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A Brain-Controlled Switch for Asynchronous Control
Applications
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Abstract—Asynchronous control applications are an important
class of application that has not received much attention from the
brain-computer interface (BCI) community. This work provides a
design for an asynchronous BCI switch and performs the first ex-
tensive evaluation of an asynchronous device in attentive, sponta-
neous electroencephalographic (EEG). The switch design [named
the low-frequency asynchronous switch design (LF-ASD)] is based
on a new feature set related to imaginary movements in the 1–4 Hz
frequency range. This new feature set was identified from a unique
analysis of EEG using a bi-scale wavelet. Offline evaluations of a
prototype switch demonstrated hit (true positive) rates in the range
of 38%–81% with corresponding false positive rates in the range
of 0.3%–11.6%. The performance of the LF-ASD was contrasted
with two other ASDs: one based on mu-power features and an-
other based on the outlier processing method (OPM) algorithm.
The minimum mean error rates for the LF-ASD were shown to be
significantly lower than either of these other two switch designs.

Index Terms—Asynchronous control, BCI, brain, computer,
EEG, human, interface, machine, switch.

NOMENCLATURE

ASD Asynchronous switch design. A type of switch
designed for asynchronous control applications.

IVMRP Imagined voluntary movement-related poten-
tials. Electroencephalographic (EEG) potentials
related to imagined voluntary movement.

LF-ASD The ASD proposed and evaluated in this paper.
LF-ASD is an acronym for low-frequency asyn-
chronous switch design.

LVQ3 A vector quantization method. For details, refer
to [11].

Mu-ASD An experimental ASD based on changes in
mu-rhythm power.

OPM Acronym for the outlier processing method. A
method to extract and classify single-trial move-
ment related potentials from EEG.

OPM-ASD An experimental ASD based on the OPM algo-
rithm.
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Probability of a false positive. i.e., the probability
of the ASD incorrectly classifying EEG when the
user is idle as a switch activation.
Probability of a true positive. i.e., the probability
of the ASD correctly classifying an attempted
switch activation as a switch activation.

ROCC Acronym for receiver operating characteristics
curve. See description of ROCCs in Section IV.

VMRP Voluntary movement-related potentials. EEG Po-
tentials related to voluntary movement.

I. INTRODUCTION

A S A RESULT of accident or disease, millions of people
worldwide suffer from a severe loss of motor function.

These people are forced to accept a reduced quality of life de-
pendent on other individuals. Technical aids have been devel-
oped to liberate these individuals, but the effectiveness of these
aids for individuals with severe disabilities is often limited by
the human-machine interface.

The concept of a brain-computer interface (BCI) has emerged
over the last two decades of research as a promising alternative.
The ultimate goal of this research has been to create an advanced
communication interface that will allow an individual to control
a device, such as a wheelchair or computer, with signals mea-
sured from the brain. This type of interface would increase an
individual’s independence, leading to an improved quality of
life and reduced social costs. The majority of these techniques
have focused on EEG data and these have shown that EEG ac-
tivity may be a good basis for such communication and control
channels.

In a typical BCI based on spontaneous EEG, the operator gen-
erates a “control signal” by consciously changing his cognitive
state when he or she wants to control the device. The change
in cognitive state is measured as specific temporal patterns [1],
[2] signal power level [3]–[7] in the operator’s EEG activity.
Several techniques have been realized with varying degrees of
success [8].

The design of a BCI depends on the application for which
it was intended. To date most researchers have designed and
tested BCI systems on, what we will call, synchronous control
applications. In these applications, the system initiates a new
control period when the operator has completed the previous
control task or the system has timed out. The sequencing of
actions in this type of application is illustrated in Fig. 1. Note, in
these applications, the system initiates the period of control, not
the user, and the user is expected to be consciously controlling
the interface during the control periods.

0018–9294/00$10.00 © 2000 IEEE
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Fig. 1. Sequence of events for a synchronous control or communication application.

Fig. 2. Typical sequence of events in an asynchronous control application.

In contrast, there are applications that require constant user
attention and irregular, user-initiated (not system-initiated) con-
trol. These types of application are usually not communications
applications, but control applications. Monitoring a process and
adjusting a control level when required is an example of this
type of application. These types of applications, which we will
call asynchronous control applications, are characterized by al-
ternating periods of attentive idleness and active control as illus-
trated in Fig. 2. In these applications, the user is not consciously
controlling their state when they are attentively idle. The user
only consciously controls their state when they desire to control
the device.

