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Infinite Dimensional Spectral Theory

The Payoff

Theme: Naco or Anti-Naco?

Definition (Naco)

Naco: Ron Stoppable’s invention. “Half nacho, half taco, all
delicious”. Antonym: mathematical physics.

Definition (Mathematical Physics)

Mathematical Physics: Half math, half physics, not at all delicious.

Definition (Mathematical Physics—Correct)

Mathematical Physics: Half math, half physics, all delicious.
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Theme: Naco or Anti-Naco?

Definition (Naco)

Naco: Ron Stoppable’s invention. “Half nacho, half taco, all
delicious”. Antonym: mathematical physics.

Definition (Mathematical Physics—Wrong)

Mathematical Physics: Half math, half physics, not at all delicious.

Definition (Mathematical Physics—Correct)

Mathematical Physics: Half math, half physics, all delicious.

Itai Seggev The Cauchy Problem for the Wave Operator(s)



The Cauchy Problem
Curved Wave Equations

Finite Dimensional Spectral Theory
Infinite Dimensional Spectral Theory

The Payoff

In the Beginning

If we turn on a light bulb, how does the light spread out?

If we throw a rock into a pond, what ripples will we see?

These and other physical processes are described by wave
equations. We will try to understand how mathematicians deal
with wave equations by analyzing one of the simplest: the classical
or flat-space wave equation. We will then describe what changes
for more complicated equations.
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Statement of the Cauchy Problem

Definition (D’Alembertian)

AKA the classical wave operator in three-dimensions is

� = −∂2
t + ∂2

x + ∂2
y + ∂2

z = −∂2
t +4 = −∂2

t +∇2.

Definition (Cauchy Problem)

Find a function F (~x , t) which obeys

1 �F = 0 in R4.

2 F (~x , 0) = f (~x) ∀ ~x ∈ R3.

3
∂F

∂t
(~x , 0) = g(~x) ∀ ~x ∈ R3.
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The Fourier Transform

Definition (Fourier transform)

The Fourier transform of a function f (~x) is a function f̂ (~k) given
by the formula

f̂ (~k) =
1

(2π)3/2

∫
R3

f (~x)e−i~k·~xd3x .

This transform is invertible:

f (~x) = (f̂ )̌ (~x) =
1

(2π)3/2

∫
R3

f̂ (~k)e i~k·~xd3k.
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Fourier Transform and Derivatives

The Fourier transform changes derivatives into multiplication:

(̂∂x f )(~k) =
1

(2π)3/2

∫
R3

(∂x f (~x)) e−i~k·~xd3x

= − 1

(2π)3/2

∫
R3

f (~x)
(
∂xe

−i~k·~x
)

d3x

= (−)(−ikx)
1

(2π)3/2

∫
R3

f (~x)e−i~k·~xd3x

= ikx f̂ (~k).
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Solution of the Cauchy Problem

Theorem

The solution of the Cauchy problem is

F (~x , t) =

(
f̂ (~k) cos ωt + ĝ(~k)

sin ωt

ω

)̌
,

where ω =
√

k2 =
√

~k · ~k.
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Proof of the Theorem

Need to check three things:

1 Does F (~x , t) have the right initial value? Yes:

F (~x , 0) =

(
f̂ (~k) cos(ω · 0) + ĝ(~k)

sin(ω · 0)

ω

)̌
=

(
f̂ (~k) · 1 + 0

)̌
= f (~x).

2 Does F (~x , t) have the right initial derivative? Yes:

∂F

∂t
(~x , 0) =

(
f̂ (~k)(−ω sin(ω · 0)) + ĝ(~k)

ω cos(ω · 0)

ω

)̌
=

(
0 + ĝ(~k) · 1

)̌
= g(~x).

