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Real-Time EEG Analysis with Subject-Specific
Spatial Patterns for a Brain—Computer Interface (BCI)

C. Guger, H. Ramoser, and G. Pfurtscheller

Abstract—Electroencephalogram (EEG) recordings during beta rhythms) were used since sensorimotor rhythms display
right and Iefthmotorl I][nagery allow one to EStab"Sh ahr?ev‘l/ Coml- an event-related desynchronization (ERD) close to contralateral
munication channel for, e.g., patients with amyotrophic lateral .- motor ar rina hand movement imaaination
sclerosis. Such an EEG-based brain—computer interface (BCI) 'FI)'h' iy |0t0 ?tejls dtl: 9 t'a df 0 e:[ ?tt Iag atc()j b[6t].
can be used to develop a simple binary response for the control IS Toca ampl ude aftenua '_On O contralateral mu and beta
of a device. Three subjects participated in a series of on-line COmponents is also accompanied by enhancement [event-related
sessions to test if it is possible to use common spatial patterns tosynchronization (ERS)] [7] of similar frequency components
analyze EEG in real time in order to give feedback to the subjects. on the ipsilateral hemisphere. To properly record these focal
Furthermore, the classification accuracy that can be achieved changes, the EEG electrodes have to be located close to the

after only three days of training was investigated. The patterns . imot It has b ted that by uti
are estimated from a set of multichannel EEG data by the method Pr'Mmary sensorimotor areas. It has been reported that by ut-

of common spatial patterns and reflect the specific activation of lizing two bipolar electrodes close to C3 and C4, a single EEG
cortical areas. By construction, common spatial patterns weight trial classification accuracy of 80-95% can be achieved after

each electrode accord_ing to i_ts irr_\portance to the discr_imination approximately six to ten sessions [8]-[10]. However, since two
task and suppress noise in individual channels by using corre- iy ar gerivations are insufficient to describe the overall brain
lations between neighboring electrodes. Experiments with three activity, it seems reasonable to assume that more EEG signals
subjects resulted in an error rate of 2, 6 and 14% during on-line ! > . - :
discrimination of left- and right-hand motor imagery after three ~ recorded over sensorimotor areas, which are sensitive to differ-
days of training and make common spatial patterns a promising ences between left and right imagery, would improve the classi-
method for an EEG-based brain—computer interface. fication accuracy of the BCI. Furthermore, although electrodes

Index Terms—Brain—computer interface (BCI), common spatial ~ Cl0Se to primary sensorimotor areas contain the most relevantin-

patterns (CSP), event-related desynchronization (ERD), real-time formation for discrimination [11], surrounding electrodes over
software. premotor and supplementary motor areas also contribute some
information to discriminate between brain states related to the
motor imagery task.

The method of common spatial patterns (CSP) was first used
SCILLATORY  electroencephalogram (EEG) comin EEG analysis to extract abnormal components from the clin-
ponents have been used as an input signal fori@| EEG [12]. Recently, optimal spatial filters were devised for

brain—computer interface (BCI) [1]-{3]. Patients in a latgg EEG channels that lead to signals with optimal discrimina-
stage of amyotrophic lateral sclerosis (ALS), for example, cg8ry power between two conditions [13]. This method weights
communicate with their environment with such a system usiRgch electrode according to its importance for the discrimina-
a simple binary output signal to select letters, symbols, gpn task and suppresses noise in individual channels by using
words on a computer monitor [3] or to control a robotic deviCgorrelations between neighboring electrodes. The classification
[4], [5]- rates for discriminating executed movements of the left and right
In order to achieve appropriate human—computer interactigyyex finger for three subjects were 84, 90, and 94%. Using the
in these systems, it is necessary to extract reliable parametg{me method for data from a movement imagination task, an
from the EEG. Rhythmic EEG components (such as mu aggdcyracy of 90.8, 92.7, and 99.7% was achieved for three other

subjects in off-line analysis [14]. It was shown that the refer-
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Il. EEG RECORDING AND EXPERIMENTAL PARADIGM

Three subjects (17-26 years old, male) participated in tt /\
study. All were right-handed and free of medication and centr
nervous abnormality. All had previously served in a BCI stud
and were experienced in the experimental task. Subjects w
paid per session.