The asynchronous control application domain is an impor-
tant class of applications that has received little attention from
the BCI research community. This is partially because the ap-
plication domains have lacked definition and partially because
the field has lacked a mechanism to determine when EEG con-
trol is intended and when it is not.1 Since the concept of asyn-
chronous control is new to many readers, there may be some
confusion regarding the differentiation of application domains
and use of terminology. Also asynchronous control detection
may be confused with the System On/Off Problem. To clarify
the latter point, let us look at Figs. 1 and 2. We have drawn both
these figures with System ON and System OFF periods to em-
phasize that the mechanism to detect asynchronous control sig-
nals from attentive, idle EEG is different from the mechanism to
turn the system on. They are not the same mechanism: the asyn-
chronous signal detector has to differentiate between attentive
idle EEG and the control states, whereas the System ON mech-
anism is more complicated; it has to differentiate between all
possible innate brain states and the system on state. In theory,
the asynchronous control environment could be implemented
with the sequence System ON, control commands, System OFF
for every control command required. Practically, this theoretical

1Note, such a mechanism to determine intent is not required in synchronous
control environments because the operator’s intent to perform the control task
is assumed at the beginning of the control period.

implementation is burdensome to the user and adds additional
delays in the control stream.

In this paper, we introduce the prototype of a BCI switch suit-
able for asynchronous control applications and evaluate its per-
formance offline. The performance of this device is compared
with the performance of two other asynchronous switches—one
created using the outlier processing method (OPM) [1] as its
basis and the other using a mu-rhythm power classification al-
gorithm [3], [6] as its basis. This research is novel in two re-
spects: it marks the first extensive evaluation of asynchronous
signal detection device in attentive, spontaneous EEG; and the
asynchronous switch is controlled by a new EEG feature basis
related to an imagined finger movement. The introduction of
our switch design, the low-frequency asynchronous switch de-
sign (LF-ASD), provides the first step toward a critical class of
component for asynchronous control applications.

The remainder of the paper is organized in four sections. Sec-
tion II presents the design of our asynchronous switch. Section
III describes the methods used to evaluate the performance of
proposed switch design and the performance of the two switches
based on OPM and mu-event-related desynchronization (ERD).
Section IV presents the results of our evaluation. Section V sum-
marizes our findings and outlines our future research efforts.
A glossary of abbreviations is provided at the beginning of the
paper for the reader’s convenience.

II. A SYNCHRONOUSSWITCH DESIGN

The structure of the proposed LF-ASD is presented in Fig. 3.
The design of the LF-ASD relies on a new feature basis derived
from signal characteristics observed in the 1–4 Hz frequency
band. The feature basis and feature selection process is reviewed
in the next subsection. Details of the feature extraction method-
ology are given following the feature selection summary.

The LF-ASD feature classifier was implemented as a nearest
neighbors ( ) classifier [10] because of its suitability
with our small data sets. We selected a for this
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work.2 To improve the speed of classifier, a vector
quantization technique, the LVQ3 algorithm [11] (with three
codebook vectors per class), was applied to model the data
set. LVQ3 has been used extensively in mu-power BCI tech-
niques [12], [13]. The LF-ASD feature classifier performed a
sample-by-sample classification of each feature vector gener-
ated by the feature extractor. The output of the state classifi-
cation module is denoted by . The classification accuracy
was found to improve when the values were averaged
over time.3 We believe the reason for this improvement was
because averaging emphasized temporally redundant informa-
tion in neighboring values, which were present because
we oversampled the feature vector since we did not know the
optimal classification rate for this new feature set. Thus, the
output of the classifier, denoted , is a moving average
of during a time period . would be classified
as control state if more than values were classified
as , otherwise, as . The optimal value for the parameter
was experimentally determined to be five; values greater than
five did not provide any additional information [14].

Before we detail the feature extraction methodology used in
the LF-ASD, we will provide some background on how the new
feature basis was selected. Section II-A summarizes the findings
of the preliminary studies used select a useful feature basis for
asynchronous signal detection.

A. Feature Selection Overview

The purpose of the section is to present the feature basis used
in the LF-ASD and illustrate how it was chosen. (For detailed
methodologies and results from these studies, refer to [14]).

The initial objective of this work was to evaluate existing BCI
feature sets to determine if these techniques were reasonable
candidates for asynchronous switching. The OPM was consid-
ered first as it is the only BCI technique that has been designed
specifically to differentiate idle from active (control) EEG in
an asynchronous control application. However, our offline eval-
uations with this technique (detailed below) indicated limited
ability. Although it had never been reported, mu-ERD [3], [6],
the feature basis for state-of-the-art BCIs, seemed to be an ex-
cellent feature for asynchronous signal detection since it oc-
curs when certain cognitive events are generated. However, our
evaluation of an asynchronous switch based on mu-ERD fea-
ture classification demonstrated relatively high error rates when
applied to this task. The details of this evaluation are given
below. Given the relatively poor performance of existing tech-
niques our focus changed to identify a new feature basis for
asynchronous switching. Note, there are several other feature
sets such as power spectral density coefficients (including beta
rhythm power) [5], [9], or autoregressive parameters [7] that
were not evaluated Their applicability to asynchronous control
remains unknown.

