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Real-Time EEG Analysis with Subject-Specific
Spatial Patterns for a Brain–Computer Interface (BCI)

C. Guger, H. Ramoser, and G. Pfurtscheller

Abstract—Electroencephalogram (EEG) recordings during
right and left motor imagery allow one to establish a new com-
munication channel for, e.g., patients with amyotrophic lateral
sclerosis. Such an EEG-based brain–computer interface (BCI)
can be used to develop a simple binary response for the control
of a device. Three subjects participated in a series of on-line
sessions to test if it is possible to use common spatial patterns to
analyze EEG in real time in order to give feedback to the subjects.
Furthermore, the classification accuracy that can be achieved
after only three days of training was investigated. The patterns
are estimated from a set of multichannel EEG data by the method
of common spatial patterns and reflect the specific activation of
cortical areas. By construction, common spatial patterns weight
each electrode according to its importance to the discrimination
task and suppress noise in individual channels by using corre-
lations between neighboring electrodes. Experiments with three
subjects resulted in an error rate of 2, 6 and 14% during on-line
discrimination of left- and right-hand motor imagery after three
days of training and make common spatial patterns a promising
method for an EEG-based brain–computer interface.

Index Terms—Brain–computer interface (BCI), common spatial
patterns (CSP), event-related desynchronization (ERD), real-time
software.

I. INTRODUCTION

OSCILLATORY electroencephalogram (EEG) com-
ponents have been used as an input signal for a

brain–computer interface (BCI) [1]–[3]. Patients in a late
stage of amyotrophic lateral sclerosis (ALS), for example, can
communicate with their environment with such a system using
a simple binary output signal to select letters, symbols, or
words on a computer monitor [3] or to control a robotic device
[4], [5].

In order to achieve appropriate human–computer interaction
in these systems, it is necessary to extract reliable parameters
from the EEG. Rhythmic EEG components (such as mu and
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beta rhythms) were used since sensorimotor rhythms display
an event-related desynchronization (ERD) close to contralateral
primary motor areas during hand movement imagination [6].
This focal amplitude attenuation of contralateral mu and beta
components is also accompanied by enhancement [event-related
synchronization (ERS)] [7] of similar frequency components
on the ipsilateral hemisphere. To properly record these focal
changes, the EEG electrodes have to be located close to the
primary sensorimotor areas. It has been reported that by uti-
lizing two bipolar electrodes close to C3 and C4, a single EEG
trial classification accuracy of 80–95% can be achieved after
approximately six to ten sessions [8]–[10]. However, since two
bipolar derivations are insufficient to describe the overall brain
activity, it seems reasonable to assume that more EEG signals
recorded over sensorimotor areas, which are sensitive to differ-
ences between left and right imagery, would improve the classi-
fication accuracy of the BCI. Furthermore, although electrodes
close to primary sensorimotor areas contain the most relevant in-
formation for discrimination [11], surrounding electrodes over
premotor and supplementary motor areas also contribute some
information to discriminate between brain states related to the
motor imagery task.

The method of common spatial patterns (CSP) was first used
in EEG analysis to extract abnormal components from the clin-
ical EEG [12]. Recently, optimal spatial filters were devised for
56 EEG channels that lead to signals with optimal discrimina-
tory power between two conditions [13]. This method weights
each electrode according to its importance for the discrimina-
tion task and suppresses noise in individual channels by using
correlations between neighboring electrodes. The classification
rates for discriminating executed movements of the left and right
index finger for three subjects were 84, 90, and 94%. Using the
same method for data from a movement imagination task, an
accuracy of 90.8, 92.7, and 99.7% was achieved for three other
subjects in off-line analysis [14]. It was shown that the refer-
ence method (common average reference (CAR), bipolar, large
Laplacian, small Laplacian, and referenced to the ear [15]) had
minor influence on the classification accuracy [14]. Fast and
continuous feedback can also enhance the performance of the
system [8], [16].

The purpose of this paper is:

1) to test if it is possible to use CSP to analyze the EEG in
real time in order to give feedback to the subject;

2) to determine the classification accuracy that can be
achieved after only three days of training when the CSP
filter is adapted between sessions.