Twenty-seven EEG electrodes (used to overlay the whole
mary sensorimotor cortex), equally spaced with approximate
2.5 cmdistance, were placed as shown in Fig. 1 and referen
to the right ear. A referential recording was selected becaus
classification accuracy similar to other referencing methods c
be achieved (CAR, bipolar, large Laplacian and small Lapl
cian) [14] and does not require additional processing time f
rereferencing. The ground electrode was located on the fo
head.

An electrooculogram (EOG) was derived from an electroc
placed medially above the right eye and a second electrode
erally below the right eye to detect vertical and horizontal ey
movements. Averaging the data over trials and calculation of t
spectrum showed that no.n.e of the subjects showed eleCtr.om ‘8._ 1. Electrode positions. The 27 Ag/AgCl electrodes overlie the
gram (EMG) or EOG activity that could act as a control Sgn@tnsorimotor areas, which are activated during right- and left-hand movement
for the BCI. imagination. Electrodes 11 and 17 correspond to C3 and C4 of the international

The amplified EEG was bandpass filtered between 0.5 and &grtrode system.

Hz and sampled at 128 Hz. The resolution was 12 bits. A notch

filter was used to suppress the 50-Hz power line interference. fation accuracy of left-hand movement, right-hand movement,
experimental procedure consisted of sessions with feedbackafg foot movement can be increased by using this broad range
shown in Fig. 2, and of sessions without feedback. The timing pf Comparison to narrow bands [a|pha (8_12 Hz)' lower a|pha

the nonfeedback sessions was the same as that of the feedipgcko Hz), upper alpha (10-12 Hz), beta (19—-26 Hz), and theta
sessions (see Fig. 2), except that the bar was not shown ong-42 Hz)].

monitor.

. !Each gession was .divided into four or five (qnly for g3 gnd IV. COMMON SPATIAL PATTERNS

i2 in session 1) experimental runs of 40 trials, with randomized ) i
directions of the cues (20 left and 20 right) and lasted aboutThe method presented here uses the covariance to design
1 h (including electrode application, breaks between runs, af@mmon spatial patterns and is based on the simultaneous

experimental preparation). Subjects g3 and g7 performed §iggonalization of two covariance matrices [17]. The decom-
sessions and subject i2 seven sessions. position (or filtering) of the EEG leads to new time series,

which are optimal for the discrimination of two populations.
The patterns are designed such that the signal that results from
the EEG filtering with the CSP has maximum variance for left
A. Artifact Detection trials and minimum variance for right trials and vice versa.
Il%this way, the difference between left and right populations

For the setup of the common spatial patterns, all trials we,

visually checked for artifacts in the time period 3-8 s (se'g maximized, and the only information contained in these

Fig. 2). Trials that contained artifacts (EMG or range overflo&att(;rgrsin's t\\llvv geéintg;ovr‘z'ance of the EEG varies most when
of analog-to-digital converter) were discarded, because the s : .
method is very sensitive to artifacts. A single trial containin% GivenV channels of EEG for each left and right tri] the

for example, a movement artifact can cause severe change ?t'i method gives al x N projection mairixiV" according
S

the CSP [13]. The reason is the sample covariance (nonrob@ A 2]_[14]H.TE'S rfrllat;Dt(hls a Set.ng Sng?Ft_Sp?C'f'i.Sp?t'al
estimate), which is used to estimate the covariance for t gtterns, which retiect the specific activation of corlical areas

calculation of the spatial filters. During on-line operation of th uring hand movement imagination. With the projection matrix

BCI, the spatial filters perform a weighted spatial averaging of ’ the decomposition of a triat is described by
the EEG, and this reduces the influence of artifacts.

I1l. DATA PREPROCESSING

Z=WX. 1)
B. Temporal Filtering This transformation projects the varianceXbnto the rows of

