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(Non-)Global Hyperbolicity

t=0Σ0D(    )

x=a x=b
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The domain of dependence
D(Σ0) is the set of points p such
that every inextendible timelike
curve through p intersects Σ0.

Globally hyperbolic spacetimes
M have a Cauchy surface Σ0 for
which D(Σ0) = M.
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Well-posedness

Global-hyperbolicity guarantees the
well-posedness of initial value problem for
scalar test fields:

There is a unique solution throughout
spacetime for given initial data, and

solutions depend continuously on initial data.

In general, non-globally hyperbolic
spacetimes have an ill-posed initial value
problem.
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The Goal

There always are local solutions to the wave
equation. The present work is concerned
with global solutions.

It is desirable to find a space of solutions
which preserve important properties of the
well-posed problem, i.e., find a prescription
for assigning solutions to initial data.

There may be more than one such space.
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Properties to Preserve

The prescription for defining dynamics in
non-globally hyperbolic spacetimes should do the
following:

solve the wave equation,

agree with the PDE solution within the
domain of dependence,

conserve energy,

be smooth when initial data is smooth and of
compact support, and

depend continuously on initial data.
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Plan of Attack

The general plan is as follows:
1 Construct a suitable Hilbert space of initial

data.
2 Convert the PDE problem into some Hilbert

space problem.
3 Solve the Hilbert space problem.
4 Convert back and show that the result is a

sensible PDE solution.
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Selected History

Wald (1980) studied Klein-Gordon fields on
static spacetimes. He gave a class of
prescriptions using the “spatial part” of the
KG equation as an operator on an
appropriate Hilbert space of square
integrable initial data.

Wald and Ishibashi (2003) proved that any
“reasonable” prescription is in the class
proposed by Wald.

This work gives a similar class of
prescriptions for general stationary spacetimes
but using an energy Hilbert space.
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Applications of Prescriptions

Wald’s prescription has been used in at least four
different lines of research:

field quantization

stability of naked singularities

definition of “quantum singularity”

AdS/CFT.
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Stability of Naked Singularities

The Schwarzschild solution is stable against
linear perturbation in its initial data.

I+

i

I−

Naked singularities give rise to ill-posed initial
value problems. What does it mean to
perturb the singularity?

Stalker has proven a “Stichartz” (decay)
estimate for spherically symmetric scalars
evolving according to one Wald prescription
on a super-extremal Reissner-Nordström
background.

This estimate establishes mode-by-mode
stability.
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Definition of “quantum singularity”

Geodesic incompleteness is the generally
accepted definition of a singularity in
classical GR.

Horowitz and Marolf proposed that a static
spacetime be quantum mechanically
non-singular if the class of Wald prescriptions
contains only one member.

Some classically singular spacetimes are
quantum mechanically non-singular (e.g.,
dilatonic black holes), but some classically
non-singular spacetimes become quantum
mechanically singular (e.g., AdS).
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AdS/CFT

AdS/CFT relates the behaviour of a
“boundary” conformal field theory to the
behaviour of a “bulk” theory living on all of
AdS.

There is more than one possible bulk theory!

Wald and Ishibashi have explicitly
characterized all the dynamics in the Wald
class for AdS.

t=0

ir=0
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Stationary Spacetimes

(M,gab) is stationary if it has a Killing vector
field ta which is everywhere timelike.

Black hole solutions are not considered
stationary.

Attention will be restricted to stably causal
spacetimes.

Examples
AdS, super-extremal Reissner-Nordström,
cosmic strings.

t=0

ir=0 r=0
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r=0

t=0

Non-examples: sub-extremal
Reissner-Nordström, “unlifted” AdS.
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Lapse & Shift

Let (Σ0,γab) be a spatial slice. The projection
of ta onto the unit normal na to Σ0 is called
the lapse function α, and this defines the
shift-vector βa via

ta = αna + βa.

αna

β
a

x=0

t=0

at

Note that βana = 0 and −tata = α2 − β2.

If there exists a slicing in which βa = 0, then
(M,gab) is called static.
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The Klein-Gordon Equation
The Klein-Gordon equation is a second order
hyperbolic differential equation:

(∇a∇a + m2)ϕ = 0.

Using the canonical momentum π = na∇aϕ,
it may be rewritten as a first order system:

∂ϕ

∂t
= βaDaϕ+ απ

∂π

∂t
=

[
Da(αDa)− αm2

]
ϕ−

[
(Daβ

a) + βaDa
]
π

In the above, Da is the covariant derivative of
(Σ0, γab).

