
 

 

13. Stored-Program Computers 
Robert M. Keller 

(revised 15 November 2008) 
 
13.1 Introduction 
 
This chapter concentrates on the low-level usage and structure of stored program 
computers. We focus on a particular hypothetical machine known as the ISC, describing 
its programming in assembly language. We show how recursion and switch statements 
are compiled into machine language, and how memory-mapped overlapped I/O is 
achieved. We also show the logic implement of the ISC, in terms of registers, buses, and 
finite-state machine controllers. 
 
13.2 Programmer's Abstraction for a Stored-Program Computer 
 
By stored-program computer, we refer to a model like the random-access machine 
described earlier, with the additional proviso that the program, as well as the data, is 
stored in the memory of the computer. Most of the high-level language programming the 
reader has done will likely have used this kind of computer implicitly. However, the 
program that is stored is not high-level language text. If it were, then it would be 
necessary to constantly interpret this text, which would slow down execution immensely. 
Instead one of two other forms of storage is used: An abstract syntax representation of the 
program could be stored, in the form of polymorphic lists. The identifiers in this list are 
pre-translated, and the structure is easy to traverse dynamically due to the way lists are 
structured. This is the approach used by an interpreter for the language. A second 
approach is to use a compiler for the language. The compiler translates the program into 
the very low-level language native to the machine, and therefore called machine 
language. The native machine language acts as a least-common-denominator language 
for the computer. A machine that had to understand, at a native level, all these different 
languages would be prohibitively complex and slow. 
 
In this chapter, we will build up a stored-program computer using our knowledge of 
finite-state machine components described earlier. But first, we describe the native 
language of a simple computer using "assembly language". Then we "build-down" from 
higher-level language constructs to the assembly language to see how various algorithmic 
concepts get translated. 
 
In the mid-1980's, a major paradigm shift began, from CISCs (Complex Instruction Set 
Computers) to RISCs (Reduced Instruction Set Computers). RISCs tried to take a "lean 
and mean" approach, in contrast to their predecessor CISCs, which were becoming 
bloated with complexity. RISCs focused on features related to speed and simplicity and 
consciously avoided including the "kitchen sink" in the instruction repertoire. The 
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machine we use here for illustration is called the ISC, for Incredibly Simple Computer. It 
is of the RISC philosophy, but simpler than most RISCs for tutorial purposes. 
 
The following is a terse description of the ISC. The unit of addressability of the ISC is 
one 32-bit word. The ISC has a 32-bit address space. This means that up to 232 different 
words can be addressed in the memory, in principle, although a given implementation 
will usually contain far fewer words. Memory words are addressed by a signed integer, 
and negative addresses are typically used for "memory-mapped I/O", as described later. 
Instructions in the ISC are all one word long. Both instructions and data are stored in the 
memory of the computer. The instructions get into the memory by the execution of a 
special program known as the loader, which takes the output of the compiler and loads it 
into memory. A special part of memory known as the read-only memory (ROM) contains 
a primitive loader that brings in other programs from a cold-start. 
 
Although the instructions operate on data stored in the memory, ISC instructions do not 
reference memory locations directly. Instead, the data in memory are brought into 
registers and the instructions specify operation on the registers. The registers also serve 
to hold addresses designating the locations in memory to and from which data fetching 
and storage occurs. 
 
Internal to the ISC processor, but accessible by the programmer, are 32 registers, 
numbered 0-31. All processor state is contained in the registers and the instruction pointer 
(IP) (equivalent to what is sometimes called "program counter" (PC), unfortunately not a 
thing that counts programs). The IP contains the address of the next instruction to be 
executed. 
 
The following kinds of addressing are used within ISC: 

 
Register-indirect addressing is used in all operations involving 
addressing, including the jump operations, load, and store. In other 
words, the memory address is contained in a register (put there earlier by 
the program itself) and the instruction refers to the register that contains 
the address. 
 
Immediate values are used in the lim and aim operations. The term 
"immediate" means that the datum comes immediately from the 
instruction itself, rather than from a register or memory. 

 
Everything else is done using registers. These must be achieved by 
multiple operations of other kinds.  

 
In the following, Ra, Rb, and Rc stand for register indices. The C-language equivalent is 
given, followed by a brief English description of the action of each instruction. In the 
cases of the arithmetic instructions (add, sub, mul, div), if the result does not fit into 32 
bits, only the lower-order 32 bits are stored. 
 



Stored-Program Computers  

 

3 

lim Ra C reg[Ra] = C 
 Load immediate to register Ra the signed 24-bit integer (or address) 

constant C. 
 
aim Ra C reg[Ra] += C 
 Add immediate to register Ra the signed 24-bit integer (or address) 

constant C.  
 
load Ra Rb reg[Ra] = mem[reg[Rb]] 
 Load into Ra the contents of the memory location addressed by Rb.   
 
store Ra Rb mem[reg[Ra]] = reg[Rb] 
 Store into the memory location addressed by Ra the contents of Rb.  
 
copy Ra Rb reg[Ra] = reg[Rb] 
 Copy into Ra the contents of register Rb.  
 
add Ra Rb Rc reg[Ra] = reg[Rb] + reg[Rc] 
 Put  into Ra the sum of the contents of Rb and the contents of Rc. 
 
sub Ra Rb Rc reg[Ra] = reg[Rb] - reg[Rc] 
 Put  into Ra the contents of Rb minus the contents of Rc. 
 
mul Ra Rb Rc reg[Ra] = reg[Rb] * reg[Rc] 
 Put into Ra the product the contents of Rb and the contents of Rc. 
 
div Ra Rb Rc reg[Ra] = reg[Rb] / reg[Rc] 
 Put into Ra the contents of Rb divided by the contents of Rc. 
 
and Ra Rb Rc reg[Ra] = reg[Rb] & reg[Rc] 
 Put  into Ra the contents of Rb bitwise-and the contents of Rc. 
 
or Ra Rb Rc reg[Ra] = reg[Rb] | reg[Rc] 
 Put  into Ra the contents of Rb bitwise-or the contents of Rc. 
 
comp Ra Rb reg[Ra] = ~reg[Rb]  
 Put  into Ra the bitwise-complement of the contents of Rb. 
 
shr Ra Rb Rc reg[Ra] = reg[Rb] >> reg[Rc] 
 The contents of Rb is shifted right by the amount specified in 

register Rc and the result is stored in Ra. If the value in Rc is 
negative, the value is shifted left by the negative of that amount.  

 
shl Ra Rb Rc reg[Ra] = reg[Rb] << reg[Rc] 
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 The value in register Rb is shifted left by the amount specified in 
register Rc and the result is stored in Ra. If the value in Rc is 
negative, the value is shifted right by the negative of that amount.  

 
jeq Ra Rb Rc Jump to the address in Ra if the values in Rb and Rc are equal. 

