Dynamics in Stationary, Non-Globally Hyperbolic Spacetimes

Class. Quant. Grav. 21 2651 (gr-qc/0310016)

Itai Seggev

Enrico Fermi Institute and Department of Physics University of Chicago

> GR17, Dublin July 22, 2004

The Bottom Line

- There always are local solutions to the Klein-Gordon equation.
- In globally hyperbolic spacetimes, there exist global solutions with a host of important properties (below).
- The present work establishes the existence of global solutions to the wave equation in causal, stationary, non-globally hyperbolic spacetimes.
- Further, there is a prescription for assigning solutions to initial data which preserves important properties of the well-posed problem.

Class. Quant. Grav. 21 2651

Itai Seggev

Need for Dynamical Prescription Mathematical Formulation Main Results Conclusions and Open Question

Sac

(Non-)Global Hyperbolicity

- The domain of dependence D(Σ₀) is the set of points p such that every inextendible timelike curve through p intersects Σ₀.
- Globally hyperbolic spacetimes *M* have a Cauchy surface Σ₀ (for which *D*(Σ₀) = *M*).

Class. Quant. Grav. 21 2651

Itai Seggev

Well-posedness

- Global-hyperbolicity guarantees the well-posedness of initial value problem for scalar test fields:
 - there is a unique solution throughout spacetime for given initial data,
 - solutions depend continuously on initial data, and
 - smooth initial data produce smooth solutions.
- In stationary spacetimes, solutions also conserve energy.

Class. Quant. Grav. 21 2651

Itai Seggev

Non-Globally-Hyperbolic Spacetimes

- In general, non-globally hyperbolic spacetimes have an ill-posed initial value problem.
- Wald (1980) and Wald and Ishibashi (2003) treated the case of static spacetimes in complete generality.
- The present work shows that a prescription exists in a large class of general stationary (not necessarily static) spacetimes.

Class. Quant. Grav. 21 2651

Itai Seggev

Stationary Spacetimes

- (*M*, *g*_{ab}) is stationary if it has an everywhere timelike, complete Killing vector field *t*^a.
- Black hole solutions are not stationary.
- A static spacetime has time-reversal symmetry as well.

Class. Quant. Grav. 21 2651

Itai Seggev

The general plan is as follows:

- Construct a suitable Hilbert space of initial data.
- Convert the PDE problem into a Hilbert space problem.
- Solve the Hilbert space problem.
- Convert back and show that the result is a sensible PDE solution.

Class. Quant. Grav. 21 2651

Itai Seggev

The Hilbert Space

The energy Hilbert space $\mathcal{H}_{\mathcal{A}}$ is the completion of $C_0^{\infty}(\Sigma) \oplus C_0^{\infty}(\Sigma)$ in the inner product

$$\langle \Phi | \Phi \rangle := \int_{\Sigma} d\gamma T_{ab} n^a t^b.$$

Class. Quant. Grav. 21 2651

Itai Seggev

Lapse and Shift

Recall that the lapse function α and shift-vector β^a are defined by

$$t^{a} = \alpha n^{a} + \beta^{a},$$

where $\beta^a n_a = 0$. Note that $-t^a t_a = \alpha^2 - \beta^2$.

Class. Quant. Grav. 21 2651

Itai Seggev

Need for Dynamical Prescription Mathematical Formulation Main Results Conclusions and Open Question:

Sac.

The Klein-Gordon Equation

 The Klein-Gordon equation is a second order hyperbolic differential equation:

 $(\nabla^a \nabla_a - m^2)\varphi = 0.$

• Using the canonical momentum $\pi = n^a \nabla_a \varphi$, and letting $\Phi = (\varphi, \pi)$, this equation may be rewritten as a first order system:

$$\frac{\partial}{\partial t}\Phi=-h\Phi.$$

Itai Seggev

Properties of *h*

h's explicit form is

$$-h = \begin{bmatrix} \beta^{a} D_{a} & \alpha \pi \\ D^{a} (\alpha D_{a}) - \alpha m^{2} & -(D_{a} \beta^{a}) - \beta^{a} D_{a} \end{bmatrix}$$

- *h* is a 2 × 2 matrix operator containing only spatial derivatives.
- The form of *h* depends on the choice of slicing.
- *h*, acting on C₀[∞](Σ) ⊕ C₀[∞](Σ), is anti-Hermitian in the energy inner product.