Let Φ = (ϕ, π) and rewrite the above as

∂

∂t
Φ = −hΦ.
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The Klein-Gordon Equation:
Static Spacetimes

In the static slicing, the above becomes

∂ϕ

∂t
= απ

∂π

∂t
=

[
Da(αDa)− αm2

]
ϕ

These can be combined to

∂2

∂t2ϕ = −Sϕ, S = −αDa(αDa) + α2m2.

S is Hermitian w.r.t. the volume element α−1dγ:∫
Σ
α−1dγ ϕ(Sψ) =

∫
Σ
α−1dγ (Sϕ)ψ.
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The Hilbert Space

The classical Hamiltonian in this slicing is

H(Φ) =
1
2

∫
Σ

dγΦTAΦ, A :=

[
0 −1
1 0

]
h

Note that this is equal to
∫
Σ dγTabnatb. The

energy Hilbert space HA is the completion of
C∞0 (Σ)⊕ C∞0 (Σ) in the inner product

〈Φ |Ψ〉 :=

∫
Σ

dγΦTAΨ.

h is anti-Hermitian in the energy inner product.
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Assumptions

To ensure that all the elments of HA are
functions, assume that

m2 > 0. (PosMass)

Also assume that

α− βaβ
a

α
≥ ε > 0. (NonNull)

This implies that α ≥ ε and α2 − β2 ≥ ε2.

t’=0
+ Bad!−t=  x
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The Symplectic Form

The two assumptions (PosMass) and (NonNull)
ensure that the symplectic form

σ [(φ1, π1), (φ2, π2)] =

∫
dγ(φ1π2 − φ2π1)

is continuous on HA. This continuity will be
crucial in the coming analysis.
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The Prescription(s)

1 Choose a slicing obeying (NonNull) and
construct the space HA.

2 Define the operator h as above.

Recall that
∂

∂t
Φ(t , x) = −hΦ(t , x).

3 One would like to define the solution as
Φt(x) = e−htΦ0(x).

4 Therefore, choose a skew-adjoint extension
hSA of h and use the spectral theorem to
define

Φt(x) = e−hSAtΦ0(x).

Notice that Φt is defined at every point of space,
and the transformation from Φ0 to Φt is unitary.
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The Definition of an Operator

A linear operator A on H is a map from a
dense vector subspace of H, called Dom A,
to H.

If Dom C ⊇ Dom A and Cψ = Aψ ∀
ψ ∈ Dom A, then C is an extension of A,
denoted C ⊇ A.

For a bounded operator B, there is always a
unique continuous extension to all of H. It is
called B̄, the closure of B.

For an unbounded operator, taking the
closure will produce an operator which is not
defined on all of H.

Indeed, an unbounded anti-Hermitian
operator can never be defined on all of H.
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Adjoints et cetera

Definition
Dom A∗ contains u ∈ H such that ∃v ∈ H
with 〈u |Aψ〉 = 〈v |ψ〉 ∀ ψ ∈ Dom A, and
A∗u = v .

An operator is (anti-)Hermitian if
〈AΦ |Ψ〉 = (−) 〈Φ |AΨ〉 ∀ Φ,Ψ ∈ Dom A. For
these, Dom A ⊆ Dom A∗.

A self-adjoint (skew-adjoint) operator is an
(anti-)Hermitian operator such that
Dom A = Dom A∗.

If C ⊆ A, then A∗ ⊇ C∗. Does an
(anti-)Hemitian operator always have a
self-adjoint (skew-adjoint) extension?

No!
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von Neumann’s Theorem

Let A be a Hermitian operator an a complex
Hilbert space, and let n± = Dim Ker(A∗ ∓ i).

von Neumann’s Theorem says A has
self-adjoint extensions iff n+ = n−, in which
case there is a U(n+) family of extensions.

If n+ = n− = 0, A is called essentially
self-adjoint.

If A is an operator on a real Hilbert space,
look at self-adjoint extensions of the
complexified operator with domain invariant
under complex conjugation.

For a skew-adjoint operator A, look at iA.
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The Spectral Theorem

The spectral theorem applies to both self-
and skew-adjoint operators.

The key idea of the spectral theorem is that
the operator can be represented as a sum (or
integral) over orthogonal projectors:

A =
∑

λ∈Spec

λPλ.

For a skew-adjoint operator, the spectrum is
purely imaginary. Hence

eA =
∑
λ∈iR

eλPλ

is a unitary operator.