All EEG channels were filtered (FIR filter) between 8—-30 HzZ and results inV new time series. The columns ¥ —! are a
because this broad frequency range contains all mu and beta $et-of CSPs and can be considered as time-invariant EEG source
guency components of the EEG, which are important for the didistributions. After interpolation, the patterns can be displayed
crimination task [2]. Miller—Gerking [13] showed that classifias topographical maps.
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Fig. 2. Timing of one trial of the experiment with feedback. The subject sat in a comfortable armchair 150 cm in front of a computer monitor andated instru

to not move, to keep both arms and hands relaxed, and to maintain throughout the experiment the fixation at the center of the monitor. The exjestimiént sta

the display of a fixation cross that was shown in the center of a monitor. After 2 s a warning stimulus was given in form of a “beep.” From second 3 to 4.25, an
arrow (cue stimulus) pointing to the left or right was shown on the monitor. The subject was instructed to imagine a left- or right-hand moventding depen

the direction of the arrow. Between second 4.25 and 8, the EEG was classified on-line and the classification result was translated into a fesdbatkostm

of a horizontal bar that appeared in the center of the monitor. If the person imagined a left movement, then the bar, varying in length, extenttes tshibverhe

in A and vice versa in B (correct classification assumed). The subject’s task was to extend the bar toward the left or right boundary of the ntatédrbindi

the arrow cue. One trial lasted 8 s, and the time between two trials was randomized in a range of 0.5-2.5 s to avoid adaptation.

By construction, the variance for a left movementimaginatic
is largest in the first row o and decreases with the increasini

number of the subsequent rows. The opposite is the case fc
trial with right motor imagery. WV1
For classification of the left and right trials, the variances hay
to be extracted as reliable features of the newly desighédche
series. But it is not necessary to calculate the variances of all
time series. The method provides a dimensionality reduction CSP1
the EEG. A high number of EEG channéls) can be reduced
to only a few time series and a few spatial patterns. Mulle
Gerking investigated the number of projections (2, 4, 6..8,
to common spatial patterns used to build the feature vector [1 4
and showed that the optimal number of common spatial patte ' Wv2
used to build the feature vector is four. [ Session 4 with FB
After building W from an artifact corrected training set, only Data used to set up CSP2 | ©
the first and last two rowép = 4) of W were used. The EEG —;:‘%d"-‘;lT
dataX were filtere_d with the_zs¢ spaftial filters. Then the vari_- CSP2 Y WV3
ance of the resulting four time series is calculated for a tin - _
window T « | Session 5 with FB
Data used to set up CSP3 [
T and Wv4
t=1 CSP3 Wv4
Session 6 with FB
After normalizing and log-transforming, four feature vectors ai
obtained Sy
VAR,
fp=log| =—4——— 3 . . : . ,
Z . VARP Fig. 3. Flowchart of six BCI sessions with and without (gray boxes) feedback
p=

(FB) for subject g3. Altogether, three CSP’s and four WV's were set up. The

The | f . . £ d li he distrib sessions were performed within three days. Subject 2 participated in one session
e log-transformation Is performed to normalize the distribifore after session 4, but the update procedure of the CSP’s and WV’s was

tion of the elements iff,,. These featuref, are used to construct similar to the one shown on this flowchart.
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Fig. 4. Maps of the three calculated sets of common spatial patterns for subject g3 of session 1 (CSP1), 4 (CSP2), and 5 (CSP3). The small blat& dots indic
the 27 electrode positions. C3 and C4 are marked by the cross. The CSPs with index 1 and 27 are the most and 2 and 26 are the second most disegminating filte
Electrodes surrounded by black areas are of lower importance to the dicrimination task than electrodes surrounded by lighter colors.

a linear classifier [18], [19], referred to as a weight vector (WV) TABLE |
in this paper. AMOUNT OF TRIALS FOR THE SETUP OF

THE CSPs OVER SUBJECTSAFTER ARTIFACT CORRECTION SESSION1
OF g3 AND i2 ORIGINALLY CONSISTED OF200 TRIALS, ALL OTHER
SESSIONS OF160 TRIALS

V. DATA ANALYSIS AND CLASSIFICATION

. : . Subject CSP1 CSP 2 CSP3
Fig. 3 shows an exemplary (subject g3) experimental proc 3 176 143 137
dure. In session 1, feedback is not provided. Next, based on 7 150 125 122
27-channel EEG recording from the first session, the first C¢ E- 173 100 121

(CSP1) was established with artifact-corrected data accord
to Table I.