1063–6528/00$10.00 © 2000 IEEE
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II. EEG RECORDING AND EXPERIMENTAL PARADIGM

Three subjects (17–26 years old, male) participated in this
study. All were right-handed and free of medication and central
nervous abnormality. All had previously served in a BCI study
and were experienced in the experimental task. Subjects were
paid per session.

Twenty-seven EEG electrodes (used to overlay the whole pri-
mary sensorimotor cortex), equally spaced with approximately
2.5 cm distance, were placed as shown in Fig. 1 and referenced
to the right ear. A referential recording was selected because a
classification accuracy similar to other referencing methods can
be achieved (CAR, bipolar, large Laplacian and small Lapla-
cian) [14] and does not require additional processing time for
rereferencing. The ground electrode was located on the fore-
head.

An electrooculogram (EOG) was derived from an electrode
placed medially above the right eye and a second electrode lat-
erally below the right eye to detect vertical and horizontal eye
movements. Averaging the data over trials and calculation of the
spectrum showed that none of the subjects showed electromyo-
gram (EMG) or EOG activity that could act as a control signal
for the BCI.

The amplified EEG was bandpass filtered between 0.5 and 50
Hz and sampled at 128 Hz. The resolution was 12 bits. A notch
filter was used to suppress the 50-Hz power line interference. An
experimental procedure consisted of sessions with feedback, as
shown in Fig. 2, and of sessions without feedback. The timing of
the nonfeedback sessions was the same as that of the feedback
sessions (see Fig. 2), except that the bar was not shown on the
monitor.

Each session was divided into four or five (only for g3 and
i2 in session 1) experimental runs of 40 trials, with randomized
directions of the cues (20 left and 20 right) and lasted about
1 h (including electrode application, breaks between runs, and
experimental preparation). Subjects g3 and g7 performed six
sessions and subject i2 seven sessions.

III. D ATA PREPROCESSING

A. Artifact Detection

For the setup of the common spatial patterns, all trials were
visually checked for artifacts in the time period 3–8 s (see
Fig. 2). Trials that contained artifacts (EMG or range overflow
of analog-to-digital converter) were discarded, because the CSP
method is very sensitive to artifacts. A single trial containing,
for example, a movement artifact can cause severe changes in
the CSP [13]. The reason is the sample covariance (nonrobust
estimate), which is used to estimate the covariance for the
calculation of the spatial filters. During on-line operation of the
BCI, the spatial filters perform a weighted spatial averaging of
the EEG, and this reduces the influence of artifacts.

B. Temporal Filtering

All EEG channels were filtered (FIR filter) between 8–30 Hz,
because this broad frequency range contains all mu and beta fre-
quency components of the EEG, which are important for the dis-
crimination task [2]. Müller–Gerking [13] showed that classifi-

Fig. 1. Electrode positions. The 27 Ag/AgCl electrodes overlie the
sensorimotor areas, which are activated during right- and left-hand movement
imagination. Electrodes 11 and 17 correspond to C3 and C4 of the international
electrode system.

cation accuracy of left-hand movement, right-hand movement,
and foot movement can be increased by using this broad range
in comparison to narrow bands [alpha (8–12 Hz), lower alpha
(8–10 Hz), upper alpha (10–12 Hz), beta (19–26 Hz), and theta
(38–42 Hz)].

IV. COMMON SPATIAL PATTERNS

The method presented here uses the covariance to design
common spatial patterns and is based on the simultaneous
diagonalization of two covariance matrices [17]. The decom-
position (or filtering) of the EEG leads to new time series,
which are optimal for the discrimination of two populations.
The patterns are designed such that the signal that results from
the EEG filtering with the CSP has maximum variance for left
trials and minimum variance for right trials and vice versa.
In this way, the difference between left and right populations
is maximized, and the only information contained in these
patterns is where the variance of the EEG varies most when
comparing two conditions.

