Dynamics in Stationary, Non-Globally Hyperbolic Spacetimes

Class. Quant. Grav. **21** 2651 (gr-qc/0310016)

Itai Seggev

Enrico Fermi Institute and Department of Physics University of Chicago

> GR17, Dublin July 22, 2004

The Bottom Line

- There always are local solutions to the Klein-Gordon equation.
- In globally hyperbolic spacetimes, there exist global solutions with a host of important properties (below).
- The present work establishes the existence of global solutions to the wave equation in causal, stationary, non-globally hyperbolic spacetimes.
- • Further, there is a prescription for assigning solutions to initial data which preserves important properties of the well-posed problem.

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

(Non-)Global Hyperbolicity

- The domain of dependence $D(\Sigma_0)$ is the set of points p such that every inextendible timelike curve through p intersects Σ_0 .
- Globally hyperbolic spacetimes M have a Cauchy surface Σ_0 (for which $D(\Sigma_0) = M$).

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

Well-posedness

- Global-hyperbolicity quarantees the well-posedness of initial value problem for scalar test fields:
	- there is a unique solution throughout spacetime for given initial data,
	- solutions depend continuously on initial data, and
	- **•** smooth initial data produce smooth solutions.
- In stationary spacetimes, solutions also conserve energy.

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

Non-Globally-Hyperbolic Spacetimes

- In general, non-globally hyperbolic spacetimes have an ill-posed initial value problem.
- Wald (1980) and Wald and Ishibashi (2003) treated the case of static spacetimes in complete generality.
- The present work shows that a prescription exists in a large class of general stationary (not necessarily static) spacetimes.

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

Stationary Spacetimes

- \bullet (*M*, g_{ab}) is stationary if it has an everywhere timelike, complete Killing vector field t^a .
- Black hole solutions are not stationary.
- • A static spacetime has time-reversal symmetry as well.

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

The general plan is as follows:

- **1** Construct a suitable Hilbert space of initial data.
- **²** Convert the PDE problem into a Hilbert space problem.
- **3** Solve the Hilbert space problem.
- **4** Convert back and show that the result is a sensible PDE solution.

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

The Hilbert Space

The energy Hilbert space \mathcal{H}_A is the completion of $C_0^{\infty}(\Sigma) \oplus C_0^{\infty}(\Sigma)$ in the inner product

$$
\langle \Phi \mid \Phi \rangle := \int_\Sigma d\gamma \, T_{ab} n^a t^b.
$$

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

Lapse and Shift

Recall that the lapse function α and shift-vector $\beta^{\texttt{a}}$ are defined by

$$
t^a = \alpha n^a + \beta^a,
$$

where $\beta^a n_a = 0$. Note that $-t^a t_a = \alpha^2 - \beta^2$. an^a β a t^a $x=0$ $t=0$

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

The Klein-Gordon Equation

• The Klein-Gordon equation is a second order hyperbolic differential equation:

$$
(\nabla^a\nabla_a-m^2)\varphi=0.
$$

Using the canonical momentum $\pi = n^a \nabla_a \varphi$, and letting $\Phi = (\varphi, \pi)$, this equation may be rewritten as a first order system:

$$
\frac{\partial}{\partial t}\Phi=-h\Phi.
$$

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

Properties of h

 \bullet *h*'s explicit form is

$$
-h = \left[\begin{array}{cc} \beta^a D_a & \alpha \pi \\ D^a(\alpha D_a) - \alpha m^2 & -(D_a \beta^a) - \beta^a D_a \end{array}\right]
$$

- \bullet h is a 2 \times 2 matrix operator containing only spatial derivatives.
- The form of h depends on the choice of slicing.
- h, acting on $C_0^{\infty}(\Sigma) \oplus C_0^{\infty}(\Sigma)$, is anti-Hermitian in the energy inner product.