Otherwise continue. 
 
jne Ra Rb Rc Jump to the address in Ra if the values in Rb and Rc are not equal. 

Otherwise continue. 
 
jgt Ra Rb Rc Jump to the address in Ra if the value in Rb is greater than that in 

Rc. Otherwise continue. 
 
jgte Ra Rb Rc Jump to the address in Ra if the value in Rb is greater than or 

equal that in Rc. Otherwise continue. 
 
jlt Ra Rb Rc Jump to the address in Ra if the value in Rb is less than that in Rc. 

Otherwise continue. 
 
jlte Ra Rb Rc Jump to the address in Ra if the value in Rb is less than or equal 

that in Rc. Otherwise continue. 
 
junc Ra Jump to the address in Ra unconditionally. 
 
jsub Ra Rb Jump to subroutine in the address in Ra.   The value of the IP (i.e. 

what would have been the next instruction) is put into Rb. Therefore 
this can be used for jumping to a subroutine. If the return address is 
not needed, some register not in use should be specified. 

 
cin Ra Console-in: reads input from the console (standard input) as a 

decimal numeral into the register Ra. 
 
cout Ra Console-out: writes the contents of register Ra to console (standard 

output) as a decimal numeral. 
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Although it is not critical for the current explanation, the following shows a plausible 
formatting of the ISC instructions into 32-bit words, showing possible assignment of op-
code bits. Each register field uses five bits. 
 

 
  Figure 1: Plausible ISC instruction formatting     
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13.3 Examples of Machine-Level Programs   
 
In some program fragments, we can assume that the operands are in registers. In others, 
we will assume they are in memory locations. 
 
Example:  Add the values in registers 0, 1, and 2 and put the result into register 3: 
 

add 3 0  1 // register 3 gets sum of registers 0 and 1 
add 3 2  3 // register 3 gets sum of registers 2 and 3 
 

Here we use register 3 to hold a temporary value, which is used as an operand in the 
second instruction. 
 
Example:  Suppose x is stored in register 0, and y in register 1. Compute the value of  
(x + y) * (x - y) and put it in register 3. Assume register 4 is available for use, if needed. 
 

add 3 0 1 // register 3 gets x + y 
sub 4 0 1 // register 4 gets x - y 
mul 3 3 4 // register 3 gets (x + y)(x - y) 
 

Example:  Add the contents of memory locations 1000 and 1001 and put the result into 
1002. Assume registers 0 and 1 are available. 
 

lim 0 1000 // get addresses of operands into registers 0 
lim 1 1001 //   and 1 
load 0 0 // overlay addresses with operands 
load 1 1 
add 1 0 1 // put sum  in register 1 
lim  0 1002 // re-use register 0 for address of result 
store 0 1 // store the value in register 1 into 1002 
 

Example:  Assume that register 0 contains the address of the first location of an array in 
memory and register 1 contains the number of locations in the array. Add up the locations 
and leave the result in register 2. Assume that registers 0 and 1 can be changed in the 
process and that registers 3 through 8 can be used for temporaries. Assume that the 
program starts in location 0. 
 

lim 2 0 // initialize sum 
lim 3 0 // comparison value 
lim 6 10 // address of instruction following this code 
lim 7 4 // address of next instruction 
jlte 6 1 3 // jump to location 10 if the count is <= 0 
load 5 0 // load register 5 from the next memory location  
add 2 5 2 // add the next number to the sum 
aim 0 1 // add 1 to the array address 
aim 1 -1 // add -1 to the count 
junc 7  // go back to location 4 and compare 
 

Note that location 10 is the next location following this program fragment. This was 
determined from our assumption that the first instruction is in location 0 and instructions 
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are one word long each. Similarly, the jump unconditionally back to 4 (the address in 
register 7) is for the next iteration of the loop. 
 
Exercises  
 
1 •• Show how the following could be evaluated using ISC machine language: 
 

The sum of the squares of four numbers in registers. 
 
The sum of the squares of numbers in an array. 

 
2 • Show how an xor (exclusive-OR) instruction could be added to the ISC. 
 
3 •• Show how a mim (multiply-immediate) instruction could be added to the ISC. 
 
4 •• Given the ISC instructions presented in the text, how many more instructions 

could be introduced and still stay within the 32-bit format, assuming that every 
instruction requires at least one register?   

 
Assembly Language   
 
A reader who has worked through a simple example such as the above will no doubt 
immediately realize a need to invent a symbolic notation within which to construct 
programs. When constructing the preceding example program, at the third instruction, we 
did not know initially to put the 10 into lim 6 10, since we did not know where the next 
instruction following would be. Instead, we put in a symbol, say xx, to be resolved later. 
Once all the instructions were in place, we counted to find that the value of xx should be 
10. This kind of record keeping becomes tedious with even modest size programs. For 
this reason, a computer program called an assembler is usually used to do this work for 
us. In an assembler, we can use symbolic values that either we equate to actual values or, 
as in the case of the address 10 above, the assembler will equate automatically for us.  
The assembler, not the programmer, does the counting of locations. This eliminates many 
possible errors in counting and is of exceptional benefit if the program needs to be 
changed. In the latter case, we would have to go back and track down any uses of 
addresses. We call the assembly language for the ISC ISCAL (ISC Assembly Language). 
The previous program in ISCAL might appear as: 

 
lim 2 0 // initialize sum 
lim 3 0 // comparison value 
lim 6 done // address of instruction following this code 
lim 7 loop // address of next instruction 

label loop  // implicitly define label 'loop' 
jlte 6 1 3 // jump to location 10 if the count <= 0 
load 5 0 // load register 5 from the next location 
add 2 5 2 // add the next number to the sum 
aim 0 1 // add 1 to the array address 
aim 1 -1 // add -1 to the count 
junc 7  // go back and compare 

label done  // implicitly define label 'done' 
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The readability of the code is also considerably improved through the use of mnemonic 
labels in place of absolute addresses. Note that, in contrast to the other instructions, the 
lines beginning with label are not executable instructions, but rather merely directives 
that define the labels loop_loc and done_loc. The general term for such directives in the 
jargon is pseudo-op, for "pseudo-operation". The label pseudo-op equates the identifier 
following the label to the address of the next instruction. This allows us to use that label 
as an address and load a register with, in preparation for jumping to that instruction. 
 