Class. Quant. Grav. 21 2651

Itai Seggev

Assumptions

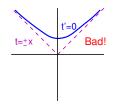
Restrict attention to fields with

 $m^2 > 0.$ (PosMass)

It is necessary that the slicing obey

$$\alpha - \frac{\beta_{\mathbf{a}}\beta^{\mathbf{a}}}{\alpha} \ge \epsilon > \mathbf{0}.$$
 (NonNull)

This implies that $\alpha \ge \epsilon$ and $\alpha^2 - \beta^2 \ge \epsilon^2$.



Class. Quant. Grav. 21 2651

Itai Seggev

 Start with spacetime possesing slicings which obey (NonNull). Class. Quant. Grav. 21 2651

Itai Seggev

- Start with spacetime possesing slicings which obey (NonNull).
- Choose any such slicing and construct the space H_A.

Class. Quant. Grav. 21 2651

Itai Seggev

- Start with spacetime possesing slicings which obey (NonNull).
- Choose any such slicing and construct the space H_A.
- **Output** Define *h* as above on $C_0^{\infty}(\Sigma) \oplus C_0^{\infty}(\Sigma)$.

Recall that
$$\frac{\partial}{\partial t}\Phi(t,x) = -h\Phi(t,x).$$

Class. Quant. Grav. 21 2651

Itai Seggev

- Start with spacetime possesing slicings which obey (NonNull).
- Choose any such slicing and construct the space H_A.
- Solution Define *h* as above on $C_0^{\infty}(\Sigma) \oplus C_0^{\infty}(\Sigma)$.

Recall that
$$\frac{\partial}{\partial t}\Phi(t,x) = -h\Phi(t,x)$$
.

Choose a skew-adjoint extension h^{SA} of h and use the spectral theorem to define

$$\Phi_t(\mathbf{x}) = e^{-h^{\mathsf{SA}}t} \Phi_0(\mathbf{x}).$$

Class. Quant. Grav. 21 2651

Itai Seggev

Need for Dynamical Prescription Mathematical Formulation Main Results Conclusions and Open Question:

Sac

Existence of Extension

Theorem I

Let (M, g_{ab}) be a stationary spacetime, and consider a minimally coupled Klein-Gordon equation subject to (PosMass). If (Σ_t, γ_{ab}) is a foliation of satisfying (NonNull), then h possesses at least one skew-adjoint extension. Further, this extension h^l is invertible. Class. Quant. Grav. 21 2651

Itai Seggev

Need for Dynamical Prescription Mathematical Formulation Main Results

Properties of Solutions

Theorem II

Assume the conditions of Theorem I hold. Let Φ_0 be smooth data of compact support. If Φ is the solution defined via the prescription for any h^{SA} and Ψ the maximal Cauchy evolution of Φ_0 , then

- (a) $\Phi = \Psi$ within $D(\Sigma_0)$,
- (b) Φ varies continuously with initial data,
- (c) smooth data of compact support give rise to smooth solutions, and
- (d) Φ conserves energy.

Class. Quant. Grav. 21 2651

Itai Seggev

Need for Dynamical Prescription Mathematical Formulation Main Results

The Static Case

Theorem III

Let (M, g_{ab}) be a static spacetime obeying (NonNull) in the static slicing. If (PosMass) holds, then h is essentially skew-adjoint. Further, the stationary spacetime prescription agrees with a definite prescription in the Wald-Ishibashi formalism for static spacetimes. Class. Quant. Grav. 21 2651

Itai Seggev

Need for Dynamical Prescription Mathematical Formulation Main Results

Conclusions

- A non-empty class of prescriptions for defining dynamics can be given in stationary spacetimes obeying the mild condition (NonNull).
- Any prescription in this class automatically conserves energy.
- In the static case, there is only one prescription in the class. It corresponds to a definite prescription in Wald's formalism.
- As an added bonus, linear field quantization is possible.

Class. Quant. Grav. 21 2651

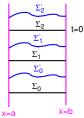
Itai Seggev

Need for Dynamical Prescription Mathematical Formulation Main Results Conclusions and Open Questions

□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□</li

Open Questions

- Is the extension h^l unique?
- How do the classes in different slicings compare?



 In the static case, this formalism can be modified to include all Wald-Ishibashi dynamics. Is something similar true in the general case? Class. Quant. Grav. 21 2651

Itai Seggev

Need for Dynamical Prescription Mathematical Formulation Main Results Conclusions and Open Questions