Given channels of EEG for each left and right trial, the
CSP method gives an projection matrix according
to [12]–[14]. This matrix is a set of subject-specific spatial
patterns, which reflect the specific activation of cortical areas
during hand movement imagination. With the projection matrix

, the decomposition of a trial is described by

(1)

This transformation projects the variance ofonto the rows of
and results in new time series. The columns of are a

set of CSPs and can be considered as time-invariant EEG source
distributions. After interpolation, the patterns can be displayed
as topographical maps.
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Fig. 2. Timing of one trial of the experiment with feedback. The subject sat in a comfortable armchair 150 cm in front of a computer monitor and was instructed
to not move, to keep both arms and hands relaxed, and to maintain throughout the experiment the fixation at the center of the monitor. The experiment started with
the display of a fixation cross that was shown in the center of a monitor. After 2 s a warning stimulus was given in form of a “beep.” From second 3 to 4.25, an
arrow (cue stimulus) pointing to the left or right was shown on the monitor. The subject was instructed to imagine a left- or right-hand movement, depending on
the direction of the arrow. Between second 4.25 and 8, the EEG was classified on-line and the classification result was translated into a feedback stimulus in form
of a horizontal bar that appeared in the center of the monitor. If the person imagined a left movement, then the bar, varying in length, extended to the left as shown
in A and vice versa in B (correct classification assumed). The subject’s task was to extend the bar toward the left or right boundary of the monitor, indicated by
the arrow cue. One trial lasted 8 s, and the time between two trials was randomized in a range of 0.5–2.5 s to avoid adaptation.

By construction, the variance for a left movement imagination
is largest in the first row of and decreases with the increasing
number of the subsequent rows. The opposite is the case for a
trial with right motor imagery.

For classification of the left and right trials, the variances have
to be extracted as reliable features of the newly designedtime
series. But it is not necessary to calculate the variances of all
time series. The method provides a dimensionality reduction of
the EEG. A high number of EEG channels can be reduced
to only a few time series and a few spatial patterns. Müller-
Gerking investigated the number of projections (2, 4, 6, 8,)
to common spatial patterns used to build the feature vector [13]
and showed that the optimal number of common spatial patterns
used to build the feature vector is four.

After building from an artifact corrected training set, only
the first and last two rows of were used. The EEG
data were filtered with these spatial filters. Then the vari-
ance of the resulting four time series is calculated for a time
window

(2)

After normalizing and log-transforming, four feature vectors are
obtained

VAR

VAR
(3)

The log-transformation is performed to normalize the distribu-
tion of the elements in . These features are used to construct

Fig. 3. Flowchart of six BCI sessions with and without (gray boxes) feedback
(FB) for subject g3. Altogether, three CSP’s and four WV’s were set up. The
sessions were performed within three days. Subject i2 participated in one session
more after session 4, but the update procedure of the CSP’s and WV’s was
similar to the one shown on this flowchart.
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Fig. 4. Maps of the three calculated sets of common spatial patterns for subject g3 of session 1 (CSP1), 4 (CSP2), and 5 (CSP3). The small black dots indicate
the 27 electrode positions. C3 and C4 are marked by the cross. The CSPs with index 1 and 27 are the most and 2 and 26 are the second most discriminating filters.
Electrodes surrounded by black areas are of lower importance to the dicrimination task than electrodes surrounded by lighter colors.

a linear classifier [18], [19], referred to as a weight vector (WV)
in this paper.

V. DATA ANALYSIS AND CLASSIFICATION

Fig. 3 shows an exemplary (subject g3) experimental proce-
dure. In session 1, feedback is not provided. Next, based on the
27-channel EEG recording from the first session, the first CSP
(CSP1) was established with artifact-corrected data according
to Table I.

All error rates presented in this paper were calculated from
the entire data set (160 or 200 trials) of one session. Thus, the
error is not biased by individual artifact detection.