Other pseudo-ops of immediate interest in ISCAL are: 
 

origin Location Indicates that the following code is to be loaded into successive 
locations starting at Location. 

 
define Identifier Value Causes the assembly-time value of Identifier to be equated 

to the integer value given. 
 

We can take the idea of symbolic names a step further by allowing symbolic names for 
registers in place of the absolute register names. Let us agree to call the registers by the 
following names in this example: 

Register index Name 
0 array_loc 
1 count 
2 sum 
3 zero (for comparing against) 
5 value (one of the array elements) 
6 done 
7 loop 

 
One way to equate the symbolic names to the register numbers is through the use of the 
register pseudo-op. Using this pseudo-op, the code would then appear as: 
 

register array_loc 0 register value 5 
register count 1   register done 6 
register sum 2  register loop 7 
register zero 3 
... 
lim sum  0     // initialize sum 
lim zero  0     // comparison value 
lim done done_loc   // address of instruction following  
lim loop loop_loc   // address of next instruction 

label loop_loc 
jlte done count zero  // jump if <= 0 
load value array_loc  // load register next array value 
add sum value sum   // add the next number to the sum 
aim array_loc 1   // add 1 to the array address 
aim count -1    // add -1 to the count 
junc loop    // go back and compare 

label done_loc 
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Note that array_loc is assumed to be initialized before we get to the executable code, e.g. 
this takes place somewhere within ... . In order to use a jump instruction, we would 
normally expect to see a preceding lim instruction that loads an address into a jump target 
register. Above, both done and loop are used as jump target registers. Note that the lim 
instruction need not be immediately before the jump, although it often is. In the case of 
loops, for example, the target is sometimes left in its own register that is only loaded 
once, at the beginning of the loop sequence. 
 
In the code above, the computation, for the most part, did not depend on specific registers 
being used. To avoid manually assigning register indices to registers when it doesn't 
matter, the ISC assembler provides another pseudo-op to automatically manage register 
indices. This is the use pseudo-op. When the assembler encounters the use pseudo-op, it 
attempts to allocate a free register of its choice to the identifier. Registers that have not 
been identified in register pseudo-ops, or in previous use pseudo-ops, are assumed to be 
free for this purpose. Furthermore, a register, once used, can be released by naming it in 
the release pseudo-op. Keep in mind that use and release are not executable instructions. 
They are interpreted in a purely textual fashion when the assembler input is scanned. 
 
Let's rewrite the preceding code using use and release. We will assume that array_loc, 
count, and sum are to be kept as fixed registers, since they must be used to communicate 
with other code, i.e. they are not arbitrary. 
 
register array 0 
register count 1 
register sum 2 
 
use loop 
use zero                        // register to hold zero 
use value 
use done 
    lim sum  0                  // initialize sum 
    lim zero 0                  // comparison value 
    lim done done_loc           // address of instruction following  
    lim loop loop_loc           // address of next instruction 
label loop_loc 
    jlte done count zero        // jump if <= 0 
    load value array            // load register next array value 
    add sum value sum           // add the next number to the sum 
    aim array 1                 // add 1 to the array address 
    aim count -1                // add -1 to the count 
    junc loop                   // go back and compare 
label done_loc 
release loop 
release zero 
release value 
release done 
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Procedures and Calling Conventions   
 
It is common to have specific calling conventions with respect to registers used for 
procedure entry and exit. This helps standardize the compilation process. An example 
might be: 
 

Use register 0 for the return address. 
Use register 1 for the returned result. 
Use register 2 for the first argument. 
Use register 3 for the second argument. 
.... 
 

up to some convened number of arguments. A procedure having more than this number 
of arguments would transfer the remaining ones through some sort of memory structure. 
The registers beyond this number are assumed to be available for internal use within the 
procedure. Here is an example of calling a factorial procedure using this convention. 
There is only one argument. 
 
// register definitions 
 
register return 0       // standard return address reg 
register result 1       // standard result register 
register arg1   2       // first argument register 
 
... 
 
// calling sequence 
// get argument in arg1 
 
lim jump_target fac      
jsub jump_target return 
 
// use result from result 
 
// procedure definition 
 
label fac     // iterative factorial routine 
              // initializes counter 'count' with argument value 'arg' 
              // initializes an accumulator with value 1 
              // repeats as long as counter greater than 0 
              //    multiply accumulator by counter 
              //    decrement counter 
use zero 
      lim zero 0 
      lim result 1              // seed result with 1 
      lim jump_target test      // set up for loop 
label test 
      jlte return arg1 zero     // return if arg is 0 or less 
      mul  result result arg1   // multiply acc value by counter 
      aim arg1 -1               // subtract 1 from the down counter 
      junc jump_target          // jump back to the test 
release zero 
 



Stored-Program Computers  

 

11 

If such a convention is to be observed, then additional care must be taken when nested 
procedure calls are present. For example, if a main program calls procedure A, the return 
address to the point in main is put in register return. If A calls B, then the return address 
to the point in A is put into return. Thus, before calling B, A should save the contents of 
return somewhere, e.g. another register or a special location in memory. Following the 
return from B, and before returning, A should either return to the alternate register or 
restore return to what it was before B was called. 
 
The following code demonstrates return address saving in a procedure that calls fac 
twice: given argument x, it computes fac(fac(x)). [Note: "nested refers here to fac_fac 
calling fac, not to the nesting fac(fac(x)).] 
 
label fac_fac                 // calls fac(fac(arg)) 
use return2                   // return2 avoids clobbering return reg 
      copy return2 return     // save original return 
      lim jump_target fac     // call fac the first time (original arg) 
      jsub jump_target return 
 
      copy arg1 result        // copy result to argument register 
 
      lim jump_target fac 
      jsub jump_target return // call fac on the result 
 
      junc return2 
release return2 
 
In the example above, we had no need to save the original argument of fac_fac. However, 
in some cases, we will need to use the original argument again after making the inner 
call. In this event, the argument too must be saved, much in the same manner as the 
return address. 
 
 
Recursive Procedures in Machine Language   
 
When a procedure is recursive, the technique described above has to be extended. There 
is generally no a priori limit on the number of levels of nesting. Thus no fixed number of 
registers nor special memory locations will suffice to store the return addresses and 
arguments. In this case, we must use some form of stack. There are two ways in which a 
stack could be used:  The argument and return address could be put on the stack by the 
caller, or they could be put there by the callee, when and if it makes a nested call. In the 
following code, we use the latter method: data are not stacked unless a nested call is 
made. In either case, the stack itself must be set up beforehand. Once we are in the 
procedure, it is too late, as the procedure assumes the stack is present if needed. 
 