Our search for an effective feature basis focused on imagined,
voluntary movement-related potentials (VMRPs) because vol-
untary movement control is an existing, internal control system

2Other implementations of (k�NN ) may prove to be optimal, but these were
not evaluated.

3Anderson,et al.[7] have also observed that temporal averaging can improve
classification performance.

Fig. 3. Components of the ASD.e (n) are the observed EEG signals at
electrode pairse , i = 1; 2; . . . ; M , and discrete timen. 	(n) is the feature
vector generated by the feature extractor.z (n) is the final classification
sequence and the sequence,z(n), is the sequence of sample-by-sample feature
classifications. Note,I denotes an idle state classification andC denotes a
control state classification.

Fig. 4. Feature wavelet used for signal analysis during feature selection. Note,
maximal elemental feature values were found forb = 0. With b = 0, the
elemental features correspond to a difference in signal levels defined by (4).

in humans that seems naturally suited to drive a BCI. Other re-
search laboratories have also taken this approach, using EEG
features related to imagined movements as their basis for con-
trol [13], [15].

However, signal analysis of imagined movements in asyn-
chronous control environments is difficult because one needs
an indication of intent in order to process the data. This is not
the case for synchronous applications because user intent is as-
sumed during the control periods. The only method to record
intent for imagined movements in asynchronous control envi-
ronments is for subjects to self-report intent during the data
recording. There are two disadvantages to self-reporting. The
first is that self-report complicates the signal analysis because
one does not know exactly when the movement was made. The
second problem is that it is hard to provide the user with any
form of feedback during these sessions. In order to avoid these
problems at this initial stage of development and evaluation of
our switch prototype, we chose to analyze VMRPs under the
assumption that features discovered for VMRPs would be ap-
plicable to imagined movements. This assumption has support
in the findings of Cunninghamet al. [16] who observed that al-
though the late MRP component over the primary cortex was re-
duced in amplitude during imagined movements compared with
actual movements, the early MRP components did not differ in
amplitude or temporal and topographic characteristics.

Time-frequency analysis [17] of attentive idle and movement-
related EEG indicated a noticeable relative power increase in
the 1–4 Hz band in ensemble data over five subjects. Our ini-
tial research into the 1–4 Hz range used a classifier designed
to discriminate single-trial idle and movement EEG using 1–4
Hz power levels. However, this classifier did not perform better
than chance [14].

Analysis of the 1–4 Hz frequency band with the bi-scale
wavelet,4 , shown in Fig. 4, exposed a set of relatively

4This wavelet shape was selected to respond to the RP-PMP-MP transitions
known to exist in 1–4 Hz, ensemble-averaged VMRPs.
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stable features over the supplementary motor area (SMA)
and primary motor area (MI). Mathematically these wavelet
features were defined as

(1)

where is the th observed bipolar EEG signal (filtered to
1–4 Hz using a 121-point, zero-phase finite impulse response
filter based on a Hamming window).

The discriminatory power of several elemental features of the
form

(2)

was evaluated on the attentive idle and movement-related EEG.
We found it useful to introduce a time shift,, to each elemental
feature to allow for the phase alignment of features. Also, we
noticed that the strongest feature values were observed for the
parameters near zero, so we simplified our analysis to , for
all . These actions reduced the feature wavelet to a difference
of impulses and reduced the complexity of elemental features to

(3)

where indicates the number of features evaluated. (3) can be
rewritten as

(4)

to express the features in terms of the recorded signals. In this
form, the signal delay parameters are defined as

(5)

The robustness of the feature prediction was improved by
pairing elemental features in compound features defined by the
correlation

if and

otherwise (6)

Note, the feature values were set to zero if either
or were negative, to avoid generating large feature values
from negative images of the desired phasic relationships.

Many compound features were evaluated on signals mea-
sured between electrodes AF, F , F , F , FC , FC , FC , FC ,
FC , C , C , C , C , C , P , and O in the International 10–20
System for electrode placement. The features were ranked based
on the difference of the median feature values between active
and idle training sets.

The strongest discriminatory features were found in autocor-
relations within six electrode pairs F–FC , F –FC , F –FC ,
FC –C , FC –C and FC–C [14]. These six compound
features, which had difference of medians values in the range
161–183 units, were the features chosen for the evaluation of
our asynchronous switch prototype (described below). Some
of the other features displayed nearly as strong discrimination
power (e.g., the seventh strongest feature, within the electrode
pair FC -FC , had a difference of medians value of 153 units).

Fig. 5. Electrode placement for LF-ASD.