Itai Seggev The Cauchy Problem for the Wave Operator(s)



The Cauchy Problem
Curved Wave Equations

Finite Dimensional Spectral Theory
Infinite Dimensional Spectral Theory

The Payoff

The Problem
Introduction to the Fourier Transform
The Solution

Proof of the Theorem, II

3 Does F obey the wave equation? Yes. Notice

∇̂F (~k, t) = i~kF̂ (~k, t), and

�̂F (~k, t) =
(
−∂2

t +∇ · ∇F
)̂

(~k) = (−∂2
t − k2)F̂ (~k, t).

Now,

−∂2
t F̂ (~k, t) = −∂2

t

(
f̂ (~k) cos ωt + ĝ(~k)

sin ωt

ω

)
= (−1)2ω2

(
f̂ (~k) cos ωt + ĝ(~k)

sin ωt

ω

)
= k2F̂ (~k, t).

Thus �̂F (~k, t) = (k2 − k2)F̂ (~k, t) = 0, so �F (~x , t) = 0. �
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Wave Equations for Curved Geometries

The D’Alembertian operator � describes waves in flat, three
dimensional space. Waves moving in other surfaces are described a
more general wave operator:

� =
∑
µ,ν

a(x , t)∂µ (aµν(x , t)∂ν) .

µ and ν label the n + 1 coordinates;

∂ν is the partial derivative with respect to the coordinate ν.

a(x , t) and aµν(x , t) are given functions which obey
1 a(x , t) > 0;
2 ∀ x , t, the matrix aµν(x , t) has n positive and one negative

eigenvalues
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The Flat Wave Equation Recovered

Example (D’Alembertian)

Let a(x , y , z , t) = 1, att(x , y , z , t) = −1, axx = ayy = azz = 1, and
all other aµν = 0. Then

� =
∑

µ,ν∈{x ,y ,z,t}

a(x , t)∂µ (aµν(x , t)∂ν) = −∂2
t +4.
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The Wave Equation For Waves on a Sphere

Recall that the unit sphere can be described by coordinates θ, ϕ
related to Cartesian coordinates by

x = sin θ cos ϕ ; y = sin θ sin ϕ ; z = cos θ

Example (Spherical Waves)

Waves on a sphere described by att(θ, ϕ, t) = − sin θ,
aθθ(θ, ϕ, t) = sin θ, aϕϕ(θ, ϕ, t) = csc θ, a(θ, ϕ, t) = csc θ, and all
other aµν = 0. Equivalently

�S2 =
∑

µ,ν∈{θ,ϕ,t}

a(x , t)∂µ (aµν(x , t)∂ν) = −∂2
t +csc θ∂θ(sin θ∂θ)+csc2 θ∂2

ϕ
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Limitations of the Fourier Transform

Previous example illustrates two major problems:

1 �̂S2F (~k, t) 6=
(
−∂2

t − k2
)
F̂ (~k, t) because the coefficients of

the derivatives depend on the variables.

2 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. What do we even mean by the
Fourier transform?
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What to Do?

Two possible solutions:

1 Modify our tool, i.e., find an improved version of the Fourier
transform (microlocal analysis);

2 Find a new tool.

We will take door #2, in particular, using Spectral Theory.
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The Basic Idea

Rewrite the wave equation as ∂2
t F (~x , t) = −(−4F (~x , t)). If we

blithely treat −4 as a “constant”, the solution is

F (~x , t) = cos(
√
−4t)f (~x) + sin(

√
−4t)(−4)−1/2g(~x).

The goal of spectral theory is to give sense to the above
expression.

1 Need to find a “basis” in which the Laplacian is “diagonal”

2 identical in spirit to matrix algebra

3 sensible strategy because the Laplacian is a linear operator
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(Most of) Linear Algebra in One Easy Slide

1 ∃ vectors v , which we represent by n-tuples of R∨C numbers.

2 ∃ matrices M, which take vectors and turn them into new
vectors called Mv .