A stack here will be implemented simply as an array in some otherwise unused area of 
memory. The code below does not check for stack overflow. Adding appropriate code for 
this is left as an exercise. 
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// set up stack 
 lim stack_pointer save_area_loc  // initialize stack pointer 
 aim stack_pointer     -1         // always point to top of stack 
... 
 
label fac     // recursive factorial routine 
 
 lim result 1               // basis is 1 
 jlte return arg zero       // return if count is 0 or less 
 
 aim  stack_pointer +1      // increment stack pointer 
 store stack_pointer return // save return address on stack 
 
 aim  stack_pointer +1      // increment stack pointer 
 store stack_pointer arg    // save argument on stack 
 
 aim arg -1                 // subtract 1 from argument 
 
 jsub jump_target return    // call recursively 
 
 load arg stack_pointer     // restore original arg    
 aim  stack_pointer -1 
 
 load return stack_pointer  // restore original return address 
 aim  stack_pointer -1 
 
 mul  result result arg     // multiply by original arg 
 
 junc return                // return to caller 
 
... 
 
label save_area_loc              // first location in save area 
 
There are many ways to optimize the code above. But the purpose of the code is to 
exemplify recursive calling, not to give the best way to compute factorial. 
 
The following diagram shows the stack growth in the case of calling fac with argument 4. 
 

At second call:

stack_pointer

return address

4

argument is 3
return value will be 6

 
 

At third call:

stack_pointer

return address

3

return address

4

argument is 2
return value will be 2  
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At fourth call:

stack_pointer

return address

3

return address

return address

4

2
argument is 1
return value will be 1  

 
At fifth call:

stack_pointer

return address

3

return address

return address

2

return address

4

1
argument is 0
return value will be 1  

 
 

Figure 2: Snapshots of the stack in computing recursive factorial on the ISC 
 

Exercises 
 
1 •• Implement the recursive version of the Fibonacci function in ISCAL. Note:  

Unlike the case of fac above, the return address values will not always be the 
same. 

 
2 ••• Implement Ackermann’s function in ISCAL. 
 
3 ••• Try to get rid of some of the recursions in Ackermann's function by converting 

them to iterations. Can you get rid of all recursion?  [Ackermann's function is an 
example of a function that can be proved to be non-primitive-recursive.] 

 
4 ••• Implement Quicksort in ISCAL. 
 
 
Switch Statement Equivalents   
 
While we are discussing machine language, it would be worthwhile to see how Java 
switch statements are compiled to take advantage of the linear addressing principle, as 
discussed earlier. As mentioned, the idea is that switches are compiled to an array of 
jumps. Let us illustrate with an example. Consider the Java  code 
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int i, x, y, z; 
.... 
switch( i ) 
  { 
  case 0: x = y + z; break; 
  case 1: x = y - z; break; 
  case 2: x = y * z; break; 
  case 3: x = y / z; break; 
  default: x = 0; break; 
  } 

 
An ISC equivalent of this code is shown below. The structure should be understood 
carefully, as it exemplifies the structure that could be used for any switch statement. 
There is an initial part where outlying cases, those corresponding to the default, are 
handled. Then there is a dispatch part where a jump address is computed by adding to a 
base jump address an appropriate multiple (in this case 2) of the integer upon which we 
are switching. Then there are branches, one for each different case and the default. 
Finally, there is a final part, to which each branch converges. 
 
      use temp 
      use zero 
      use jump_target       
      use converge 
      lim converge converge_loc      // set up location for converging 
 
// initial part 
      lim zero 0 
      lim jump_target default_branch 
      jlt jump_target i zero         // handle i < 0 
      lim temp 3 
      jgt jump_target i temp         // handle i > 3 
 
// dispatch part 
      lim jump_target branch_array   // set up jump address 
      add jump_target i jump_target 
      add jump_target i jump_target  // add twice i 
      junc jump_target               // jump to branch_array+2*i 
 
label branch_array                   // dispatching array of jumps 
                                     // each 2 locations 
      lim jump_target branch_0       // case 0 
      junc jump_target 
 
      lim jump_target branch_1       // case 1 
      junc jump_target 
 
      lim jump_target branch_2       // case 2 
      junc jump_target 
 
      lim jump_target branch_3       // case 3 
      junc jump_target 
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// one branch for each default and switch case 
 
label default_branch                 // default case 
      lim x 0 
      junc converge 
             
label branch_0                       // case 0 
      add x y z 
      junc converge 
             
label branch_1                       // case 1 
      sub x y z 
      junc converge 
             
label branch_2                       // case 2 
      mul x y z 
      junc converge 
             
label branch_3                       // case 3 
      div x y z 
      junc converge 
 
// converge here 
label converge_loc                   // statements after switch 
 
  
13.4 Console Input and Output   
 
The section following this one describes a realistic version of input/output. However, this 
realism may be inconvenient when working out simple examples, so we have recently 
added another form of I/O, which we call “Console” I/O. This alludes to the fact that 
early computers had a primitive way of entering data through a console: by means of a 
typerwriter, switches, or some other medium. Also output was provided by a typewriter, 
blinking lights, etc. Whereas the more realistic I/O is asynchronous with respect to the 
computation, console I/O is synchronous. When a console instruction is executed, it is 
assumed that the computer waits until input is provided at the console. 
 
The two console instructions are called cin (console-in) and cout (console-out). They 
each specify one register into which reading, or from which writing, takes place. The 
following ISCAL program reads two numbers from the console, adds them together, and 
writes the result to the console: 
 
 

use temp1 
use temp2 
 
cin temp1 
cin temp2 
add temp1 temp1 temp2  // result in temp1 
cout temp1 
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13.5 Memory-mapped I/O   
 
There is a notable absence of any I/O (input/output) instructions in the ISC. While I/O 
instructions were included in early machines, modern architectures prefer to move such 
capabilities outside the processor itself. Part of the motivation for doing so includes: 
 

I/O devices are typically slower than computational speeds, so there is a 
hesitancy to provide instructions that would encourage tying up the 
processor waiting for I/O. 
 
The wide variety of I/O devices makes it difficult to provide for all 
possibilities in one processor architecture. 
 

Instead of providing specific I/O instructions, modern architectures use the memory 
addressing mechanism to deal with I/O devices. These devices are identified with various 
memory locations, hence the term "memory-mapped I/O". When writing to those 
locations occurs, detection logic on the memory bus will interpret the contents as 
intended for the I/O device, rather than as an actual memory write. Thus the variety of 
I/O devices is essentially unlimited and the processor does not have to take such devices 
into account.  
 