We chose to limit the features to the top six primarily because
these features were the minimal set that provided uniform
coverage of the motor areas of the cortex. Since these features
were related to VMRP amplitude peaks, which have been
shown to be relatively consistent between subjects and stable
over time [18]–[21], we assumed that these features would be
stable and generally applicable.

As a summary note, Birbaumeret al.has recently reported a
technique that also uses low-frequency features recorded from
the frontal cortex [22], but their feature set is not related to ours.
Their technique is based on a completely different neurolog-
ical mechanism, slow cortical potentials, where ours is based
on imagined movement-related potentials.

B. Feature Extraction Methodology

Six signals were recorded from the six electrode pairs shown
in Fig. 5 using a sample rate of 64 Hz. These signals were
prefiltered between 1 and 4 Hz and the compound features de-
scribed by (6) were calculated. The delay parameters [defined
in (5)] were selected from an exhaustive parametric search
through training data. Note that during feature selection, the
feature delay values for common electrode pairs (e.g., F–FC )
were constrained to be equal (as seen in Table I).5 In order to
increase the robustness of the signal detection to trial-by-trial
latency variation, the feature values given by (6) were collapsed
over 1/8 of a second into the aggregate features defined by

(7)

where represents the maximum. The resulting feature
vector, , was an equally weighted, six-dimensional vector,
with each dimension reflecting the value of an aggregate feature.

III. LF-ASD EVALUATION METHODOLOGY

The purpose of the offline study was to determine how well
the LF-ASD could discriminate EEG activity related to imag-

5The original aim of this constraint was to generalize the design of the
LF-ASD to all types of movements instead of optimizing it for a right index
finger flexion. This constraint is unnecessary for the LF-ASD as presented
but is described because the performance was evaluated with this constraint
applied. We plan to remove it in future work.
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ined movements from attentive idle EEG. However, we needed
an experimental design that would indicate the subjects’ in-
tent to operate the asynchronous switch during imagined move-
ments. As with our signal analysis, we chose to use the mental
state related to an actual movement to approximate the mental
state related to an imagined movement. This choice allowed us
to have accurate time stamps on subject intent and it allowed us
to provide reliable feedback to the subjects during recording. Of
course, this approach relies on our assumption that the imagined
movements will have enough similarity to actual movements to
drive the LF-ASD.

To evaluate the new feature set, the LF-ASD design, de-
scribed in Section II, was used with the single set of delay
parameters. A single set of delay parameter was selected to
limit the complexity of this initial evaluation of our prototype.
We believed that parameters estimated from a data set with
the strongest VMRPs would provide our best results across all
subjects. With this belief, the delay parameters for this study
were determined from Subject 3’s training data, because this
subject’s data set had the largest ensemble-averaged VMRP
response of the five subjects. The selected delay parameters are
shown in Table I. (These six compound features were labeled

, to simplify the discussions in the following
sections.)

The performance of the LF-ASD was contrasted to two other
ASDs: one based on mu-power features and another based on
the OPM algorithm.

The second asynchronous switch in this evaluation, referred
to as Mu-ASD, implemented mu-rhythm power feature extrac-
tion and classification on a signal measured from a monopolar
electrode at Csimilar to the implementation described in [6].
Notable differences in implementation were the reference mu
power level used for discrimination, subject training, and tem-
poral averaging of output classifications. For this study, the av-
erage power over the first second of each 4-s experimental trial
(defined below), which was known to be the idle state, was as-
sumed to be a reasonable reference mu power level. We did not
have the means to train subjects in a manner similar to [6], but
we felt that an evaluation based on untrained subjects would not
be a fair comparison and it would be too easily criticized. So for
.5 s before and after all experimental finger flexions (defined
below), the recorded power in the 8–12 Hz band was artificially
reduced to twice the power in the 18–22 Hz band to approximate
the effect of subject training. This scaling was based on the ob-
servation that mu-power levels for trained subjects seemed to be
approximately twice the power in the 18–22 Hz band [3], [23].
The State Classification Module for Mu-ASD was selected as a

classifier with the feature space modeled by the LVQ3
algorithm with three codebook vectors per class [11]. Like the
LF-ASD, the classifier output was fed through a moving average
module in order to facilitate the comparison with the LF-ASD
performance.