Different self-adjoint extensions will have
completely different spectral resolutions.
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h Revisited

h, as a differential operator, is only
anti-symmetric on C∞0 data.

Dom h∗ will aways be larger because it
contains less differentiable functions in its
domain.

The key question is what are n+ and n−?

I don’t know.

I explicitly found one extension without
computing the indices.
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2 Define the operator h as above.
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∂

∂t
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4 Therefore, choose a skew-adjoint extension
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Notice that Φt is defined at every point of space,
and the transformation from Φ0 to Φt is unitary.
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Existence of Extension

Theorem I
Let (M,gab) be a stationary spacetime, and
consider a minimally coupled Klein-Gordon
equation subject to (PosMass). If (Σt , γab) is a
foliation of satisfying (NonNull), then h possesses
at least one skew-adjoint extension . Further, this
extension hI is invertible and preserves the
symplectic form.

Outline of Proof: Since σ is continuous and
skew-symmetric, it has an associated
skew-adjoint operator T . T−1 can be shown to
exist as a skew-adjoint operator, which is also an
extension of h.
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Properties of Solutions

Theorem II
Assume the conditions of Theorem I hold. Let Φ0

be smooth data of compact support, Φt the family
of vectors defined via the prescription, and Ψ the
maximal Cauchy evolution of Φ0. If
Φ(p, t) = Φt(p), then Φ = Ψ within the domain of
dependence D(Σ0). Also, smooth data of
compact support give rise to smooth solutions.

Idea of Proof: The failure of the solutions to
agree within the domain of dependence would
violate local conservation of the symplectic form.
Elliptic regularity shows that Φ is smooth on each
fixed slice. Together, these show that Φ is smooth.

More details on the proof.
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The Static Case

Theorem III
Let (M,gab) be a static spacetime obeying
(NonNull) in the static slicing. If (PosMass) holds,
then h is essentially skew-adjoint. Further, the first
order prescription agrees with Wald’s prescription:

ϕt = cos
(

S
1
2
F t

)
ϕ0 + S

− 1
2

F sin
(

S
1
2
F t

)
απ0

where SF is the Friedrichs extension of S, the
spatial part of the Klein-Gordon equation,
regarded as on operator on L2(α−1dγ).

Ingredients of proof: Positivity of energy and
lots of calculation.
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The Static Case

Theorem III
Let (M,gab) be a static spacetime obeying
(NonNull) in the static slicing. If (PosMass) holds,
then h is essentially skew-adjoint. Further, the first
order prescription agrees with Wald’s prescription:

ϕt = cos
(

S
1
2
F t

)
ϕ0 + S

− 1
2

F sin
(

S
1
2
F t

)
απ0

where SF is the Friedrichs extension of S, the
spatial part of the Klein-Gordon equation,
regarded as on operator on L2(α−1dγ).

Ingredients of proof: Positivity of energy and
lots of calculation.

More on the Friedrichs extension.
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Field Quantization: The Past

Kay showed that in a globally hyperbolic
spacetime, h is essentially skew-adjoint.

That proof depended on the well-posedness
of the initial value problem.

Further, |hI |−1 is an appropriate “complex
structure” for field quantization. This complex
structure provides the rigorous definition of
the “frequency splitting” vacuum.

A complex structure is the thing which tells
you what are the creation operators and what
are the annihilation operators.
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Field Quantization: The Present

In the present case, the dynamics are not
well-defined a priori and h need not be
essentially skew-adjoint.

However, it can be shown that |hI |−1 is still an
appropriate complex structure for the
quantum theory.

First general result in non-globally hyperbolic
spacetimes?
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Conclusions

A non-empty class of prescriptions for
defining dynamics can be given in stationary
spacetimes obeying the mild condition
(NonNull).

Any prescription in this class automatically
conserves energy.

In the static case, there is only one
prescription in the class. It corresponds to a
definite prescription in Wald’s formalism.

As an added bonus, linear field quantization
is possible.
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Open Questions

Is h essentially skew-adjoint?

How do the classes in different slicings
compare?

0Σ

1Σ

t=0

x=a x=b

2Σ

Σ

Σ1

Σ2

’

’

’

0

In the static case, this formalism can be
modified to include all “reasonable”
dynamics. Is something similar true in the
general case?
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Proof of Theorem II, Part 1

Suppose ∆(t , ·) := Ψ(t , ·)− Φt 6= 0.