All error rates presented in this paper were calculated fromaining. This results in ten different error rates, which are aver-
the entire data set (160 or 200 trials) of one session. Thus, tged. This is the error of a ten-fold cross-validation. To further
error is not biased by individual artifact detection. improve the estimate, the procedure is repeated 40d again

The CSP for all three subjects was calculated for specific tinadl error rates are averaged.
segments distributed over the interval from second 3 to 8. Forlt was found that a higher accuracy can be achieved by
each direction, only the two most important filters were used tncreasing the window length, but this decreases the response
calculate the features as described in (3). The classification #ime. The choice for all three subjects was setting the window
curacy was calculated with a 2010 fold cross-validation pro- length to 1 s, which has an accuracy in the range of a window
cedure of a linear discriminant for each time segment in ordength of 1.5 or 2 s and allows a fast feedback. Further de-
to find the window length best suited for classification. The 1€reasing the window length to 750, 500, or 250 ms results in
x 10 fold cross-validation mixes the data set randomly and gierformance loss for all subjects.
vides it into ten equally sized disjunct partitions. Each partition Fig. 4 shows the three sets of spatial patterns for subject g3
is then used once for testing; the other partitions are used torderlying the EEG data of sessions 1, 4, and 5. The contour
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Fig. 5. Time series after filtering with the two most important (1, 27) and two second most important (2, 26) common spatial patterns accordihg fittét). T
was constructed in such a way that the variance in filter 1 and 2 will be maximized during a left-hand movement imagination and minimized in fil@&r.26 and
The left column shows the new time series of a left trial, the right column of a right trial. By comparing the most discriminating time series (1 amdi27), a
amplitude difference can be observed. When comparing the second most important time series (2 and 26), still a difference can be seen, allogie aRmealler
opposite is the case for the right trial. The variance in time series 1 and 2 is smaller than in 26 and 27.

plots were calculated with a cubic interpolationdf—L. The movement imagination are displayed as EEG traces for visual
patterns are plotted symmetrically to zero because within a patterpretation in Fig. 5.
tern, the coefficients seldomly cross the zero line and only theThen the features obtained from (3) with a 1-s time window
absolute values of the patterns are important. were used for further analysis. The classification accuracy was
Left-hand movement leads to an event-related desynchoaiculated with a 10x 10-fold cross-validation of a linear
nization over the contralateral primary sensorimotor area [@liscriminant for 0.5-s steps. The features of the classification
But at the same time, an increase of the variance over tfirae point with the lowest classification error were used to set
left hemisphere takes place. The pattern for left movemeanmp the subject-specific weight vector with the linear discrim-
imagination is focused over electrode C3 in the most importantant analysis (LDA) for the experiments with feedback (see
filters of CSP2 and CSP3. However, the focus for filter CSFEig. 3). Table 1l gives an overview of the best classification
is more posterior. The second most important filters in Fig. tme points over subjects and sessions. This off-line procedure,
show a more fuzzy variance distribution, but the maximuifinom reading the artifact corrected data from the harddisk until
is also near to C3. For right-hand movement imagination, tliee availability of the new CSPs and WVs, takes about 30 min.
focus is over C4 in the most important filters of CSP2 an@lhe next session can be started immediately after calculation
CSP3. CSP1 shows a focus posterior to Cz. The second mafsthe CSPs.
important filters show a higher variance posterior to C4 in the On the second day, session 2 was performed with feedback.
case of CSP2 and CSP3 and around C3 at CSP1. ElectrodeSlom27 EEG channels were filtered with CSP1 in real time (most
the opposite side of the focus have coefficients close to zeemd second most discriminating filters) as shown in Fig. 6. After
The patterns for the other subjects basically show the safiiiering, the variances of the resulting four time series were cal-
structure. culated for a 1-s window, normalized, and also log-transformed.
After applying the most and second most important filtéFhe resulting features were classified with WV1. This result was
pairs to left and right trials, four new time series were obtainedsed to control the feedback bar on the monitor. The bar, varying
These temporal patterns for one left- and one right-hamilength, pointed to the left if the output of the linear classifica-
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Fig. 6. Simulink model for the real-time analysis of the EEG. A device driver for the RTI800a (DAQ board of Analog Devices) makes the connectiaal to the re
world. In this case, the input block represents analog input channels 1 to 28 (EEG#1 to EEG#27, Trigger). Channels 1 to 27 are bandpass filte3etd&veen
Hz. The output signal is then passed to the two most (Spatial Filter 1 and Spatial Filter 27) and two second most (Spatial Filter 2 and SpatialdEiiieri2#ng
common spatial filters. After temporal and spatial filtering, the variances of the resulting four time series were calculated for a 1-s windlixed@nhalso
log-transformed. The resulting features were classified with the WV. This result was used to control the feedback bar on the monitor. A deiatiied ofethe
hardware and software components is given in [8] and [20].