The third asynchronous switch, referred to as OPM-ASD,
implemented the OPM algorithm as described by Birchet
al. [1] with two exceptions: Shorter (1 s) segments were
classified every 1/16 of a second and the classifier output was
fed through a moving average module in order to facilitate the
comparison with the Mu-ASD and LF-ASD performance. The

TABLE I
OPTIMAL 1–4 Hz FEATURES. FOR A DEFINITION OF THE SYMBOLS REFER

TO (1), (4)–(6)

*Units for delay parameters are (discrete time) samples.

shorter segments were necessary to match the asynchronous
classification rates tested on the other ASDs. To summarize the
original OPM method, a one-dimensional EEG signal related to
an imagined voluntary movement is recorded from monopolar
electrode at C. This signal is assumed to be composed of an
imagined movement-related potential (the signal of interest)
added to spontaneous EEG (considered background noise). The
method attempts to estimate the spontaneous EEG component,
then subtract it from the original signal to yield the signal of
interest. The estimated imagined movement-related potential is
then classified using a linear classifier based on time-warping.
In order to estimate the spontaneous EEG from the input signal,
the OPM uses robust statistical processing algorithms. For
more details of this technique, refer to [1].

Table II summarizes the makeup of each of the experimental
ASDs.

For all the ASDs, a decision rate of 16 decisions/s was chosen.
This relatively high decision rate was a conservative choice,
known to be faster than EEG state changes related to a move-
ment and twice that used in a mu-power classifier [6].

The performance of these ASDs was evaluated in terms of the
probabilities of true and false positives and
relative to a movement event.

A. Data Collection

Data was collected from five, right-handed males within the
age range of 23–33. All the subjects in this experiment were
strongly right-hand dominant as measured by handedness scores
from the LAT-24-R questionnaire.6 Each subject participated
in a single 3-hour recording period and the five subjects were
recorded on separate days over a period of a month.

The subjects were seated in a comfortable chair with their
eyes 100 cm from the visual display. Each subject wore an Elec-
troCap electrode cap with signals measured from the locations
shown in Fig. 5. EOG activity was measured above and to the
left of the left eye.

6The LAT-24-R handedness Inventory was supplied and rated by the Human
Neurophysiology and Perception Laboratory at the University of British Co-
lumbia, Vancouver, BC, Canada.
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TABLE II
DEFINITION OF ASYNCHRONOUSSWITCH DESIGNSUSED IN EVALUATIONS. REFER TO THETEXT FOR DESCRIPTIONS OFSYMBOLS

The subject wore a custom data glove with two piezo-electric
sensors located over the metacarpal-phalanges joint and the pha-
langes-phalanges joint of the right index finger [14]. The glove
produces a signal that depended on the degree and speed of a
right index finger flexion. The finger position signal was also
recorded by the data acquisition system.

The EOG and EEG signals were amplified by a Biomedical
Monitoring Systems Inc. EEG system and recorded with the
finger movement on the data acquisition system consisting of
an IBM compatible computer with a Data Translation 2801A
digital-to-analog board and running IMPULSE EEG Data Col-
lection software. Signals were recorded at 128 Hz, but down-
sampled to 64 Hz prior to evaluation.

The desired movement was explained to the subject and the
subject was allowed to practice while the investigator watched
and corrected the subject’s motion. A nonstandard finger flexion
was selected as the target movement because it was assumed
to be new to all subjects. Pilot studies showed that this move-
ment required attention and a moderate amount of effort to per-
form accurately. The selected movement was a fast (less than
1 s), compound, index finger flexion. The movement started
with the flexion of the index finger at the metacarpal-phalanges
joint, followed immediately by a ballistic palmar flexion of the
index finger. The investigator used visual inspection of averaged
finger movements to maintain similar movement patterns be-
tween subjects. After training and instruction, the subject was
allowed to practice at the experimental sequence until at least
ten movements were attempted and greater than six out of ten
movements were recognized by the system in ten consecutive
trials.

An experimental control system, referred to as MONITOR,
controlled the video display and evaluated EOG and finger
movement quality. The data acquisition system would receive
signals from MONITOR when a trial started and when a finger
movement was detected, enabling the recorded EEG to be time
stamped for these events. To evaluate finger movement quality,
MONITOR performed a weighted-correlation comparison of
each movement against a subject-specific movement template
that was recorded at the start of the experiment.

Throughout the experiment, the subject focused on a “pong”
style video display similar to the one shown in Fig. 6. This dis-
play was introduced in an attempt to increase subject attention

Fig. 6. Experimental display.

and decrease eye fatigue.7 The monochrome monitor displayed
two balls moving within a rectangular boundary at a moderate
speed of approximately 4 cm/s The center ball moved through
a visual angle of 2 up and down or side to side. The second
ball, marked 2 in Fig. 6, moved randomly throughout the space
bouncing off the boundary and the center ball. The cm
boundary, labeled as 3 in Fig. 6, was either a single-lined or a
double-lined rectangle.

The system was configured so that the direction of the center
ball movement was changed from vertical to horizontal 1 s
after the subject flexed his finger. The 1-s delay was necessary
to eliminate the possibility of a visual evoked potential in the
recorded data caused by the orientation change.