The most straightforward way to memory map I/O would be to assume a sequential or 
stream-oriented devices and have one location for input and one location for output. 
Whenever a read from the input location is issued, the next word in the input is read. 
Similarly, whenever a write to the output location is issued, a word is sent to the output 
device. As simple as it is, this picture is slightly undesirable, due to the disparity in 
speeds between typical I/O devices and processors. If the processor tried to read the 
location and the device was not ready to send anything, there would have to be a long 
wait for that memory access to return, during which time the processor is essentially idle. 
By providing a little more sophistication, there are ways to use this otherwise-idle time. A 
processor can separate the request for input and checking of whether the next word is 
ready to be transferred. In the intervening interval, other work could be done in principle. 
We achieve this effect by having two words per device, one for the datum being 
transferred and one for the status of the device. 
 
Below we describe one possible memory mapping of an input device and an output 
device. These would be serial devices, such as a keyboard and monitor. 
 
Location -1 (called input_word) is the location from which a word of input is read by the 
program. Location -2 (called input_status) controls the reading of data from the input 
device and serves as a location that can be tested for input status (e.g. normal vs. end-of-
file). In order to read a word, input_status is set to 0 by the program. A write of 0 to this 
location triggers the input read. When the word has been input and is ready to be read by 
the program, the computer will change input_status to a non-zero value. The value 1 is 
used for normal input, while -1 is used for end-of-file condition. 
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The program should only set input_status to 0 if it is currently 1. If input_status is 0, then 
a read is already in progress and could be lost due to lack of synchronization. It can be 
assumed that input_status is initially 1, indicating the readiness of the input device. So a 
possible input sequence will be something like: 

 
input_status = 0;   // start first read 
end_of_file = 0;  
 
while( ! end_of_file ) 
{ 
  ......    // other processing can go on here 
  while( input_status == 0 ) // wait for read complete 
    {} 
  switch( input_status ) 
    { 
    case 1: 
     use input_word; 
     input_status = 0;  // start next read 
 break; 
 
    case -1: 
     end_of_file = 1;  // indicate done 
    } 
} 

 
Below we show a simpler input reader in ISCAL. This reader can be called as a 
procedure by the programmer to transfer the next input word. It assumes that the first 
input word has been requested by setting input_status to 0 earlier on. 
 
define input_word_loc    -1 // fixed location for input word 
define input_status_loc  -2 // fixed location for input status 
use input_status            // register to hold input_status 
 
register return 0       // standard return address reg 
register result 1       // standard result register 
register arg1   2       // first argument register 
 
      lim input_status  input_status_loc  // setup input status reg 
      store input_status zero             // request input 
.... 
 
label input     // input routine, returns result in register 'result' 
use input_word  // register to hold input_word_loc 
use jump_target 
use zero 
use temp                            // temporary register 
      lim zero 0 
      lim input_word input_word_loc // memory-mapped input 
      lim jump_target input_loop    // set up to loop back 
label input_loop 
      load  temp input_status       // get input status 
      jeq   jump_target temp zero   // loop if previous input not ready  
      jlt   halt temp zero          // quit if -1 (end-of-file) 
      load  result input_word       // load from input word 
      store input_status zero       // request next input 



 18   Stored-Program Computers 

 

 

      junc  return 
 

 
Output in the ISC gets a similar, although not identical, treatment. The routines are not 
identical because, unlike input, we cannot request output before the program knows the 
word to be output. Location -3 (called output_word) is the location to which a word of 
input is written by the program. Location -4 (called output_status) controls the writing 
of data to the output device and serves as a location that can be tested for output status. In 
order to write a word, output_status is set to 0 by the program, which in turn triggers the 
output write. When the word has been output, the computer will change output_status to a 
non-zero value. 
 
It is important that output_status be tested to see that it is not already 0 before changing 
it. Otherwise, an output value can be lost. It can be assumed that output_status is 1 when 
the machine is started. So the normal output sequence will be something like: 

 
while( more to be written ) 
  { 
  ......                       // other processing can go on here 
  while( output_status == 0 )   // wait for write complete 
    {} 
  output_word = next word to write; 
  output_status = 0; 
  } 

 
A procedure for output of one word using this scheme in ISCAL is: 
 
define output_word_loc   -3 // fixed location for output word 
define output_status_loc -4 // fixed location for output status 
 
register return 0       // standard return address reg 
register result 1       // standard result register 
register arg1   2       // first argument register 
 
use output_status       // register to hold output_status 
 
label output     // output routine, outputs word in register 'arg1' 
use output_word  // register to hold output_word_loc 
use jump_target 
use zero 
use temp                              // temporary register 
      lim output_word output_word_loc // memory-mapped output 
      lim zero 0 
      lim jump_target output_loop     // set up loop address 
label output_loop 
      load  temp output_status        // get output status in temp 
      jeq   jump_target temp zero     // jump back if output not ready 
      store output_word arg1          // set up for output of result 
      store output_status zero        // request output 
      junc  return 
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The timing diagram below shows how these two routines could be called in a loop to 
keep both the input and output device busy, by requesting input in advance and only 
waiting when the processor cannot proceed without input or output being complete. This 
is an example of overlapped I/O, that is, input-output overlapped with processing. 
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Overlapped I/O timing  
 
 
13.6 Finite-State Control Unit of a Computer Processor   
 
Up to this point, we have seen the ISC primarily from the programmer's viewpoint. Next 
we look at a possible internal structure, particularly the various finite-state machine 
components that comprise it. Viewed from the processor, the instructions of the stored 
program are also a form of "data". The computer reads the instructions as if data from 
memory and interprets them as instructions. In this sense, a computer is an interpreter, 
just as certain language processors are interpreters. 
 
A typical memory abstraction employed in stored-program computers is as follows:  The 
address of a word to be read or written is put into the MAR (memory address register). If 
the operation is a write, the word to be written is first put into the MDR (memory data 
register). On command from the sequencer of the computer, the memory is directed to 
write and transfers the word in the MDR into the address presented by the MAR. If the 
operation is a read, then the word read from the location presented in the MAR is put into 
the MDR by control external to the processor. 
 