TABLE I cross-validation error calculated off-line is given in Table llI.
CLASSIFICATION TIME POINTS (CTPs)oF THE WV'S ACCORDING TOSUBJECT Altogether 13 sessions with feedback, consisting of 160 trials
AND SESSION THE WV WAS ALWAYS SET UP FROM THEBEST CLASSIFICATION . ! .
TIME POINT ACHIEVED WITH A 10 x 10 OROSSVALIDATION WITH THE each, were held. Sessions 1 and 3 were performed without feed-
ACTUAL CSP. QRAY BOXES INDICATE SESSIONSWITHOUT FEEDBACK back, where the subjects were instructed to imagine a right- or
left-hand movement right after the cue presentation. These re-
Subject Session- C.T.P. of sults are not reported in Fig. 7 because the EEG was not classi-
number WV [s] fied in real time during these sessions. Sessions 2, 4, 5, 6, and 7

o b 5 were performed with feedback. The feedback was shown on the

monitor from second 4.25 until second 8 and was continuously
updated in real time with the CSPs and with the WVs obtained
in previous sessions according to Fig. 3.

The on-line classification error ranged from 1.8 to around
50% for all classification time points and subjects. The
lowest on-line error rate in the last sessions for g3 was 1.8%
(second 5.5), for g7 6.8% (seconds 5 and 5.5), and for i2
14% (second 5). In comparison, the lowest cross-validation
error rate for subject g3 was 0% (second 5.5), for g7 6.5%
(second 5.5), and for i2 8.7% (second 5) for the same
6 5 sessions as shown in Table lll. The error rate increased
slightly by 1.8 0.3, and 5.3%, respectively, with the on-line
classification. The reason for the difference is that the

) . . . on-line result can be biased, meaning the feedback bar on
tion was positive and to the right if negative. The absolute valyg. monitor is pointing slightly more in one direction
of the classification result is a measure of how reliably the sideIt is important to note that the minimum classification error

was determined and controlled the length of the bar. decreased from 18.8% in the first feedback session to 1.8% in
Then session 3 was performed without feedback in order

X _tWe last session for subject g3, from about 50 to 6.8% for subject
set up WV2. In session 4, WV2 and CSP1 were used to gl&g and from about 50 to 14% for subject i2.
feedback. On the third day with the data of session 4, & NeWqyever, the results from the three subjects show basic dif-
CSP2 and WV3 were calculated and used in session 5. Then ces.
update procedure of the CSP and WV was repeated again. It is ] ) ) o
of importance to point out that for those sessions conducted onl) Subject g3 achieved an on-line classification error be-

the same days, the electrodes were applied only once, thereby tween 18.8 and 31% (between second 4.25 and 8) in the
minimizing any variations in placement for those sessions. first feedback session. The update of the WV after session

3 decreased the minimum error rate to 14.4% at second
5.5. The update of the common spatial filter and of the
WYV after session 4 had nearly no effect on the error rate
The time courses of the on-line classification results of the  in session 5. The minimum error rate remained constant.
feedback sessions are graphically presented in Fig. 7 for allthree  But the update of the CSP and of the WV after session
subjects. A comparison of on-line error and thex.@0 fold 5 caused a decrease of the minimum error rate to 1.8%,

VI. RESULTS
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Ondine Classification Resuits: Subject g3, 27 channel CSP
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On-line Classification Results: Subjecti2, 27 channel CSP
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Fig. 7. Time course of the on-line classification error (100% minus accuracy), starting 1 s before visual cue stimulus. Subjects participgtgRiandoyir) or
five (i2) sessions with feedback.

2)

which corresponds to three misclassified trials out of 160.
The time points of the minimum error rate always corre-

spond to the calculation time point of the WV, as shown
in Table Il. Therefore, the best classification time point

was always known in advance.

