free, we also get the solution for a cosine driving term.  

In[71]:= ComplexExpand@Re@yc@tDDD �� Simplify

Out[71]=
-H112 672 + 66 091 tL Cos@7 tD + 7 H17 069 + 7685 tL Sin@7 tD

4 724 738

� Alternate solution

As before, we are not obligated to separate out the polynomial if we don't want to. 
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In[72]:= yc@t_D := hc@tD Exp@7 ä tD
CoefficientList@fc@tD, tD
CoefficientList@PofD@tD@yc@tDD, tD
Solve@% � %%, 8a0, a1<D

Out[73]= 92 ã
7 ä t, ã

7 ä t=

Out[74]= 9H-43 + 35 äL a0 ã
7 ä t

+ H5 + 14 äL a1 ã
7 ä t, H-43 + 35 äL a1 ã

7 ä t=

Out[75]= ::a0 ® -
56 336

2 362 369
-
119 483 ä

4 724 738
, a1 ® -

43

3074
-
35 ä

3074
>>
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Bonus slide: additional cases

� Degeneracy

A degeneracy occurs when the characteristic polynomial has a repeated root, and/or the shift equals one of the roots.

In[76]:= Clear@PofD, fD
PofD@t_, s_ : 0D := DPlusS@t, sD2 + 4 DPlusS@t, sD + 4 DPlusS@t, sD0

f@t_D := Ht^2 + 2 t + 3L Exp@-2 tD

In[79]:= Clear@y, hD
h@t_D := a2 t^2 + a1 t + a0
y@t_D := h@tD Exp@-2 tD

Now, what happens if we proceed with our normal ansatz without paying attention to the degeneracy?

In[82]:= CoefficientList@f@tD � Exp@-2 tD, tD
CoefficientList@PofD@t, -2D@h@tDD, tD
Solve@% � %%, 8a0, a1, a2<D

Out[82]= 83, 2, 1<

Out[83]= 82 a2<

Out[84]= 8<

We get no solution: something has gone wrong.  But, there is more information.  The  two lowest terms have dropped out
entirely: we have a double degeneracy (repeated root equal to shift)

Hence, we use a polynomial of degree two higher (but possessing the same number of terms).

In[85]:= h@t_D := a4 t^4 + a3 t^3 + a2 t^2
CoefficientList@f@tD � Exp@-2 tD, tD
CoefficientList@PofD@t, -2D@h@tDD, tD
Solve@% � %%, 8a2, a3, a4<D
y@tD �. First@%D

Out[86]= 83, 2, 1<

Out[87]= 82 a2, 6 a3, 12 a4<

Out[88]= ::a2 ®
3

2
, a3 ®

1

3
, a4 ®

1

12
>>

Out[89]= ã
-2 t

3 t2

2
+
t3

3
+
t4

12

� Higher order operators

In[90]:= Clear@PofD, fD
PofD@t_, s_ : 0D :=

DPlusS@t, sD4 + 4 DPlusS@t, sD3 + 3 DPlusS@t, sD2 - 4 DPlusS@t, sD - 4 DPlusS@t, sD0

f@t_D := Ht^2 + 2 t + 3L Exp@-tD

Characteristic roots are -2, -2, 1, and -1. 
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In[93]:= PofD@t, sD@1D �� Simplify

Out[93]= H2 + sL2 I-1 + s2M

We have single degenerac: shift equal to a simple root.  So we need a polynomial of one degree higher.  Rest of process is
unchanged.

In[94]:= Clear@y, hD
h@t_D := a3 t^3 + a2 t^2 + a1 t
y@t_D := h@tD Exp@-tD
CoefficientList@f@tD � Exp@-tD, tD
CoefficientList@PofD@t, -1D@h@tDD, tD
Solve@% � %%, 8a1, a2, a3<D
y@tD �. First@%D

Out[97]= 83, 2, 1<

Out[98]= 8-2 a1 - 6 a2, -4 a2 - 18 a3, -6 a3<

Out[99]= ::a1 ® -
9

4
, a2 ®

1

4
, a3 ® -

1

6
>>

Out[100]= ã
-t

-
9 t

4
+
t2

4
-
t3

6

� RLC circuit (complete example from lecture notes)

An RLC circuit obeys 

(1)L q
..

+ R q
 

+
q

C
� EHtL

If we wanted to express the relationship in terms of current, we would need to differentiate the previous equation to get:

(2)L I
..

+ R I
 

+
I

C
� E

 
HtL.

Getting equation (2) is helpful because expressing charge in terms of current involves a definite integral: qHtL = qHt0L + Ùt0

t
IHsL â s.

If we substitute this equation into  equation (1), we'd get a so-called integro-differential equation.   Differentiating both sides with
respect to t gives us a plain old differential equation. 

  For convenience, we put a bunch of assumptions into the global variable $Assumptions which will shorten many Simplify[]
commands.