Instructions are normally taken from successive locations in memory. The register IP 
(instruction pointer) maintains the address of the location for the next instruction. Only 
when there is a "jump" indicated by an instruction does the IP value deviate from simply 
going from one location to the next. While the instruction is being interpreted, it is kept in 
the IR (instruction register). The reason that it cannot be kept in the MDR is because the 
MDR will be used for other purposes, namely reading or writing data to memory, during 
the instruction's execution. Unlike the numbered registers used in programming, the 
registers MAR, MDR, IP, and IR are not directly visible or referenceable by the 
programmer. 
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Refer to the ISC diagram below, showing a bus encircling most of the registers in the 
processor. (In actuality, multiple buses would probably be used, but this version is used 
for simplicity at this point.)  This bus allows virtually any register shown to be gated into 
any other. At the lower left-hand corner, we see the control sequencer, a finite state 
machine that is responsible for the overall control of the processor. The control sequencer 
achieves its effect by selectively enabling the transfer of values from one register to 
another. The inputs to the sequencer consist of the value in the instruction register and the 
ALU test bit. Based on these, the sequencer goes through a series of state changes. In 
each state, certain transfers are enabled.  
 
Every instruction executed undergoes the following instruction fetch cycle to obtain the 
instruction from memory (using Java notation): 
 
MAR = IP;      // load the MDR with the address of next instruction 
read_memory(); // get the instruction from that address into the MDR 
IP++;          // set up for next instruction 
IR = MDR;      // move the instruction to the IR 

 
The portion of the sequencer for the instruction fetch cycle simply consists of four states. 
In the first state, the bus is used to gate IP into MAR. If we were to look at a lower level, 
this would mean that a set of 3-state buffers on the output of the IP is enabled, and a set 
of AND-gates on the input of the MAR is enabled. In the next state, read_memory is 
enabled (signaled to the memory controller). In the next state the IP register is 
incremented (we can build this logic into the register itself, similar to our discussion 
regarding shift registers), and in the last state of the cycle, the output of the MDR is 
enabled onto the bus while the input to the IR is enabled. 
 
The description above is simplified. If we had a fast memory, it would pay to do IP++ at 
the same time as read_memory(), i.e. in parallel, so that we used one fewer clock time 
for instruction fetch. More likely, we might have a slow memory that takes multiple clock 
cycles just to read a word. In this case, we would have additional wait states in the 
sequencer to wait until the memory read is done before going on. This would show up in 
our state diagram as a loop from the memory access state to itself, conditioned on 
memory not being finished. 
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Figure 3: Possible ISC Internal Structure (before optimization) 
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Figure 4: A possible state diagram for the instruction-fetch cycle of the ISC 
 

Once the instruction to be interpreted is in the IR, a different cycle of states is used 
depending on the bits in the instruction. We give just a couple of examples here: 
 

If the instruction were add Ra Rb Rc, the intention is that we want to add 
the values in Rb and Rc and put the result in Ra. The sequence would be: 
 

ALU_in[0] = Ra; 
ALU_in[1] = Rb; 
  // add is done by the ALU here 
Rc = ALU_out; 

 
The registers Ra, Rb, and Rc are selected by decoding the binary register indices in the 
instruction and using it to drive 3-state selection (in the case of Ra and Rb) or and-gates 
(in the case of Rc), as per earlier discussion. We assume here that the combinational 
addition can be done in one clock interval. If not, additional states would be inserted to 
allow enough time for the addition to complete.  
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enable Ra to bus, and 
enable bus to ALU[0]

enable add operation 
(result to ALU_out)

enable Rb to bus, and 
enable bus to ALU[1]

enable ALU_out to bus, and 
enable bus to Rc

 
 

Figure 5: Portion of the ISC state diagram corresponding to the add operation 
 

The ALU is capable of multiple functions: adding, subtracting, multiplying, shifting, 
AND-ing, shifting, etc. Exactly which function is performed is determined by bits 
provided by the IR. Most of the instructions involving data processing follow the same 
pattern as above. 

If the instruction were jeq Ra Rb Rc, this is an example where the next 
instruction might be taken from a different location. The sequence would 
be: 

ALU_in[0] = Rb; 
ALU_in[1] = Rc; 

   // comparison is done by the ALU here 
if( the result of comparison is equal ) 
IP = Ra 

 
Here Ra contains the address of the next instruction to be used in case Rb and Rc are 
equal. Otherwise, the current value of IP will just be used. 
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Overall, then, the behavior of the machine can be depicted as: 
 

for( ; ; ) 
  { 
  instruction_fetch(); 
  switch( IR OpCode bits ) 
    { 
    case add: add_cycle;  break; 
    case sub: subtract_cycle: break; 
    . 
    . 
    case jeq: jeq_cycle;  break; 
    . 
    . 
    } 
  } 

 
enable Rb to bus, and 
enable bus to ALU[0]

enable equality comparison  
(result bit to sequencer)

enable Rc to bus, and 
enable bus to ALU[1]

result == 1 
(equality)

enable Ra to bus, and 
enable bus to IP

( first state in instruction fetch)
enable IP to bus, and 
enable bus to MAR

result == 0 
(inequality)

 
 

Figure 6: Portion of the ISC state diagram for the jeq instruction 
 

 



Stored-Program Computers  

 

25 

instruction fetch cycle

instruction decode

add cycle jeq cycle
other 
instruction 
cycles

.... ....

add jeq

 
 

Figure 7: Overall state behavior of the ISC 
 

Exercises 
 
1 •• Based on the above discussion, estimate the number of states in each of the cycles 

for the various instructions in the ISC instruction set. Obtain an estimate of the 
number of states in the instruction sequencer. Assume that all memory operations 
and ALU operations take one clock period.  

 
2 •••• How many flip-flops (in addition to those in the IR) would be sufficient to 

implement the sequencer?  Give a naive estimate based on the preceding question, 
then a better estimate based on a careful assignment analysis of how functionality 
in the sequencer can be shared. 

 
3 ••• By using more than one bus, some register transfers that would have been done in 

sequence can be done concurrently, or "in parallel". For example, in the add cycle, 
both Rb and Rc need to be transferred. This could, in principle, be done 
concurrently, but two buses would be required. Go through the instruction set and 
determine where parallelism is possible. Then optimize the ISC register-transfer 
structure so as to reduce the number of cycles required by as many instructions as 
possible. 
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13.7 Forms of Addressing in Other Machines   
 
As mentioned earlier, the ISC uses register-indirect and immediate addressing only. The 
following diagrams abstract these two general forms.  
 