Subject g7 was not able to control the feedback bar in
session 2. Table Il clearly shows the difference between
the on-line (around 50%) and cross-validation (32.8%)
error rates. The cross-validation shows that the left- and
right-hand movement imagination is separable, but the
bar was always pointing in one direction. After calcu-

lating a new WV from the data of session 3, the on-line
error decreased from about 50% in session 2 to 31% (Sec-
tion 5.5) in session 4. The update of the CSP and of the
WYV after session 4 clearly decreased the error rate to a
minimum of 16.3% (Section 5.5). Similar to subject g3,
the calculation of CSP3 and WV4 caused a decrease of the
minimum error rate to 6.8% (Section 5 and 5.5). The best
classification time point always corresponds to the calcu-
lation time point of the WV, except for session 5 (session
2 is not considered). The WV was set up at second 4.5,
but the best classification time point was at second 5.5.
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TABLE 1lI
THE CROSSVALIDATION (CV) ERRORRATES FORSESSIONSWITHOUT (GRAY BOXES) AND WITH (WHITE BOXES) FEEDBACK ARE SHOWN FOR THEBEST
CLASSIFICATION TIME POINT. THE ON-LINE ERRORRATES WERE ONLY CALCULATED FOR FEEDBACK SESSIONS VALUES IN BRACKETS INDICATE ERRORRATES
ACHIEVED WITH A CSP THAT WAS SET UP OF THEDATA OF THE SAME SESSION

3 7 i2
Session- CV Error On-line CV Error On-line CYV Error On-line
Number/ Day [%] Error [%] Error [%] Error

(%]

289 9) 10.9 3.4)
5/3 12.8 (0.6) 14.4 14.1 (7.4) 16.3 14 13
6/3 0 1.8 6.5 6.8 17.1 (8) 23
7/3 8.7 14

3) Subject i2 was also not able to control the feedback baccuracies of 65-80% for healthy subjects [22]. ALS patients
in session 2. But Table Il again shows that the EEG wagere trained longer than a year [23]. For practical applications,
separable with a cross-validation error of 33.6%. The bé#re training time must be minimized to increase the acceptance
was again pointing in only one direction. The WV updatef the system and motivation of the BCI operator.
of the data of session 3 decreased the minimum on-lineThe error rates marked by brackets in Table Il clearly show
error rate to 12.5% (Section 5.5). In session 5, the sartiee influence of electrode position variations on different days
CSP and WV as in session 4 was used. The on-line eramd day-to-day subject’s state variations: On every new experi-
rates of both sessions are quite similar. After updating timeental day, the electrodes have to be mounted anew. Therefore,
CSP and the WV with the data of session 4, an increade electrode positions can be expected to vary slightly between
of the error rate was observed in session 6. Repeatisgssions on different days. The measured ERD pattern of senso-
the update procedure of CSP and WV again decreas@&dotor rhythms can be completely different when the electrode
the minimum error rate to 14% (Section 5). Thereforgyosition varies by, e.g., 2.5 cm [24].
performance did not improve with CSP3 and WV4, in In session 1, cross-validation errors of 4% (g3), 10.4% (g7),
comparison to the results in sessions 4 and 5. In sessiamsl 15.8% (i2) are achieved if the CSP calculated from session 1
5-7, the best classification time point corresponds wifl also used to classify the same data. A loss of performance can
the calculation time point of the WV (session 2 is nobe observed in sessions 2, 3, and 4 on the second day, whereby
considered). In session 4, the best classification time po@SP1 from session 1 (first day) was used, but besides changes in
was 0.5 s later than the classification time point of the W¥he subject’s state also the electrode positions were not exactly

the same as compared to the first day. After setting up CSP2
from session 4 and classifying the same session, the error de-
ViI. DiscussioN creased again to 0.4% (g3), 9% (g7), and 3.4% (i2). The same

This paper demonstrates that the method of common spafgnd can be seen in session 5 of subject g3 and g7 and session
patterns can be used to analyze the EEG in real time in ordpf subject i2. But the lower classification errors of 0.6% (g3),
to give feedback to the subject. The method was utilized 4% (97), and 8% (i2) are now in the range of the error rates
give fast, continuous, and accurate feedback during left- afghieved in the next session, which are 0% (93), 6.5% (g7), and
right-hand movement imagination. Furthermore, the classifi-7% (i2). There are two reasons for this:
cation accuracy that can be achieved after only three days ofl) both sessions were performed on the same day (third day)
training, when the CSP filter is adapted between sessions, was one after another;
determined. All three subjects were able to reduce their on-line2) the electrode positions were exactly the same for the last
classification error within three days to 2% (g3), 6% (g7), and two sessions.