The CSP for all three subjects was calculated for specific time
segments distributed over the interval from second 3 to 8. For
each direction, only the two most important filters were used to
calculate the features as described in (3). The classification ac-
curacy was calculated with a 1010 fold cross-validation pro-
cedure of a linear discriminant for each time segment in order
to find the window length best suited for classification. The 10

10 fold cross-validation mixes the data set randomly and di-
vides it into ten equally sized disjunct partitions. Each partition
is then used once for testing; the other partitions are used for

TABLE I
AMOUNT OF TRIALS FOR THE SETUP OF

THE CSPS OVERSUBJECTSAFTER ARTIFACT CORRECTION. SESSION1
OF g3 AND i2 ORIGINALLY CONSISTED OF200 TRIALS, ALL OTHER

SESSIONS OF160 TRIALS

training. This results in ten different error rates, which are aver-
aged. This is the error of a ten-fold cross-validation. To further
improve the estimate, the procedure is repeated 10and again
all error rates are averaged.

It was found that a higher accuracy can be achieved by
increasing the window length, but this decreases the response
time. The choice for all three subjects was setting the window
length to 1 s, which has an accuracy in the range of a window
length of 1.5 or 2 s and allows a fast feedback. Further de-
creasing the window length to 750, 500, or 250 ms results in
performance loss for all subjects.

Fig. 4 shows the three sets of spatial patterns for subject g3
underlying the EEG data of sessions 1, 4, and 5. The contour
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Fig. 5. Time series after filtering with the two most important (1, 27) and two second most important (2, 26) common spatial patterns according to (1). The filter
was constructed in such a way that the variance in filter 1 and 2 will be maximized during a left-hand movement imagination and minimized in filter 26 and27.
The left column shows the new time series of a left trial, the right column of a right trial. By comparing the most discriminating time series (1 and 27), ahigh
amplitude difference can be observed. When comparing the second most important time series (2 and 26), still a difference can be seen, albeit a smallerone. The
opposite is the case for the right trial. The variance in time series 1 and 2 is smaller than in 26 and 27.

plots were calculated with a cubic interpolation of . The
patterns are plotted symmetrically to zero because within a pat-
tern, the coefficients seldomly cross the zero line and only the
absolute values of the patterns are important.

Left-hand movement leads to an event-related desynchro-
nization over the contralateral primary sensorimotor area [6].
But at the same time, an increase of the variance over the
left hemisphere takes place. The pattern for left movement
imagination is focused over electrode C3 in the most important
filters of CSP2 and CSP3. However, the focus for filter CSP1
is more posterior. The second most important filters in Fig. 4
show a more fuzzy variance distribution, but the maximum
is also near to C3. For right-hand movement imagination, the
focus is over C4 in the most important filters of CSP2 and
CSP3. CSP1 shows a focus posterior to Cz. The second most
important filters show a higher variance posterior to C4 in the
case of CSP2 and CSP3 and around C3 at CSP1. Electrodes on
the opposite side of the focus have coefficients close to zero.
The patterns for the other subjects basically show the same
structure.

After applying the most and second most important filter
pairs to left and right trials, four new time series were obtained.
These temporal patterns for one left- and one right-hand

movement imagination are displayed as EEG traces for visual
interpretation in Fig. 5.

Then the features obtained from (3) with a 1-s time window
were used for further analysis. The classification accuracy was
calculated with a 10 10-fold cross-validation of a linear
discriminant for 0.5-s steps. The features of the classification
time point with the lowest classification error were used to set
up the subject-specific weight vector with the linear discrim-
inant analysis (LDA) for the experiments with feedback (see
Fig. 3). Table II gives an overview of the best classification
time points over subjects and sessions. This off-line procedure,
from reading the artifact corrected data from the harddisk until
the availability of the new CSPs and WVs, takes about 30 min.
The next session can be started immediately after calculation
of the CSPs.

On the second day, session 2 was performed with feedback.
The 27 EEG channels were filtered with CSP1 in real time (most
and second most discriminating filters) as shown in Fig. 6. After
filtering, the variances of the resulting four time series were cal-
culated for a 1-s window, normalized, and also log-transformed.
The resulting features were classified with WV1. This result was
used to control the feedback bar on the monitor. The bar, varying
in length, pointed to the left if the output of the linear classifica-
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Fig. 6. Simulink model for the real-time analysis of the EEG. A device driver for the RTI800a (DAQ board of Analog Devices) makes the connection to the real
world. In this case, the input block represents analog input channels 1 to 28 (EEG#1 to EEG#27, Trigger). Channels 1 to 27 are bandpass filtered between8 and 30
Hz. The output signal is then passed to the two most (Spatial Filter 1 and Spatial Filter 27) and two second most (Spatial Filter 2 and Spatial Filter 26) discriminating
common spatial filters. After temporal and spatial filtering, the variances of the resulting four time series were calculated for a 1-s window, normalized, and also
log-transformed. The resulting features were classified with the WV. This result was used to control the feedback bar on the monitor. A detailed description of the
hardware and software components is given in [8] and [20].