The subject was instructed to pay attention to the boundary
box. When the single-line boundary box was displayed, the sub-
ject was instructed not to move, but to keep monitoring for pos-
sible collisions between the outer and center ball. During this
time, the MONITOR system would attempt to locate a 4-s pe-
riod free of EOG and movement artifact. When it successfully
found such a period, the 4-s period was recorded as an attentive
idle trial.

7Studies to evaluate the effects of this display were conducted on each subject.
Each subject’s EOG was visually inspected and found to be the same regardless
of whether they kept their eyes on the center ball, the outer ball, or fixed on a
corner of the display box.
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When the boundary box on the video display changed from a
single line to a double line, the subject was instructed to wait
for at least 3 s and then make a movement. The decision of
when to move was left to the subject. Sufficient practice was
allowed so the subject had a sense for the 3-s delay without
having to mentally count the time. The subject was instructed
to try to time their movements in order to position the center
ball in the path of the outer ball. If the subject moved before
3 s had elapsed, a message “too soon” appeared on the screen
for 2 s. After the subject moved, the direction of the center ball
changed from vertical to horizontal (or visa versa) 1 s after the
movement. If the subject reproduced the trained movement, the
center ball would flash rapidly on and off (after a 1-s delay) for
500 ms indicating a successful reproduction. The primary task,
as explained to the subjects, was to try to make the center ball
flash by reproducing the trained movement. If the movement
correlated with the system template with a value greater than
0.9 and there was no EOG contamination for 3 s prior to and
1 s after the start of the movement, the EEG at that point was
marked as a successful (“good”) movement.

The subject was instructed not to worry about blinking, but
to keep their eyes open for as long as they comfortably could.
It was stressed that there was no penalty for blinking and it was
more important for the subject to blink if he felt he needed to do
so.

During the experiment the subject performed a series of active
and idle tasks in a random order selected by the MONITOR
system at run time. The MONITOR system was programmed
to ignore the first ten active and first ten idle trials (good or
bad) to avoid start-up effects. Data collection continued until 50
successful movements and 50 attentive idle trials were recorded.
Within MONITOR, the system was programmed to wait up to
20 s for a movement before aborting and going on to the next
state. The idle state was programmed to wait for, at most, 12 s
before going to the next state with a maximum of two idle states
shown in a row. These presentation criteria were determined
from pilot studies to be optimal for collecting a 4-s period of
artifact-free idle EEG while not increasing eye fatigue and loss
of attention due to long periods of inactivity.

Every 8 min, or when the subject requested or appeared to
need a break (as indicated by excessive blinking or consistently
poor movement performance), a break was taken. The experi-
ment was resumed at the subject’s convenience and comfort.

IV. RESULTS

The performance of the ASDs to discriminate between atten-
tive idle EEG and movement-related EEG was evaluated offline.
The results are summarized in the Receiver Operating Char-
acteristic Curves (ROCC) shown in Figs. 7–9. Note that con-
fidence intervals were excluded from the ROCCs to improve
clarity. For all these points, the standard deviation of the
estimates was between 5% and 12% and the standard deviation
of the estimates was between 2% and 3%.

For the reader who is not familiar with ROCCs, the ROCCs
capture an application-independent representation of expected
operating characteristics in terms of the probability of true pos-
itives (movement-related EEG being classified as movement-re-

Fig. 7. ROCC of the LF-ASD signal detector when connected to Subjects 1 to
5.

Fig. 8. ROCC of the Mu-ASD signal detector when connected to Subjects 1
to 5.

Fig. 9. ROCC of the OPM-ASD signal detector when connected to Subjects 1
to 5.

lated EEG) and probability of false positives (attentive idle EEG
being classified as movement-related EEG) [24].

In this study, the and values were calculated
empirically. The and values were calculated
from switch evaluations using a ninefold cross-validation pro-
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TABLE III
MEAN AREA UNDER THE ROC CURVE FOR THEROC CURVES SHOWN IN FIGS. 7–9

cedure. In this procedure, 90 randomly selected active and idle
trials (45 of each) were divided into nine equal subgroups of
five active and five idle trials. Sequentially, one subgroup was
removed and the remaining 40 active and 40 idle trials were
used to train the feature detectors. The subset of trials left out
of the construction of each feature detector was used by the cor-
responding feature detector to generate ten unbiasedse-
quences (5 from active trials and five from idle trials). All in-
correct classifications during an idle trial [i.e., anyclassifica-
tion in ] were considered false positives. Since each idle
trial had 53 classifications over the 3.5-s period, each trial could
produce from zero to 53 false positives. For active trials, a
classification at the trigger point was considered a true positive.
The classifications during the other parts of the active trial were
not included in the reported probabilities.8 In total, 90 se-
quences were generated for each ASD using this approach. The
average and and the standard deviation of these
estimates were calculated from these 90 sequences. For the rel-
atively small active data set, estimates of the mean and variance
of were calculated using the standard estimates for pro-
portions. Estimates for the mean and variance of were
calculated using standard formulas for random variables.