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

Assumptions

• Restrict attention to fields with

$$
m^2 > 0. \t\t (PosMass)
$$

 \bullet It is necessary that the slicing obey

$$
\alpha - \frac{\beta_{a}\beta^{a}}{\alpha} \ge \epsilon > 0.
$$
 (NonNull)

This implies that $\alpha \geq \epsilon$ and $\alpha^2 - \beta^2 \geq \epsilon^2$.

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

1 Start with spacetime possesing slicings which obey (NonNull).

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

- **1** Start with spacetime possesing slicings which obey (NonNull).
- **²** Choose any such slicing and construct the space \mathcal{H}_A .

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

- **1** Start with spacetime possesing slicings which obey (NonNull).
- **²** Choose any such slicing and construct the space \mathcal{H}_A .
- **3** Define *h* as above on $C_0^{\infty}(\Sigma) \oplus C_0^{\infty}(\Sigma)$.

Recall that
$$
\frac{\partial}{\partial t}\Phi(t, x) = -h\Phi(t, x)
$$
.

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

- **¹** Start with spacetime possesing slicings which obey (NonNull).
- **²** Choose any such slicing and construct the space $\mathcal{H}_{\mathcal{A}}$.
- **3** Define *h* as above on $C_0^{\infty}(\Sigma) \oplus C_0^{\infty}(\Sigma)$.

Recall that
$$
\frac{\partial}{\partial t}\Phi(t, x) = -h\Phi(t, x)
$$
.

4 Choose a skew-adjoint extension h^{SA} of h and use the spectral theorem to define

$$
\Phi_t(x) = e^{-h^{SA}t} \Phi_0(x).
$$

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

Existence of Extension

Theorem I

Let (M, g_{ab}) be a stationary spacetime, and consider a minimally coupled Klein-Gordon equation subject to (PosMass). If $(\Sigma_t, \gamma_{\mathsf{ab}})$ is a foliation of satisfying (NonNull), then h possesses at least one skew-adjoint extension. Further, this extension h^l is invertible.

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

[Need for Dynamical Prescription](#page-1-0) [Mathematical Formulation](#page-5-0) [Main Results](#page-16-0)

Properties of Solutions

Theorem II

Assume the conditions of Theorem [I](#page-16-1) hold. Let Φ_0 be smooth data of compact support. If Φ is the solution defined via the prescription for any h^{SA} and Ψ the maximal Cauchy evolution of Φ_0 , then

(a) $\Phi = \Psi$ within $D(\Sigma_0)$,

- (b) Φ varies continuously with initial data,
- (c) smooth data of compact support give rise to smooth solutions, and
- (d) Φ conserves energy.

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

[Need for Dynamical Prescription](#page-1-0) [Mathematical Formulation](#page-5-0) [Main Results](#page-16-0)

The Static Case

Theorem III

Let (M, q_{ab}) be a static spacetime obeying (NonNull) in the static slicing. If (PosMass) holds, then h is essentially skew-adjoint. Further, the stationary spacetime prescription agrees with a definite prescription in the Wald-Ishibashi formalism for static spacetimes.

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

[Need for Dynamical Prescription](#page-1-0) [Mathematical Formulation](#page-5-0) [Main Results](#page-16-0)

Conclusions

- A non-empty class of prescriptions for defining dynamics can be given in stationary spacetimes obeying the mild condition (NonNull).
- Any prescription in this class automatically conserves energy.
- In the static case, there is only one prescription in the class. It corresponds to a definite prescription in Wald's formalism.
- • As an added bonus, linear field quantization is possible.

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

[Need for Dynamical Prescription](#page-1-0) [Mathematical Formulation](#page-5-0) [Main Results](#page-16-0)

Open Questions

- Is the extension h^l unique?
- How do the classes in different slicings compare?

• In the static case, this formalism can be modified to include all Wald-Ishibashi dynamics. Is something similar true in the general case?

[Class. Quant. Grav.](#page-0-0) **21** 2651

Itai Seggev

[Need for Dynamical Prescription](#page-1-0) [Mathematical Formulation](#page-5-0) [Main Results](#page-16-0)