TABLE II
CLASSIFICATION TIME POINTS (CTPs)OF THE WVS ACCORDING TOSUBJECT

AND SESSION. THE WV WAS ALWAYS SET UP FROM THEBESTCLASSIFICATION

TIME POINT ACHIEVED WITH A 10� 10 CROSS-VALIDATION WITH THE

ACTUAL CSP. GRAY BOXES INDICATE SESSIONSWITHOUT FEEDBACK

tion was positive and to the right if negative. The absolute value
of the classification result is a measure of how reliably the side
was determined and controlled the length of the bar.

Then session 3 was performed without feedback in order to
set up WV2. In session 4, WV2 and CSP1 were used to give
feedback. On the third day with the data of session 4, a new
CSP2 and WV3 were calculated and used in session 5. Then the
update procedure of the CSP and WV was repeated again. It is
of importance to point out that for those sessions conducted on
the same days, the electrodes were applied only once, thereby
minimizing any variations in placement for those sessions.

VI. RESULTS

The time courses of the on-line classification results of the
feedback sessions are graphically presented in Fig. 7 for all three
subjects. A comparison of on-line error and the 1010 fold

cross-validation error calculated off-line is given in Table III.
Altogether 13 sessions with feedback, consisting of 160 trials
each, were held. Sessions 1 and 3 were performed without feed-
back, where the subjects were instructed to imagine a right- or
left-hand movement right after the cue presentation. These re-
sults are not reported in Fig. 7 because the EEG was not classi-
fied in real time during these sessions. Sessions 2, 4, 5, 6, and 7
were performed with feedback. The feedback was shown on the
monitor from second 4.25 until second 8 and was continuously
updated in real time with the CSPs and with the WVs obtained
in previous sessions according to Fig. 3.

The on-line classification error ranged from 1.8 to around
50% for all classification time points and subjects. The
lowest on-line error rate in the last sessions for g3 was 1.8%
(second 5.5), for g7 6.8% (seconds 5 and 5.5), and for i2
14% (second 5). In comparison, the lowest cross-validation
error rate for subject g3 was 0% (second 5.5), for g7 6.5%
(second 5.5), and for i2 8.7% (second 5) for the same
sessions as shown in Table III. The error rate increased
slightly by 1.8 0.3, and 5.3%, respectively, with the on-line
classification. The reason for the difference is that the
on-line result can be biased, meaning the feedback bar on
the monitor is pointing slightly more in one direction.

It is important to note that the minimum classification error
decreased from 18.8% in the first feedback session to 1.8% in
the last session for subject g3, from about 50 to 6.8% for subject
g7, and from about 50 to 14% for subject i2.

However, the results from the three subjects show basic dif-
ferences.

1) Subject g3 achieved an on-line classification error be-
tween 18.8 and 31% (between second 4.25 and 8) in the
first feedback session. The update of the WV after session
3 decreased the minimum error rate to 14.4% at second
5.5. The update of the common spatial filter and of the
WV after session 4 had nearly no effect on the error rate
in session 5. The minimum error rate remained constant.
But the update of the CSP and of the WV after session
5 caused a decrease of the minimum error rate to 1.8%,
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Fig. 7. Time course of the on-line classification error (100% minus accuracy), starting 1 s before visual cue stimulus. Subjects participated in four(g3 and g7) or
five (i2) sessions with feedback.

which corresponds to three misclassified trials out of 160.
The time points of the minimum error rate always corre-
spond to the calculation time point of the WV, as shown
in Table II. Therefore, the best classification time point
was always known in advance.