OpCode Operand

Registers

Memory

Typical 
ALU 

Operation

Reg

 
Figure 8: Immediate operand 
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Figure 9: Register indirect addressing 
 

For contrast, other machines might employ some or all of the following types of 
addressing: 
 

direct addressing – The address of a datum is in the instruction itself. It is 
not necessary to load a register with the address. The problem with this 
mode of addressing is that addresses can be very large, making it difficult 
for a single instruction to directly address all of memory. For example, the 
ISC's address space is 32-bits, the same size as an instruction. This would 
leave no space in the instruction for op-code information. 
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Figure 10: Direct addressing 
 

indirect addressing – The address of the datum is in a word in memory. 
The instruction contains the address of the latter word. An example of the 
use of this type of addressing is pointer dereferencing. In a C++ statement 
 

x = *p; 
 

The address of p would be in the instruction. The contents of p is 
interpreted as a memory address. The contents of the latter address is 
stored into a register. The contents of the register would be stored into x 
by a subsequent instruction (unless the instruction can contain two 
addresses, one of which would be the address of x). 
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Figure 11: Indirect addressing 
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indexed addressing – The address of the datum is formed by adding the 
address in the instruction to the contents of a register, called the index 
register. This sum is called the effective address and is used as the address 
of the actual datum. In Java or C++, indexed addressing would be useful 
in indexing arrays. For example, in the statement 
 

x = a[i]; 
 

the instruction could contain the base address, &a[0] and the index register 
could contain the value of i.  
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Operation

Reg

Index
Register 
Selection

Address 
Arithmetic

Address can be viewed as either:
      base-address, with index register as offset, 
or as offset, with index register as base

 
 

Figure 12: Indexed addressing 
 

based addressing – This is similar to indexed addressing, except that the 
base address &a[0] is contained in a register. The value of i, called an 
offset, is contained in the word addressed by the instruction. 
 
based indexed addressing – This uses two registers, one containing a 
base address and one containing an index. The instruction specifies an 
offset. The effective address is obtained by adding the base address, the 
index, and the offset. An example of a statement using such addressing 
would be 
 

x = a[i+5]; 
 

where 5 would be the offset. 
 

There are, of course, other possible combinations of addressing. Machines such as the 
ISC that do not have all of these forms of addressing must achieve the same effect by a 
sequence of instructions. 
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Exercises 
 
1 •• Consider adding a lix (load-indexed) instruction to the ISC. This is similar to the 

load instruction, except that there is an additional register, called the index 
register. The address of the word in memory to be loaded (called the effective 
address) is formed by taking the sum of the address register, as in the current load 
instruction, plus the index register. Show how this instruction could be added to 
the ISC. Then suggest a possible use for the instruction. To retain symmetry, what 
other indexed instructions would be worthwhile? 

 
2 •• Explain why a jix (jump-indexed) instruction might be useful. 
 
3 •• How could indexing be useful in implementing recursion? 
 
4 •• Give a diagram that abstracts based indexed addressing. 
 
 
13.8 Processor-Memory Communication   
 
Our diagram of the ISC internal structure omitted details of how the processor and 
memory interact. We indicated the presence of a data bus for communicating data to and 
from the memory and an address bus for communicating the address, but other details 
have been left out. There are numerous reasons for not including the memory in the same 
physical unit as the processor. For one thing, the processor will fit on a single VLSI chip, 
whereas a nominal-sized memory will not, at least not by current technology. It is also 
common for users to add more memory to the initial system configuration, necessitating a 
more modular approach to memory. Another reason for separation is that memory 
technology is generally slower than processors. Moderately-priced memory cannot 
deliver data at the rate demanded by sophisticated processors. However, the memory 
industry keeps making memory faster, opening the possibility of an upgrade in speed. 
This is another reason not to tie down the processor to a particular memory speed. 
 
Let us take a look at the control aspects of processor-memory communication. The 
processor and memory can be regarded as separate agents. When the processor needs data 
from the memory, it sends a request to the memory. The memory can respond when it has 
fulfilled the request. This type of dialog is called handshaking. The key components in 
handshaking, assuming the processor is making a read request, are: 
 

a. Processor asserts address onto address bus. 
 
b. Processor tells memory that it has a read request. 
 
c. Memory performs the read. 
 
d. Memory asserts data onto data bus. 
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e. Memory tells processor that data is there. 
 
f. Process tells memory that it has the data. 
 
g. Memory tells processor that it is ok to present the next request. 
 

The following timing diagram indicates a simple implementation of handshaking along 
these lines. The transitions are labeled to correspond to the events above. However, step c 
is not shown because it is implicitly done by the memory, without communication. The 
strobe signal is under control of the processor to indicate initiation of a read. The ack 
signal is under control of the memory. 
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Figure 13: Handshaking sequence for a memory read 

 
The address and data bus lines are shown as indicating both 0 and 1 during some part of 
the cycle. This means that the values could be either 0 or 1. Since addresses and data 
consist of several lines in parallel, some lines will typically be each. When the signal is 
shown mid-way, it means that it is not important what the value is at that point. 
 
Events shown as h and i in the diagram are of less importance. Event h indicates that once 
the memory has read the data (indicated by event e), the address lines no longer need to 
be held. 
 
The advantage of the handshaking principle is that it is effective no matter how long it 
takes for the memory to respond:  The period between events b and e can just be 
lengthened accordingly. Meanwhile, if the processor cannot otherwise progress without 
the memory action having been completed, it can stay in a wait state, as shown in earlier 
diagrams. This form of communication is called semi-asynchronous. It is not truly 
asynchronous, since the changes in signals are still supposed to occur between clock 
signal changes. 
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The sequence for a memory write is similar. Since reads and writes typically share the 
same buses to save on hardware, it is necessary to have another signal so that the 
processor can indicate the type of operation. This is called the read/write strobe, and is 
indicated as R/W, with a value of 1 indicating read and a value of 0 indicating a write.  
 
The following table and diagram shows the timing of a write sequence. 
 

a. Processor asserts address onto address bus. 
 
b. Processor asserts data onto data bus. 
 
c. Processor tells memory that it has a request. 
 
d. Memory performs the write. 
 
e. Memory tells processor that write is performed. 
 
f. Processor acknowledges previous signal from memory. 
 
g. Memory tells processor that it is ok to present the next request. 
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Figure 14: Handshaking sequence for a memory write 
 

Again, it is the responsibility of the RW strobe to convey the type of request to the 
memory and thereby determine which of the above patterns applies. The handshaking 
principle is usable whenever it is necessary to communicate between independent sub-
systems, not just between processor and memory. The general setup for such 
communication is shown by the following diagram, where function strobe is, for 
example, the RW line. The sub-system initiating the communication is called the master 
and the sub-system responding is called the slave. 
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Figure 15: Set-up for communication using handshaking 
 
 
13.9 Interrupts 
 
When a processor wishes to initiate communication with the outside world, it can use the 
approach taken here for input/output: writing to certain special memory locations is 
interpreted by the processor's environment as a directive to carry out some action, such as 
start an i/o device. It is also necessary to provide a way for the environment to get the 
attention of the processor. Without such a method, the processor would have to explicitly 
"poll" the environment to know whether certain events have taken place, e.g. the 
completion of an i/o operation. The problems with exclusive reliance on polling are the 
following: 
 

• It is often unclear where the best place is in the program to insert 
polling instructions. If polling is done too often, time can be wasted. If 
it is done too seldom, then critical events can be left waiting the 
processor's attention too long. 