3 If v 6= 0 and Mv are scalar multiples, then v is an eigenvector.

4 The ratio
(Mv)i

vi
=: λ (where vi 6= 0) is the eigenvalue of v .
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The Spectral Theorem (Easy Version 1)

Theorem

If S is a real, symmetric n × n matrix, then

1 S has n linearly independent eigenvectors;

2 all the eigenvalues of S are real;

3 S is orthogonally diagonalizable,

S = UDU−1,

where D is a diagonal matrix containing the eigenvalues of S,
and U is an orthogonal matrix whose columns are the
corresponding orthogonalized unit eigenvectors of S.
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Why We Care

If we want to compute Sk , then

Sk =
(
UDU−1

)k
= UDkU−1.

Indeed, for any function f :

f (S) = Uf (D)U−1.

Proof: for f analytic,

f (S) =
∞∑

k=0

ak(UDU−1)k =
∞∑

k=0

U(akDk)U−1 = Uf (D)U−1.

For f continuous/Borel, take the limit whatsie whatsie QED.
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Reformulating the Spectral Theorem

Suppose we apply S to some vector v . Then

Sv =
∑

λ

λPλ(v), with Pλ(v) := (v · vλ)vλ

The operators Pλ are called the projection operators of S .
To show use

1 the rules of matrix multiplication,

2 that columns/rows of U/U−1 are eigenvectors of S , and

3 that the diagonal of D consists of corresponding eigenvalues.
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Spectral Theorem, Easy Version 2

Theorem (Real Spectral Theorem)

If S is a real, symmetric n × n matrix, the following identity holds:

S →
∑
λ∈σ

λPλ,

where σ is the spectrum (the collection of eigenvalues) of S and
Pλ is the projection operator onto the eigenspace of λ.
Moreover, σ ⊆ R.

Corollary

For any f : R → R,we can define f (S) :=
∑
λ∈σ

f (λ)Pλ.
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Adjoints and Friends

Definition (Adjoint Matrix)

Let M be a complex n × n matrix. The adjoint matrix M∗ is given
by M̄T .

Definition (Hermitian Matrix)

obeys H∗ = H.

Definition (Unitary Matrix)

obeys U∗ = U−1.
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The Spectral Theorem, First Generalization

Theorem (Complex Spectral Theorem)

If H is a Hermitian matrix, then the following identity holds:

H = UDU−1 →
∑
λ∈σ

λPλ,

with σ ⊆ R the spectrum of H, D a diagonal matrix containing the
eigenvalues of H, U a unitary matrix of unit eigenvectors of H, and
Pλ the projection operator onto the eigenspace of λ.

Corollary

For any f : R → C, f (H) :=
∑
λ∈σ

f (λ)Pλ = Uf (D)U−1.
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Going to Infinite Dimensions

Although the Laplacian is similar to a matrix because it is linear, it
differs as well because it is (in a sense to be explained below) an
∞×∞ matrix. We are thus multiplying and adding infinite rows
of numbers and have to worry about limits. In order to give us
sufficient control over these limits, we need to introduce the
concept of Hilbert space.
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Inner Product Spaces

Definition (Inner Product Space)

A complex vector space V and a form 〈·, ·〉 : V ×V → C which is
1 positive definite:

A 〈v , v〉 > 0 ∀ v 6= 0,
B 〈0, 0〉 = 0.

2 sesquilinear:
A 〈v , αu + w〉 = α 〈v , u〉+ 〈v ,w〉 ∀u, v ,w ∈ V and α ∈ C.

B 〈αu + w , v〉 = ᾱ 〈u, v〉+ 〈w , v〉 ∀u, v ,w ∈ V and α ∈ C.

3 (conjugate/Hermitian) symmetric: 〈u, v〉 = 〈v , u〉.

Notice that ((2A) ∧ (3)) ⇒ (2B) and ((2A) ∧ (2B)) ⇒ (1B).
Note: for V over R, (2) → bilinearity and (3) → symmetry.
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Hilbert Spaces

Definition

The standard metric on an inner product space is given by

d(u, v) =
√
〈u − v , u − v〉.