In order to compare error rates of these ASDs, the area under
the ROCC is often used as an overall indication of the system’s
performance abilities. For a two-choice decision problem (like
the one studied here), the mean Area Under the ROC Curve
is a measure of the mean percent correct classifications of the
receiver. We have summarized the mean Area Under the ROC
Curves in Table III for all subjects and ASD techniques.

As seen in the values of Table III, the mean Area Under the
ROC Curve (i.e., the mean percent of correct classifications)
was 10%–22% larger than the area of the OPM-ASD for all
subjects, except Subject 1 (where the area was equal). In the case
of the Mu-ASD, the mean Area Under the ROC curves portrayed
a weak ability to discriminate.

The estimated mean error rate and the mean cost of an error
for a specific application can be derived from points on the
ROCCs. For example, the estimated mean error for an appli-
cation can be estimated from any point on these curves using

(8)

8This approach for measuring true positives was selected because the trigger
point was the only point where we were sure of the subjects’ intent to move.
Preliminary analysis of the classifications around the movement [16] suggests
that the periods within 1 s around the movement contain information that may
be used to improve the classification accuracy. However, we did not want to bias
theP (TP ) rate in this study with classifications that may be associated with
the intended movement. How to exploit this information in an on-line imple-
mentation of the LF-ASD remains to be determined

where is the expected control state probability,(control
state). In the results described below, atest statistic was used
to compare the estimated mean error rates of the LF-ASD,
OPM-ASD and Mu-ASD for various values of.

The minimum mean probability of error for each ASD was
calculated from (8) for various values of. The minimum mean
probability of error of the LF-ASD was shown to be signifi-
cantly lower ( , with and with

) than the mean minimum probability of error for both
Mu-ASD and OPM-ASD for all subjects.

The low-frequency asynchronous signal detector (LF-ASD),
which was based on the 1–4 Hz feature set, was able to differ-
entiate index finger flexions from attentive idle EEG with error
rates significantly better than chance. For example, the LF-ASD
was able to achieve values in the range of 60%–81%
with corresponding values in the range of 1.6%–6.0%
when classifying Subject 3’s data. Although the feature delay
parameters were calibrated using Subject 3’s training data, the
LF-ASD was able to achieve in the range of 38%–76%
corresponding to values in the range of 0.3%–18% for
all other subjects (excluding Subject 1).

Subject 1 performed the worst with and the
, which was consistent with the observation that

his data had the weakest ensemble averages of all the subjects.
The reader should note that Subject 1 was an advanced classical
guitarist and that the movement was very much like the plucking
of a guitar string. The issue of whether his guitar training influ-
enced the size of his VMRPs was recognized but was not re-
solved.

The proposed LF-ASD is considered to be relatively stable
over time and across subjects although this property has not been
extensively tested. The support for this view comes from sev-
eral observations. First, the LF-ASD was based on amplitude
and phase relationships between the dominant peaks present in
ensemble averages. These features are known to be stable over
time for a subject [18]–[21]. Second, the trial-by-trial detec-
tion performance of the 1–4 Hz feature set did not vary over
the 3-hour data-recording period for each subject. Third, the
LF-ASD for all the subjects performed with error rates signifi-
cantly better than chance with the LF-ASD calibrated for Sub-
ject 3. This result implies that the subjects share a base set of
features. Since the data for the subjects were recorded on sepa-
rate days over a period of a month, this base set of low-frequency
features appears to be stable in time.

Less than 30% of the idle trials for each subject were found
to contain the majority of the idle activity that was classified as
false positives. This indicates that the LF-ASD could correctly
classify relatively long periods of idle EEG (at least 3.5 s long)
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without any false positives. Further analysis is required to de-
termine if the idle trials that contained the majority of the false
positives actually contained a special type of idle activity dis-
tinguishable from movement-related EEG.

Trials recorded for the same movement were found to contain
VMRPs of varying peak amplitude. Trials with the “weaker”
VMRPs were suspected of biasing the performance results. By
removing 10% of the trials with the “weakest” VMRP ampli-
tude, the reported rate increased by 10%–20%. Prelim-
inary follow-up studies [25] have shown that subject training
can increase the consistency of the VMRPs and feature strength
during the control state and as a result, increase the .