Σ0

0Σ

}R

Ξ
Σ

1t

Supp 

S

D(   )

Let Ξ(t1, ·) be a smooth
function such that

σ (Ξ(t1, ·),∆(t1, ·)) 6= 0

Extend Ξ(t1, ·) to a smooth
solution of Klein-Gordon in
the whole region R.

But, ∆(0, ·) = 0, so σ (Ξ(0, ·),∆(0, ·)) = 0

Contradiction!

Thus, Φ = Ψ within D(Σ0).



Proof of Theorem II, Part 2

Notice that HA ⊆ H1
loc ⊕ H0

loc.

By Stone’s Theorem

Φ0 ∈ DomhSA ⇔ Φt ∈ DomhSA ⇔ hΦt ∈ H1
loc ⊕ H0

loc.

Let X (F ) := −
〈
hSAF

∣∣ Φt
〉
A .

From the explicit from of A, X ∈ H−1
loc ⊕ H−1

loc .

X obeys the differential equation

X = AhΦt =

[ (
α2γab + βaβb

)
DaDbπt + (Daβ

a)DbDbϕt + l.o.t(
α2γab + βaβb

)
DaDbϕt + l.o.t

]
.

Thus, πt ∈ H1
loc and ϕt ∈ H2

loc. Induct.

Since Φt = Ψ(t , ·) within D(Σ), smoothness on each slice implies
smoothness throughout spacetime.

Back to Theorem II
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Quadratic Forms

Let A be a positive Hermitian operator on H.

Associated to A is a quadratic form

Q(φ, ψ) = 〈φ |Aψ〉 .

The Friedrichs form domain, QF , is the
completion of Dom A in the norm

〈φ |φ〉F = 〈φ |φ〉+ 〈φ |Aφ〉 .

Note that QF ⊆ H, and that Q naturally
extends to a larger quadratic form QF on QF .
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The Friedrichs Extension

Let A be a positive Hermitian operator on H.

The Friedrichs extension AF of A is the
unique self-adjoint operator obeying

Dom A1/2
F = QF , QF (φ, ψ) =

〈
A1/2

F φ
∣∣∣ A1/2

F ψ
〉

.

Any other positive self-adjoint extension AE

of A obeys

Dom A1/2
E ⊇ Dom A1/2

F .

In this sense, the Friedrichs extension is the
smallest positive self-adjoint extension of A.
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Other Dynamics: The Problem

Wald and Ishibashi showed that any reasonable
prescription must be of the form

ϕt = cos
(

S
1
2
E t

)
ϕ0 + S

− 1
2

E sin
(

S
1
2
E t

)
απ0.

Theorem III says that h is essentially skew-adjoint.
What happened to the other dynamics?



gr-qc/0310016

Itai Seggev

Proof of Theorem II

The Friedrichs Extension

Definition of “Reasonable”

Higher Spin Fields

Interacting Fields

Other Dynamics: The Solution

To reproduce the dynamics corresponding SE :

1 Define H̃A := Dom S1/2
E ⊕ L2(α−1dγ).

2 Define h̃ on H̃A using the spectral resolution
of SE on L2(α−1dγ).

3 h̃ is already skew-adjoint, so the solution is

Φt = e−h̃tΦ0.

Back to Theorem III
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Definition of “Reasonable”

Wald and Ishibashi said a “reasonable”
prescription for static spacetimes must:

solve the wave equation,

agree with the PDE solution within the
domain of dependence,

conserve energy,

be smooth when initial data is smooth and of
compact support,

depend continuously on initial data,

be time symmetric, and

obey a certain limit condition.

Notice that the first 5 properties were required for
the present prescription as well.
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Higher Spin Fields

Example
Maxwell’s equations: ∇a∇aAb − RbaAa = 0.

Components do not decouple, so cannot use
scalar equations.

The “vector energy”
∫

S dγAb∇a∇aAb is not
positive-definite.

Spin s > 1 fields not locally well posed, in
general.

Conclusion: a general prescription such as was
given here would be difficult to achieve.
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Interacting Fields

Example
A polynomial non-linearity ∇a∇aϕ = P(ϕ).

Probably the best that can be done is
perturbation theory:

∇a∇aϕ
(n+1) = sn

(
P, ϕ(0), . . . , ϕ(n)

)
.

Need to solve the free equation with source:

∂Φ(p, t)
∂t

= −hΦ(p, t)+Sn(p, t), Sn =
1
α

(
0
sn

)
.

Solution: Φin
t = e−ht

∫ t

0
ehτSn(τ)dτ + e−htΦ0.

However, Sn may not lie in HA.

For quantum theory, need to also do
renormalization.
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