2) Subject g7 was not able to control the feedback bar in
session 2. Table III clearly shows the difference between
the on-line (around 50%) and cross-validation (32.8%)
error rates. The cross-validation shows that the left- and
right-hand movement imagination is separable, but the
bar was always pointing in one direction. After calcu-

lating a new WV from the data of session 3, the on-line
error decreased from about 50% in session 2 to 31% (Sec-
tion 5.5) in session 4. The update of the CSP and of the
WV after session 4 clearly decreased the error rate to a
minimum of 16.3% (Section 5.5). Similar to subject g3,
the calculation of CSP3 and WV4 caused a decrease of the
minimum error rate to 6.8% (Section 5 and 5.5). The best
classification time point always corresponds to the calcu-
lation time point of the WV, except for session 5 (session
2 is not considered). The WV was set up at second 4.5,
but the best classification time point was at second 5.5.
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TABLE III
THE CROSS-VALIDATION (CV) ERRORRATES FORSESSIONSWITHOUT (GRAY BOXES) AND WITH (WHITE BOXES) FEEDBACK ARE SHOWN FOR THEBEST

CLASSIFICATION TIME POINT. THE ON-LINE ERRORRATES WEREONLY CALCULATED FOR FEEDBACK SESSIONS. VALUES IN BRACKETS INDICATE ERRORRATES

ACHIEVED WITH A CSP THAT WAS SET UP OF THEDATA OF THE SAME SESSION

3) Subject i2 was also not able to control the feedback bar
in session 2. But Table III again shows that the EEG was
separable with a cross-validation error of 33.6%. The bar
was again pointing in only one direction. The WV update
of the data of session 3 decreased the minimum on-line
error rate to 12.5% (Section 5.5). In session 5, the same
CSP and WV as in session 4 was used. The on-line error
rates of both sessions are quite similar. After updating the
CSP and the WV with the data of session 4, an increase
of the error rate was observed in session 6. Repeating
the update procedure of CSP and WV again decreased
the minimum error rate to 14% (Section 5). Therefore,
performance did not improve with CSP3 and WV4, in
comparison to the results in sessions 4 and 5. In sessions
5–7, the best classification time point corresponds with
the calculation time point of the WV (session 2 is not
considered). In session 4, the best classification time point
was 0.5 s later than the classification time point of the WV.

VII. D ISCUSSION

This paper demonstrates that the method of common spatial
patterns can be used to analyze the EEG in real time in order
to give feedback to the subject. The method was utilized to
give fast, continuous, and accurate feedback during left- and
right-hand movement imagination. Furthermore, the classifi-
cation accuracy that can be achieved after only three days of
training, when the CSP filter is adapted between sessions, was
determined. All three subjects were able to reduce their on-line
classification error within three days to 2% (g3), 6% (g7), and
14% (i2) in six to seven sessions, respectively. However, it
must be pointed out that subjects had participated prior to this
study in 23 (g3), five (g7), and seven (i2) BCI sessions using
bandpower or AAR parameters for the feedback calculation
[2], [8], [16]. Usually one to three sessions were carried out
per day, which gives a training period of a few days. Results by
Wolpaw and McFarland show that healthy subjects and spinal
cord injury patients usually need several months to develop
high accuracy (i.e., 90%) using mu and beta frequency com-
ponents [21]. Also Birbaumer’s group reports a training period
of several months with slow cortical potentials to achieve

accuracies of 65–80% for healthy subjects [22]. ALS patients
were trained longer than a year [23]. For practical applications,
the training time must be minimized to increase the acceptance
of the system and motivation of the BCI operator.

The error rates marked by brackets in Table III clearly show
the influence of electrode position variations on different days
and day-to-day subject’s state variations: On every new experi-
mental day, the electrodes have to be mounted anew. Therefore,
the electrode positions can be expected to vary slightly between
sessions on different days. The measured ERD pattern of senso-
rimotor rhythms can be completely different when the electrode
position varies by, e.g., 2.5 cm [24].

