

Itai Seggev

Department of Mathematics Knox College

17th Midwest Relativity Meeting

November 2, 2007

Causets Classical Sequential Growth

Motivation

Reminder

Points p and q in a (causal) spacetime will obey one of three relations: p is to the future of q, to the past of q, or spacelike related to q.

Theorem (Malament)

The points of a manifold (M,g) together with their causal structure specify the pair (M,g) up to conformal equivalence.

In 4d, this gives topology and 9 of 10 metric components.

Going Discrete

- "Missing" metric component is local volume element
- If discretizing spacetime, natural to assume one point per Plank volume
- Given two points, only finitely many points in causal diamond.

Going Discrete

- "Missing" metric component is local volume element
- If discretizing spacetime, natural to assume one point per Plank volume
- Given two points, only finitely many points in causal diamond.
- Causal sets naturally encode geometry with a minimal physical hypothesis.

Causets Classical Sequential Growth

Definition (Causal Set)

A causal set, or causet, is a point set C together with a locally finite partial order.

"Locally finite" means $|\{z \mid x < z < y\}| < \infty \ \forall x, y \in C$.

< 17 ▶

Classical Dynamics???

- Need to implement Einstein's equations somehow
- Eventually lead to quantum dynamics using sum over histories
- Implemented as a stochastic growth model of *n*-element causet to n + k element causet.

Classical Sequential Growth

- Rideout and Sorkin classified all models which obey
 - general covariance
 - 2 Bell causality
- Two basic varieties:
 - transitive percolation
 - everything else

Classical Sequential Growth

- Rideout and Sorkin classified all models which obey
 - general covariance
 - 2 Bell causality
- Two basic varieties:
 - **1** transitive percolation \leftarrow simple, long-studied, one parameter: p
 - everything else

< 17 ▶

Classical Sequential Growth

- Rideout and Sorkin classified all models which obey
 - general covariance
 - 2 Bell causality
- Two basic varieties:
 - transitive percolation
 - 2 generalized percolation \leftarrow more challenging

Generalized Percolation

Given parameters nonnegative $\{t_1, t_2, t_3, \ldots\}$

- Choose $0 \le k \le n$ with relative probability $t_k \begin{pmatrix} n \\ k \end{pmatrix}$
- Randomly choose "proto-precursor" of k elements with uniform probability.
- **③** Enforce implied relations using transitive closure.

People Goals Implementation

Who We Are

Definition $\left(\frac{Dq}{Dg}\right)$

Discrete Quantum Dynamics Group.

- Luca Bombelli (University of Mississippi)
- Julio Tafoya (University of Mississippi)
- Itai Seggev (Knox College)
- Sam Watson (University of Mississippi)

- ∢ 🗇 ▶

E ▶

Physics Goals

Perform a wide variety of analyses on a Causet

- Myrheim Meyer dimension
- midpoint dimension
- ordering fraction
- number and location of posts
- height, width (future)
- Ompute quantities locally as well as globally.
- Sector Se
- Ossibly add other dynamics.

- ∢ 🗇 ▶

People Goals Implementation

Programming Goals

- Easy to add percolation "types" (functions for generating t_n).
- Minimal external dependencies.
- In Portable.
- Ilegant.
- S Reasonably efficient, but not at the cost of the above.

- ∢ 🗇 ▶

Basic Choices

- Language: C++
- Use GSL for random number generator and $\Gamma(z)$.
- Implement our own "large double" type.
- Representation of causet hidden inside of class

 \Rightarrow all analysis functions access the causet using class methods

• At present time, represent causet as an adjacency matrix implemented as a vector< vector<bool> >.

Achtung!

This is the computer geek slide. Our regularly scheduled physics program will resume on the next slide.

Define a class coupling_t which has a "pure virtual function" called nthconstant

```
class coupling_t {
  public:
    virtual large_double_t nthconstant(int n)=0;
};
```

Achtung!

This is the computer geek slide. Our regularly scheduled physics program will resume on the next slide.

- Define a class coupling_t which has a "pure virtual function" called nthconstant
- To define a new coupling type, define a class which inherits from coupling_t

```
class allones_t : public coupling_t {
  public:
    allones_t() {one=double_to_ldt(1.0);}
    large_double_t nthconstant(int n) {return one;}
  private:
    large_double_t one;
};
```

< 口 > < 同 >

A B + A B +

Achtung!

This is the computer geek slide. Our regularly scheduled physics program will resume on the next slide.

- Define a class coupling_t which has a "pure virtual function" called nthconstant
- To define a new coupling type, define a class which inherits from coupling_t
- The general percolation method takes as an argument a coupling_t*, so the coupling type is determined at run time.

Achtung!

This is the computer geek slide. Our regularly scheduled physics program will resume on the next slide.

```
class coupling_t {
public:
   virtual large_double_t nthconstant(int n)=0;
}:
class allones_t : public coupling_t {
public:
    large_double_t nthconstant(int n) {return one;}
. . .
};
class causet t {
public:
    void seed_causet_gen_perc(coupling_t *couplingConsnats);
. . .
};
                                                  イロト イポト イヨト イヨト
```

A New Proof

- Alon, Bollobas, et al. proved that for transitive percolation and any p > 0, infinitely many posts occur with probability 1.
- As part of our preparation for this project, we came up with a significantly simplified "by-hand" proof.
- Forthcoming paper.

Accomplishments Status and Future Directions

Sample Output

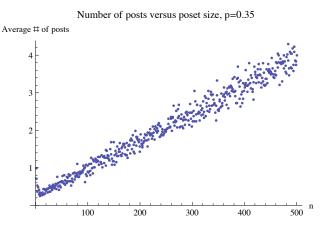
The program ./csg_simulation was compiled from an unmodified copy of revision 80 and was run with arguments -N 5000 --transitivePercolation --probability 0.3 --p ostsAll --myrheimMeyerDimension --midpointDimension --orderingFraction

The number of posts is 9.

The posts are 877, 3114, 3115, 4209, 4210, 4211, 4354, 4355, and 4356.

Posts			Volume	MSD	MMD	Ordering Fraction
877	-	3114	2237	1.000645	1.007679	0.995737
3114	-	3115	1	1.000000	1.000000	1.000000
3115	-	4209	1094	1.007927	1.015933	0.991146
4209	-	4210	1	1.000000	1.000000	1.000000
4210	-	4211	1	1.000000	1.000000	1.000000
4211	-	4354	143	1.040642	1.105073	0.942988
4354	-	4355	1	1.000000	1.000000	1.000000
4355	-	4356	1	1.000000	1.000000	1.000000

The midpoint scaling dimension is 1.002894.


The 2-chain abundance Myrheim-Meyer dimension is 1.003446.

The ordering fraction is 0.998086.

イロト イポト イヨト イヨト

Accomplishments Status and Future Directions

Sample Data

Itai Seggev Causet Dynamics with Dq/Dg.

< 一型

What Works

- Transitive percolation (nothing new)
- Proof-of-concept generalized percolation with t_n simulating transitive percolation or t_n = 1 ∀ n.
- Non-sequential Minkowski "sprinkling".
- Finding posts
- Dimension estimation, both locally and globally.

- ∢ fi →

Accomplishments Status and Future Directions

Current and Planned Work

- Analyzing transitive percolation using local estimates (ongoing)
- Bug-squashing (ongoing)
- S Analyzing more interesting general percolation models
- Height and width calculation

Accomplishments Status and Future Directions

Current and Planned Work

- Analyzing transitive percolation using local estimates (ongoing)
- Bug-squashing (ongoing)
- S Analyzing more interesting general percolation models
- Height and width calculation
- Suggestions and questions?