Definition (Hilbert space H)

An inner product space which is complete (as a metric space) in
the standard metric d(·, ·).
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First Example: Rn

Example (Rn)

Let V = Rn and let 〈v ,w〉 = v · w , so
d(u, v) =

√
(u − v) · (u − v) = ‖u − v‖. We know that Rn is

complete in this metric, so it is a Hilbert space.
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Another Finite Dimensional Example: Cn

Non-Example

Let V = Cn and let 〈v ,w〉 = v · w . Then 〈v , v〉 is not necessarily
positive ⇒ not an inner product space.

Example (Cn)

Let V = Cn and let 〈v ,w〉 = v̄ · w , so that
d(x , y) =

√
(x̄ − ȳ) · (x − y) = ‖x − y‖. Cn is complete in this

metric (it is simply the distance in R2n), so it is a Hilbert space.
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An Infinite Dimensional Example: L2 Spaces

Example (L2 (R))

Let V be the space of all C-valued functions f on R which obey∫
R
|f |2dx < ∞.

The following inner product is well-defined and positive definite:

〈f , g〉 =

∫
R

f̄ g dx .

The distance between two functions f and g is given by

d(f , g) =

√∫
R
|f − g |2dx .

This space, called L2(R), is complete in this metric and is therefore
a Hilbert space. It is infinite dimensional because there infinitely
many linearly independent, mutually orthogonal functions in it.
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Operators

Definition (Operators)

An operator O on a Hilbert space H is a linear map H → H.

Example (Matrices)

An n× n matrix M gives rise to an operator on H = Cn via matrix
multiplication: v → Mv .

Example (Laplacian)

Consider the functions f ∈ L2(R3) with square-integrable first and
second derivatives. The Laplacian 4 is a linear operator on L2

because 4f is still square integrable (and so 4 maps L2 → L2)
and 4af = a4f for any constant a.
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Adjoints

Definition (Adjoint Operator)

The adjoint O∗ of an operator O on a Hilbert space H is the
unique operator which obeys 〈O∗v ,w〉 = 〈v ,Ow〉 ∀ v ,w ∈ H.

Example (Transpose Matrix)

Let M be a matrix operator on Rn. Then M∗ = MT . Proof:〈
MTv ,w

〉
=(MTv)·w =wT (MTv)=(Mw)Tv =v ·(Mw)=〈v ,Mw〉

Example (Adjoint Matrix)

For a complex matrix M acting on Cn, must complex conjugate M,
so M∗ = M̄T ⇒ adjoint operator coincides with adjoint matrix!
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Self-Adjoint Operators

Definition (Self-Adjoint)

A self-adjoint operator obeys H∗ = H.

Example (Hermitan Matrix)

Any Hermitian matrix M is clearly a self-adjoint operator.

Example (Laplacian)

Consider the Laplacian as an operator on L2(R3). For any two
functions f and g in Dom 4 we have

〈f ,4g〉=
∫

R3

f̄4gd3x =−
∫

R3

~∇f̄ · ~∇gd3x =

∫
R3

4f̄ gd3x =〈4f , g〉

Thus, the Laplacian is a self-adjoint operator on L2(R3).
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The Spectral Theorem (Second Generalization)

Theorem (Generalized Spectral Theorem)

Let O be a self-adjoint operator a Hilbert space H. Then the
following identity holds:

O =
∑
λ∈σ

λPλ.

where σ is the spectrum of O and Pλ is the projection operator
onto the eigenspace of λ. Further, σ ⊆ R.

Corollary

For any self-adjoint operator we have

f (O) =
∑

λ

f (λ)Pλ.
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Diagonalizing the Laplacian:

Notice that

4f (~x) =
(
−k2f̂

)̌
(~x)

=

∫
R3

d3k(−k2)
e i~k·~x

(2π)3/2

∫
R3

d3y
e−i~k·~y

(2π)3/2
f (y)

”=”

∫
R3

d3k(−k2)
e i~k·~x

(2π)3/2

〈
e i~k·~x

(2π)3/2
, f

〉
L2(R3)

As 4e i~k·~x = −k2e i~k·~x , last formula looks like the GST, with

∑
λ

→
∫

R3

d3k, λ → −k2, P~k
f → e i~k·~x

(2π)3/2
f̂ (~k)
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Solving the Wave Equation Using Spectral Theory

Recall that our goal for going into spectral theory was to define the
following expression:

F (~x , t) = cos(
√
−4t)f (~x) + sin(

√
−4t) (−4)−1/2 g(~x).