In session 1, cross-validation errors of 4% (g3), 10.4% (g7),
and 15.8% (i2) are achieved if the CSP calculated from session 1
is also used to classify the same data. A loss of performance can
be observed in sessions 2, 3, and 4 on the second day, whereby
CSP1 from session 1 (first day) was used, but besides changes in
the subject’s state also the electrode positions were not exactly
the same as compared to the first day. After setting up CSP2
from session 4 and classifying the same session, the error de-
creased again to 0.4% (g3), 9% (g7), and 3.4% (i2). The same
trend can be seen in session 5 of subject g3 and g7 and session
6 of subject i2. But the lower classification errors of 0.6% (g3),
7.4% (g7), and 8% (i2) are now in the range of the error rates
achieved in the next session, which are 0% (g3), 6.5% (g7), and
8.7% (i2). There are two reasons for this:

1) both sessions were performed on the same day (third day)
one after another;

2) the electrode positions were exactly the same for the last
two sessions.

Therefore, it is recommended not to apply the electrodes anew
after setting up a new CSP for the following feedback sessions.
However, further investigation is necessary to determine to
which extent the difference in error rates can be attributed
to variations in electrode applications and day-to-day sub-
ject’s state variations. For long-term implications of this BCI
approach, EEG data of several sessions can be used for the
calculation of the CSP. This allows the generation of a more
robust filter in order to overcome the mentioned problems.

The study clearly showed that it is important to update the
WV. For example, the reason for the 50% error rate in feedback
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session 2 for subjects i2 and g7 was a biased classification result,
meaning the feedback bar on the monitor was always extending
in just one direction. Therefore, the on-line classification error
was higher than the cross-validation error. This bias can be elim-
inated by setting up a new weight-vector.

A disadvantage of the CSP method is the large number of
electrodes needed. Thus, extensive electrode application time
and multichannel EEG analysis are required. The necessity for,
e.g., a 27-channel EEG-amplifier system limits the use of the
CSP as a portable BCI system, but it is still wheelchair mount-
able. Further work is therefore necessary to search for the op-
timal number of electrodes. An off-line study with the CSP
method has shown marginal differences in the classification ac-
curacy of single trials with a binary motor imagery task when 18
electrodes were used, as compared to 56 electrodes [14]. The use
of implanted electrodes in the future should solve the problem
inherent in precisely applying a large number of electrodes and
will provide freedom from muscle and movement artifacts. Ex-
perimental setups with implanted electrode arrays are already
being investigated [25], [26].

It is also important to remove artifacts for the setup of the
common spatial patterns. During on-line operation of the BCI,
the spatial pattern performs a weighted averaging of the EEG,
and this reduces the artifacts.

The only parameters that must be adjusted for the CSP
method are the time segment for the calculation of the CSP and,
during on-line processing, the time window for the calculation
of the variances. But the selection of these parameters is not
very crucial.

An advantage of the CSP method is that it does not
require a priori selection of subject-specific frequency bands,
as necessary for bandpower or frequency estimation methods
[27], [28]. Although AAR parameter estimation methods
(such as the recursive least squares algorithm) [2], [8], [29]
also do not require a frequency band selection and operate
with only two bipolar EEG signals, a cross-validation error
of 0% with the AAR model was never achieved. Experi-
ments with the same paradigm and AAR together with the
LDA approach resulted in lowest on-line errors for three
subjects of 5, 9, and 9% after six to seven sessions (for
details, see [8]). Long-term experimental series with two
bipolar channels, using delayed feedback that presented the
classification result at the end of each trial (“correct” or
“not correct”) computed with bandpower and learning vector
quantization approach, were carried out with four subjects.
This type of experiment yielded to minimum on-line clas-
sification errors of around 10, 13, 14, and 17% after seven
to 14 sessions [2]. A direct comparison of results, however,
is not possible, because only trained subjects, who also had
participated in former series of experiments, were included
in the present study.

We think that the inconvenience of applying more electrodes
is rationalized by performance improvements with the method
of common spatial patterns and will make a practical difference
in patients requiring rehabilitation. One must consider that the
most obvious strategy for achieving a higher speed of commu-
nication is to reduce the error rate. Even a small decrease of the
error rate causes a high increase of the BCI bit rate.
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