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The Bottom Line

There always are local solutions to the
Klein-Gordon equation.

In globally hyperbolic spacetimes, there exist
global solutions with a host of important
properties (below).

The present work establishes the existence
of global solutions to the wave equation in
causal, stationary, non-globally hyperbolic
spacetimes.

Further, there is a prescription for assigning
solutions to initial data which preserves
important properties of the well-posed
problem.
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(Non-)Global Hyperbolicity

The domain of dependence D(Σ0) is the set
of points p such that every inextendible
timelike curve through p intersects Σ0.

Globally hyperbolic spacetimes M have a
Cauchy surface Σ0 (for which D(Σ0) = M).

t=0Σ0D(    )

x=a x=b
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Well-posedness

Global-hyperbolicity guarantees the
well-posedness of initial value problem for
scalar test fields:

there is a unique solution throughout
spacetime for given initial data,

solutions depend continuously on initial data,
and

smooth initial data produce smooth
solutions.

In stationary spacetimes, solutions also
conserve energy.
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Non-Globally-Hyperbolic Spacetimes

In general, non-globally hyperbolic
spacetimes have an ill-posed initial value
problem.

Wald (1980) and Wald and Ishibashi (2003)
treated the case of static spacetimes in
complete generality.

The present work shows that a prescription
exists in a large class of general stationary
(not necessarily static) spacetimes.
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Stationary Spacetimes

(M, gab) is stationary if it has an everywhere
timelike, complete Killing vector field ta.

Black hole solutions are not stationary.

A static spacetime has time-reversal
symmetry as well.
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Plan of Attack

The general plan is as follows:
1 Construct a suitable Hilbert space of initial

data.
2 Convert the PDE problem into a Hilbert

space problem.
3 Solve the Hilbert space problem.
4 Convert back and show that the result is a

sensible PDE solution.
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The Hilbert Space

The energy Hilbert space HA is the completion of
C∞0 (Σ)⊕ C∞0 (Σ) in the inner product

〈Φ |Φ〉 :=

∫
Σ

dγTabnatb.
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Lapse and Shift

Recall that the lapse function α and shift-vector
βa are defined by

ta = αna + βa,

where βana = 0. Note that −tata = α2 − β2.

αna
β

a

ta

x=0

t=0
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The Klein-Gordon Equation

The Klein-Gordon equation is a second order
hyperbolic differential equation:

(∇a∇a −m2)ϕ = 0.

Using the canonical momentum π = na∇aϕ,
and letting Φ = (ϕ, π), this equation may be
rewritten as a first order system:

∂

∂t
Φ = −hΦ.
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Properties of h

h’s explicit form is

−h =

[
βaDa απ

Da(αDa)−αm2 −(Daβa)−βaDa

]
h is a 2× 2 matrix operator containing only
spatial derivatives.

The form of h depends on the choice of
slicing.

h, acting on C∞0 (Σ)⊕ C∞0 (Σ), is
anti-Hermitian in the energy inner product.
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Assumptions

Restrict attention to fields with

m2 > 0. (PosMass)

It is necessary that the slicing obey

α− βaβ
a

α
≥ ε > 0. (NonNull)

This implies that α ≥ ε and α2 − β2 ≥ ε2.

t’=0
+ Bad!−t=  x
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The Prescription(s)

1 Start with spacetime possesing slicings
which obey (NonNull).

2 Choose any such slicing and construct the
space HA.

3 Define h as above on C∞0 (Σ)⊕ C∞0 (Σ).

Recall that
∂

∂t
Φ(t , x) = −hΦ(t , x).

4 Choose a skew-adjoint extension hSA of h
and use the spectral theorem to define

Φt(x) = e−hSAtΦ0(x).

Notice that Φt is defined at every point ofspace, and the transformation from Φ0 to Φt

is unitary.
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Existence of Extension

Theorem I
Let (M, gab) be a stationary spacetime, and
consider a minimally coupled Klein-Gordon
equation subject to (PosMass). If (Σt , γab) is a
foliation of satisfying (NonNull), then h possesses
at least one skew-adjoint extension. Further, this
extension hI is invertible.
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Properties of Solutions

Theorem II
Assume the conditions of Theorem I hold. Let Φ0

be smooth data of compact support. If Φ is the
solution defined via the prescription for any hSA

and Ψ the maximal Cauchy evolution of Φ0, then

(a) Φ = Ψ within D(Σ0),

(b) Φ varies continuously with initial data,

(c) smooth data of compact support give rise to
smooth solutions, and

(d) Φ conserves energy.
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The Static Case

Theorem III
Let (M, gab) be a static spacetime obeying
(NonNull) in the static slicing. If (PosMass) holds,
then h is essentially skew-adjoint. Further, the
stationary spacetime prescription agrees with a
definite prescription in the Wald-Ishibashi
formalism for static spacetimes.
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Conclusions

A non-empty class of prescriptions for
defining dynamics can be given in stationary
spacetimes obeying the mild condition
(NonNull).

Any prescription in this class automatically
conserves energy.

In the static case, there is only one
prescription in the class. It corresponds to a
definite prescription in Wald’s formalism.

As an added bonus, linear field quantization
is possible.
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Open Questions

Is the extension hI unique?

How do the classes in different slicings
compare?

0Σ

1Σ

t=0

x=a x=b

2Σ

Σ

Σ1

Σ2

’

’

’

0

In the static case, this formalism can be
modified to include all Wald-Ishibashi
dynamics. Is something similar true in the
general case?
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