I will use two flip-flops uv, and two input variables xy, and make the following encodings for states and input:

State encoding:

  uv
s 00
a 01
r 10

Input encoding:

  xy
0 00
1 01
. 10

I will then transcribe the state-transition table

       
  0 1 .
s a a r
a a a s
r r r r

to the bit values

       
  00 01 10
00 01 01 10
01 01 01 00
10 10 10 10

Finally I will create two Karnaugh maps, one corresponding to next-state value of u and one to v:

Map for next u:

0 0 d 1
0 0 d 0
d d d d
1 1 d 1

Map for next v:

1 1 d 0
1 1 d 0
d d d d
0 0 d 0

Now I can derive the simplified logic equations from these maps as:

next u = u + v'xy'

next v = u'x'