By the corollary to the GST:

F (~x , t) =

∫
R3

d3k

(
cos

(√
−(−k2)t

)
P~k

f +
sin(
√
−(−k2)t)√
−(−k2)

P~k
g

)

=

∫
R3

d3k
e i~k·~x

(2π)3/2

(
cos(ωt)f̂ (~k) +

sin(ωt)

ω
ĝ(~k)

)
=

(
f̂ (~k) cos ωt + ĝ(~k)

sin ωt

ω

)̌
.

Our two methods of solution agree!
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Diagonalizing the Laplacian, a Second Look

At least schematically, the spectral theorem says that a self-adjoint
operator can be can be “diagonalized” H = UDU−1. In Fourier
space, we have that

4̂f (~k) = −k2f̂ (~k).

Thus, in “Fourier space” the “matrix” of the Laplacian is diagonal!

Theorem (Parseval’s Theorem)

The Fourier transform is the unitary transformation which
“diagonalizes” the Laplacian operator 4 on L2(R3), and the
“diagonal operator” D is just multiplication by −k2.
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Solving the Wave Equation Using Spectral Theory, II

Schematically,

F (~x , t)“=”U cos(
√
−Dt)U−1f (~x)+U sin(

√
−Dt)(−D)−1/2U−1g(~x).

Using U−1 →ˆ, D → −k2, and U →ˇ,

F (~x , t) =

(
f̂ (~k) cos ωt + ĝ(~k)

sin ωt

ω

)̌
,

as above.
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The Solution for Waves on a Sphere

Recall our example equation on the sphere:

�S2 = −∂2
t + csc θ∂θ(sin θ∂θ) + csc2 θ∂2

ϕ = −∂2
t +4S2 .

Theorem

The solution to the Cauchy problem on the sphere is given by

F (θ, φ, t)=cos(
√
−4S2t)f (θ, φ)+sin(

√
−4S2t)(−4S2)−1/2g(θ, φ)

for any initial values f ∈ L2(S2) and g ∈ L2(S2).
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The Return of the General Wave Operator

Recall that a general wave operator has the form

� =
∑
µ,ν

a(x , t)∂µ (aµν(x , t)∂ν) .

where aµν is a real (n + 1)× (n + 1) matrix which has n positive
and one negative eigenvalues. Wave equations of this sort describe
the propagation of fundamental particles (like photons and
electrons) in curved spacetime (i.e., a solution of general relativity).
Since we observe photons in the world around us, a spacetime in
which this operator has no solutions is physically unreasonable.
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What I’ve Done

Theorem

(Seggev, 2004) Consider a 4-dimensional spacetime in which the
coefficients of wave equation obey

1 ∂ta(~x , t) = 0 and ∂taµν(~x , t) = 0 ∀ µ, ν;

2 A mild “geometrical” condition.

Then the wave equation can be recast in the form
∂tF (~x , t) = −ihF (~x , t).

Furthermore, h is self-adjoint on an appropriate Hilbert space, so
the Cauchy problem has the solution

F (~x , t) = e−iht f (~x).
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Conclusions

1 The spectral theorem is a powerful tool for analyzing a large
number of partial differential equations.

2 Using the spectral theorem, I have proven that large class of
spacetimes possesses solutions to the wave equation, an
important physical test of those spacetimes.

3 The Fourier transform is a powerful tool for analyzing PDEs
with constant coefficients because it diagonalizes them in
“Fourier space.”

4 Mathematical physics is a Naco, not an Anti-Naco.
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