In[101]:= $Assumptions = 8a Î Reals, R > 0, Ω > 0, L > 0, C > 0, t Î Reals<

Out[101]= 8a Î Reals, R > 0, Ω > 0, L > 0, C > 0, t Î Reals<

We define our differential operator

In[102]:= Clear@PofDD
PofD@t_, s_ : 0D := L DPlusS@t, sD^2 + R DPlusS@t, sD + DPlusS@t, sD0 � C

We want to solve equation (2) assuming E
 
HtL = a cosHΩtL.  First, we must find the characteristic roots:
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In[104]:= Solve@PofD@t, sD@1D == 0, sD �� Simplify

Out[104]= ::s ® -

R + -
4 L

C
+ R2

2 L
>, :s ®

-R + -
4 L

C
+ R2

2 L
>>

As long as R is non-zero (i.e., there actually is a resistor in the circuit), the characteristic roots have non-zero  real part and hence
cannot equal  s = äΩ.  This eliminates degenerate cases of undetermined coefficients.  We use Mathematica to find the solution,
but as in example 3 this is unnecessary.   Since the polynomial multiplying the cosine is a constant, the polynomial hHtL in the
driven solution is

hHtL =
a

PHä ΩL

We ask Mathematica to verify:

In[105]:= Clear@h, y, zD
h@t_D := a0
Solve@CoefficientList@PofD@t, ä ΩD@h@tDD, tD == 8a<, a0D
z@t_D = h@tD ãä Ω t �. %@@1DD

Out[107]= ::a0 ®
a

1

C
+ ä R Ω - L Ω2

>>

Out[108]=
a ãä t Ω

1

C
+ ä R Ω - L Ω2

Since we're focused on a cosine driving term, we need to take the real part of z.  The following would be the steps corresponding
to finding the real part by hand.

We make the denominator real by multiplying by its complex conjugate:

In[109]:=
1

C
+ ä R Ω - L Ω2

1

C
- ä R Ω - L Ω2 �� Simplify

Out[109]=
1

C2
-
2 L Ω2

C
+ R2 Ω

2
+ L2 Ω

4

We do the same thing to the numerator and use Euler's identity to convert to sines and cosines. 

In[110]:= ExpToTrigBa ãä t Ω
1

C
- ä R Ω - L Ω2 F �� Expand

Out[110]=
a Cos@t ΩD

C
- ä a R Ω Cos@t ΩD - a L Ω

2 Cos@t ΩD +
ä a Sin@t ΩD

C
+ a R Ω Sin@t ΩD - ä a L Ω

2 Sin@t ΩD

We then take combine the numerator and denominator.  Since the denominator is now real, this simply means take the real part
of the numerator and keep the denominator unchanged. 

In[111]:= yprovisional = FullSimplifyB
Re@%D

%%
F

Out[111]=

a C II1 - C L Ω2M Cos@t ΩD + C R Ω Sin@t ΩDM

1 + C Ω2 IC R2 + L I-2 + C L Ω2MM

Notice that we could have gotten to yprovisional in one step using ComplexExpand[]:
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In[112]:= yprovisional = ComplexExpand@Re@z@tDDD

Out[112]=
a Cos@t ΩD

C JR2 Ω2 + J 1

C
- L Ω2N

2
N

-
a L Ω2 Cos@t ΩD

R2 Ω2 + J 1

C
- L Ω2N

2
+

a R Ω Sin@t ΩD

R2 Ω2 + J 1

C
- L Ω2N

2

Also, here is the imaginary part. It looks similar, but the roles of sine and cosine have been reversed:

In[113]:= ComplexExpand@Im@z@tDDD

Out[113]= -
a R Ω Cos@t ΩD

R2 Ω2 + J 1

C
- L Ω2N

2
+

a Sin@t ΩD

C JR2 Ω2 + J 1

C
- L Ω2N

2
N

-
a L Ω2 Sin@t ΩD

R2 Ω2 + J 1

C
- L Ω2N

2

Let Θ = arctan J 1

C
- L Ω2, -R ΩN.  

In[114]:= j = ArcTan B
1

C
- L Ω2, -R ΩF

Out[114]= ArcTanB
1

C
- L Ω

2, -R ΩF

è The two-variable arctangent gives an angle between -Π and Π, taking into account the quadrant of the point. 

Then the expression in the Evaluate[] in the cell below is equivalent to yprovisional. Notice that they have the same denominator,

and  the  equality  of  the  numerators  follows  from  the  angle  addition  formulas  and  then  basic  facts  cosHarctanHx, yLL = x,
sinHarctanHx, yLL = y.  Just to be sure, we ask Mathematica to verify:

In[115]:= FullSimplifyBEvaluateB
a Cos@Ω t + jD

J 1

C
- L Ω2N

2
+ HR ΩL2

�� TrigExpandF == yprovisional,

TransformationFunctions ®

8Automatic, Hð �. 8Cos@ArcTan@d_, n_DD -> d, Sin@ArcTan@d_, n_DD -> n<L &<F

Out[115]= True

So, the general solution is one of the following   The only remaining issue is what is the size of   4 L versus C R2, which affects
the homogeneous solution.  When 4 L is smaller, we have two decaying exponentials.  When 4 L is larger, we have two oscillat-
ing, decaying exponentials.  When they are equal, we have an exponential and a polynomial exponential.   This is the electrical
equivalent of a critically damped harmonic oscillator, in which the system returns to equilibrium as quickly as possible.  Clearly
it is a very interesting case from an engineering standpoint.  So here are the three possible solutions:

In[116]:= yOverDamped@t_D :=
a Cos@Ω t + jD

J 1

C
- L Ω2N

2
+ HR ΩL2

+ c1 ã

-R+ -
4 L

C
+R2

2 L
t

+ c2 ã

-R- -
4 L

C
+R2

2 L
t

yCriticallyDamped@t_D :=
a Cos@Ω t + jD

J 1

C
- L Ω2N

2
+ HR ΩL2

+ c1 ã
J

-C R

2 L
N t

+ c2 t ã
J

-C R

2 L
N t

yUnderDamped@t_D :=

a Cos@Ω t + jD

J 1

C
- L Ω2N

2
+ HR ΩL2

+ c1 ã
J

-C R

2 L
N t

CosB

-
4 L

C
+ R2

2 L
tF + c2 ã

J
-C R

2 L
N t

SinB

-
4 L

C
+ R2

2 L
tF

All in three cases, however, the homogeneous solution decays to zero, leaving just the driven solution asymptotically.   This

piece has its largest amplitude when the denominator is minimized, which for fixed R occurs at 1

C
= L Ω2, or Ω =

1

LC
.  Recall

that 1

LC
 is what we found for the natural frequency of an LC circuit, so the amplitude is maximized at resonance.  Indeed, if

there is no resistance, the amplitude will grow without bound, as we found on problem 3.4.21.  
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All in three cases, however, the homogeneous solution decays to zero, leaving just the driven solution asymptotically.   This

piece has its largest amplitude when the denominator is minimized, which for fixed R occurs at 1

C
= L Ω2, or Ω =

1

LC
.  Recall

that 1

LC
 is what we found for the natural frequency of an LC circuit, so the amplitude is maximized at resonance.  Indeed, if

there is no resistance, the amplitude will grow without bound, as we found on problem 3.4.21.  

Being finished with our assumptions, we reset them by assigning True to $Assumptions

In[119]:= $Assumptions = True

Out[119]= True
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Is that a parameter which I see varying before me?

� Who said we need constant coefficients?

In[120]:= Clear@PofD, yD

PofD@t_D := DPlusS@tD2 -
2

t
DPlusS@tD +

2

t^2
DPlusS@tD0

� Basic solution set 

We can construct a basic solution set in the standard manner

In[122]:= DSolve@8PofD@tD@y@tDD == 0, y@1D == 1, y'@1D == 0<, y@tD, tD
DSolve@8PofD@tD@y@tDD == 0, y@1D == 0, y'@1D == 1<, y@tD, tD
Wronskian@y@tD �. Join@%, %%D, tD

Out[122]= 99y@tD ® 2 t - t2==

Out[123]= 99y@tD ® -t + t2==

Out[124]= -t2

By adding and subtracting the first to/from the second, we would get 9t, t2= is a basic solution set

In[125]:= Clear@y1, y2D
y1@t_D := t
y2@t_D := t^2
PofD@tD@y1@tDD
PofD@tD@y2@tDD
Wronskian@8y1@tD, y2@tD<, tD

Out[128]= 0

Out[129]= 0

Out[130]= t2

� Variation of Parameters

Consider a logarithmic forcing function

In[131]:= f@t_D := Log@tD2

We can construct the 
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In[132]:= yGen@t_D = SimplifyBIntegrateB
-y2@sD f@sD

Wronskian@8y1@sD, y2@sD<, sD
, 8s, 1, t<F y1@tD +

IntegrateB
y1@sD f@sD

Wronskian@8y1@sD, y2@sD<, sD
, 8s, 1, t<F y2@tD +

c1 y1@tD + c2 y2@tD, Assumptions ® t > 0F �� Expand

Out[132]= 2 t + c1 t - 2 t2 + c2 t2 + 2 t2 Log@tD - t2 Log@tD2
+
1

3
t2 Log@tD3

In[133]:= PofD@tD@yGen@tDD �� Simplify
yGen@1D
yGen'@1D

Out[133]= Log@tD2

Out[134]= c1 + c2

Out[135]= c1 + 2 c2

In[136]:= Plot@Evaluate@yGen@tD �. 8c1 ® 0, c2 ® 0<D, 8t, 0, 2<D

Out[136]=

0.5 1.0 1.5 2.0

0.01

0.02

0.03

0.04

0.05

0.06
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Use and Reception

è Code given as black box to students

è advanced CS students can analyze/appreciate it

è Students assigned these problems, including higher order equations

è Students had little difficulty mastering the use these operators and showed they could self correct if started with wrong polynomial

è Emphasize operator/linear algebra view

è There is a single theory of linear equations!
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