The results of ASD performance evaluation demonstrated
that both the OPM and mu-ERD classification techniques pro-
duced significantly higher mean error rates than the LF-ASD.
The OPM-ASD generated moderately high values for
corresponding values (e.g., values in the range
of 25%–35% for corresponding values in the range of
49%–74%). The minimum mean error rates for the OPM-ASD
were significantly higher ( for ;

for ) than the minimum mean error
rates of the LF-ASD across all subjects. Although the
values for OPM-ASD (67%) were similar to those reported by
Birch [1], the values were dramatically larger (30%
versus 3%). Three possible explanations are offered for this
discrepancy. First, this study used ballistic finger flexions,
which have a shorter and weaker VMRP than the skilled thumb
movement used by Birch. The OPM algorithm therefore may
have had a harder time extracting an estimate of this VMRP.
The second reason was Birch only performed one classification
per idle trial with a relatively long (4 s) template. That resulted
in an artificially low estimate of . In contrast, this
study evaluated the OPM algorithm every 1/8 s with a shorter
(1 s) template which would be required in a responsive BCI.
Finally, this study compared attentive idle EEG in contrast to
the nonattentive idle EEG used by Birch. This difference in
attention control implies that the original results reported for
OPM may have relied on the shifts in attention level to aid its
classification.

As identified in the Section II, mu-power measures seemed
naturally suited for an ASD, but this functionality has not been
demonstrated. The results reported above demonstrated that our
implementation of mu power was not a good method for dis-
criminating index finger flexions from attentive idle EEG. The
Mu-ASD generated relatively high values for corre-
sponding values. The minimum mean error rates for
the Mu-ASD were significantly higher ( for

) than the minimum mean error rates of the LF-ASD across
all subjects. We noticed that the attentive idle EEG had fre-
quent power fluctuations in the mu band and we suspect the
Mu-ASD could not distinguish these from the mu-power level
during movement. This may explain its poor performance.

V. DISCUSSION

This paper has focused on an important class of applications
for BCI application: asynchronous control applications. We

have distinguished these types of applications from syn-
chronous control applications and have emphasized the main
problems related to the measurement of user intent. This work
provides the first extensive evaluation of an asynchronous
signal detection device in attentive spontaneous EEG.

We have presented a prototype of an asynchronous switch,
the LF-ASD, which we believe will be suitable for asyn-
chronous BCI control applications. This switch design is
based on a methodology to recognize a unique set of signal
features identified in the 1–4Hz band. The prototype switch
design has demonstrated a strong potential for recognizing
single-trial VMRPs. For reasons given previously, we assume
that these features will work for imaginary movements, but
this assumption remains to be verified. The introduction of the
LF-ASD is our first step toward a critical class of component
for asynchronous control applications.

The primary objective in our offline evaluation of the
LF-ASD was to demonstrate the discriminatory power of our
new 1–4Hz feature set. In our offline studies, the LF-ASD
functioned with classification error rates significantly better
than chance. For instance, the LF-ASD achieved values
in the range of 38%–78% corresponded to values in
the range of 0.3%–11.6% for four out of five subjects. With
the best subject, values in the range of 60%–81%
corresponded to values in the range of 1.6%–6.0%.
We expect improvements to this initial design will lead to
improved performance. The new feature set requires minimal
computation to calculate, which means that the LF-ASD can be
implemented in a real-time with current technology.

The results of our evaluations of asynchronous switches
based on the OPM and mu-ERD feature sets suggest that
neither of these methods as implemented is well suited for
asynchronous control. Given the number of configurable
parameters, there may exist alternate implementations of
OPM or mu-ERD (or other feature sets such as Beta rhythm
power, power spectral density coefficients, or autoregressive
parameters) that may prove useful.

A. Future Work

The focus of the reported work was to verify that the 1–4Hz
feature basis had sufficient power to discriminate VMRP and
attentive idle activity. Our current research is focused on ver-
ifying the LF-ASD operation online with real and imaginary
movements with able-bodied subjects and people with severe
motor disabilities. This work involves exploring methodologies
to capture users’ intent with imagined movements. A prelimi-
nary follow-up study of an online LF-ASD implementation [25]
has confirmed the base error rates reported here and it has shown
that individuals can improve their ability to use the LF-ASD
through training.

Many boundary characteristics such as maximum switch op-
erating speed also remain to be quantified.

We are also interested in subject training (how well can the
subject adapt to the LF-ASD) and how well the LF-ASD can be
customized to an operator. As a preliminary test in this area we
customized the LF-ASD feature delay parameters to Subject 4;
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Fig. 10. ROCC illustrating improved operating characteristics with LF-ASD
delay parameters customized for Subject 4.

previously these parameters were calibrated to Subject 3. The
increase in performance is shown in Fig. 10; the area between
the operating curve and the reference line increased by 18%.

Future work will also attempt to improve the LF-ASD de-
sign, possibly generalizing it to a variety of movements, thus,
making it an asynchronous, multiposition switch. We are also
considering the use of the proposed asynchronous switch as a
front end for other BCI techniques that have been developed
for synchronous application environments. In this type of com-
pound system, the user could operate the LF-ASD to initiate the
control period for another BCI controller.
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