14% (i2) in six to seven sessions, respectively. However, Tiherefore, it is recommended not to apply the electrodes anew
must be pointed out that subjects had participated prior to thifer setting up a new CSP for the following feedback sessions.
study in 23 (g3), five (g7), and seven (i2) BCI sessions usirdowever, further investigation is necessary to determine to
bandpower or AAR parameters for the feedback calculatievhich extent the difference in error rates can be attributed
[2], [8], [16]. Usually one to three sessions were carried ot variations in electrode applications and day-to-day sub-
per day, which gives a training period of a few days. Results fct's state variations. For long-term implications of this BCI
Wolpaw and McFarland show that healthy subjects and spiradproach, EEG data of several sessions can be used for the
cord injury patients usually need several months to developlculation of the CSP. This allows the generation of a more
high accuracy (i.e.»>90%) using mu and beta frequency comrobust filter in order to overcome the mentioned problems.
ponents [21]. Also Birbaumer’s group reports a training period The study clearly showed that it is important to update the
of several months with slow cortical potentials to achiev&/V. For example, the reason for the 50% error rate in feedback
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session 2 for subjects i2 and g7 was a biased classification result,
meaning the feedback bar on the monitor was always extendin
in just one direction. Therefore, the on-line classification errqr
was higher than the cross-validation error. This bias can be elim-
inated by setting up a new weight-vector.

A disadvantage of the CSP method is the large number of
electrodes needed. Thus, extensive electrode application timg]
and multichannel EEG analysis are required. The necessity for,
e.g., a 27-channel EEG-amplifier system limits the use of the
CSP as a portable BCI system, but it is still wheelchair mount-[2]
able. Further work is therefore necessary to search for the op-
timal number of electrodes. An off-line study with the CSP
method has shown marginal differences in the classification ac{3]
curacy of single trials with a binary motor imagery task when 18
electrodes were used, as compared to 56 electrodes [14]. The us,
of implanted electrodes in the future should solve the problem
inherent in precisely applying a large number of electrodes and[S]
will provide freedom from muscle and movement artifacts. Ex-
perimental setups with implanted electrode arrays are already
being investigated [25], [26]. 6]

It is also important to remove artifacts for the setup of the
common spatial patterns. During on-line operation of the BCI, [7]
the spatial pattern performs a weighted averaging of the EEG,
and this reduces the artifacts.

The only parameters that must be adjusted for the CSR8s]
method are the time segment for the calculation of the CSP and,
during on-line processing, the time window for the calculation (9]
of the variances. But the selection of these parameters is not
very crucial.

An advantage of the CSP method is that it does no{lol
require a priori selection of subject-specific frequency bands,
as necessary for bandpower or frequency estimation methodfs!]
[27], [28]. Although AAR parameter estimation methods
(such as the recursive least squares algorithm) [2], [8], [29]12]
also do not require a frequency band selection and operate
with only two bipolar EEG signals, a cross-validation error 13
of 0% with the AAR model was never achieved. Experi-
ments with the same paradigm and AAR together with the
LDA approach resulted in lowest on-line errors for three[
subjects of 5, 9, and 9% after six to seven sessions (for
details, see [8]). Long-term experimental series with twol15]
bipolar channels, using delayed feedback that presented the
classification result at the end of each trial (“correct” or[16]
“not correct”) computed with bandpower and learning vector
quantization approach, were carried out with four subjects[.m
This type of experiment yielded to minimum on-line clas-
sification errors of around 10, 13, 14, and 17% after sevef8]
to 14 sessions [2]. A direct comparison of results, however[,19
is not possible, because only trained subjects, who also had
participated in former series of experiments, were included
in the present study. [20]

We think that the inconvenience of applying more electrodes
is rationalized by performance improvements with the method
of common spatial patterns and will make a practical difference,,
in patients requiring rehabilitation. One must consider that the
most obvious strategy for achieving a higher speed of commu-

o 22]
nication is to reduce the error rate. Even a small decrease of the
error rate causes a high increase of the BCI bit rate.
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