 
• An end-user's program cannot be burdened with the insertion of 

polling code. 
 
• If the program is errant, then polling might not take place at all. 
 

The concept of "interrupt" is introduced to solve such problems. An interrupt is similar to 
a procedure call in that there is a return to the point where the program was interrupted 
(i.e. to where the procedure was called). However, an interrupt is different in that the call 
is not done explicitly by the interrupted code but rather by some external condition.  
 
The fact that the call is not explicit in the code raises the issue of where the procedure 
servicing the interrupt is to reside, so that the processor can go there and execute 
instructions. Typically, there are preset agreed upon locations for this purpose. These 
locations are aggregated in a small array known as the interrupt vector. Typically a 
special register indicates where this vector is in memory. The interrupt vector is indexed 
by an integer that indicates the cause of the interrupt. For example, if there are four 
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different classes of devices that can interrupt, there might be four locations in the 
interrupt vector. The locations within the interrupt vector are address of routines called 
interrupt service routines. 
 
The sequence of actions that take place at an interrupt is:  

 
The cause of interrupt is translated by the hardware into an index, used to 
access the interrupt vector. 
 
The current value of the instruction pointer (IP register) is saved in a 
special interrupt save location. This provides the return address later on. 
 
The IP register is loaded with the address specified at the indexed position 
within the interrupt vector. 
 
Execution at this point is within the interrupt service routine. 
 
At the end of the interrupt service routine, a return-from-interrupt 
instruction causes the IP to be reloaded with the address in the interrupt 
save location. 
 
Execution is now back within the program that was interrupted in the first 
place. 
 

The addition of interrupts has thus necessitated the introduction of one new instruction, 
return-from-interrupt, to the repertoire of the processor. It also requires a new processor 
register to point to the base of the interrupt vector. Finally, there needs to be a way to get 
to the interrupt save location. One scheme for doing this might be to interleave the save 
locations with the addresses in the interrupt vector. In this way, no additional register is 
needed to point to the interrupt save location. Furthermore, we have one such location per 
interrupt vector index. This is useful, since it should be possible for a higher priority 
interrupt to interrupt the service routine of a lower priority interrupt. Finally, we don't 
want to allow the converse, i.e. a lower priority interrupt to interrupt a higher priority 
one. To achieve this, there would typically be an interrupt mask register in the 
processor that indicates which class of interrupts is enabled. The interrupt mask register 
contents is changed automatically by the processor when an interrupt occurs and when a 
return-from-interrupt instruction is executed. 
 
Interrupts vs. Traps   
 
Communication with the environment is not the only need for an interrupt mechanism. 
There are also needs internal to the processor, which correspond to events that we don't 
want to have to test repeatedly but which nonetheless occur. Examples include checking 
for arithmetic overflow within registers and for memory protection violations. The latter 
are designed to keep an errant program from over-writing itself. Sometimes these internal 
causes are distinguished from interrupts by calling them "traps". Traps are also used for 
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debugging and for communicating with the operating system. It is unreasonable to simply 
allow a user program to jump to the operating system code; the latter must have special 
privileges that the user program does not. The only way to provide the transfer from an 
unprivileged domain to a privileged one is through a trap, which causes a change in a set 
of mask registers that deal with privileges. 
 
 
13.10 Direct Memory Access I/O   
 
While interrupts assist in the ability for a processor to communicate with input/output 
devices at high speed, it is often too slow to have an interrupt deal with every word 
transferred to or from a device. Some devices demand such great attention that it would 
slow down the executing program significantly to be interrupted so often. To avoid such 
slow down, special secondary processors are often introduced to handle the flow of data 
to and from high-speed devices. These are variously known as DMA (direct memory 
access) channels (or simply "channels") or peripheral processors. A channel competes 
with the processor for memory access. It transfers an entire array of locations in one 
single interaction from the processor, maintaining its own pointer to a word in memory 
that is next to be transferred. Rather than interrupting the processor at every word 
transfer, it only interrupts the processor on special events, such as the completion of an 
array transfer. 
 
13.11 Pipelining within the Processor   
 
In order to gain an additional factor in execution speed, modern processors are designed 
for "pipelined" execution. This means that multiple, rather than a single, instructions are 
being executed concurrently, albeit at different stages within their execution cycles. For 
example, instruction n can be executing an add instruction while instruction n+1 is 
fetching some data from memory. In order for pipelining to work, there must be 
additional internal registers and control provided that make the net result for pipelined 
execution be the same as for sequential execution. To give a detailed exposition of 
pipelining is beyond the scope of the present text. The reader may wish to consult a more 
advanced text or the tutorial article [Keller 1975]. 
 
13.12 Virtual Memory 
 
Virtual memory is a scheme that simplifies programming by allowing there to be more 
accessible words than there is physical memory space. This is accomplished by 
"swapping" some of the memory contents to a secondary storage device, such as a disk. 
The hardware manages the record-keeping of what is on disk vs. in main memory. This is 
accomplished by translating addresses from the program to physical addresses through a 
"page table". Memory is divided up into blocks of words known as pages, which contain 
sets of contiguous storage locations. When the processor wants to access a word, it uses 
the higher-order so many bits to access the page table first. The page table indicates 
where the page, either in main memory or secondary storage, and where it is. If the page 
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is in main memory, the processor can get the word by addressing relative to the physical 
page boundary. If it is on disk, the processor issues an i/o command to bring the page in 
from disk. This may also entail issuing a command to write the current contents of some 
physical memory page to disk, to make room for the incoming page. The page idea also 
alleviates certain aspects of main memory allocation, since physical pages are not 
required to be contiguous across page boundaries. This is an example of the linear-
addressing principle being applied at two levels: once to find the page and a second time 
to find the word within the page. There is a constant-factor net slow-down in access as a 
result, but this is generally considered worth it in terms of the greater convenience it 
provides in programming. 
 

 
 

Figure 16: How address translation is done for virtual memory: 
The physical memory pages could be in main memory or on disk. 

 
13.13 Processor's Relation to the Operating System   
 
Very seldom is a processor accessed directly by the user. At a minimum, a set of software 
known as the "operating system" provides utility functions that would be too complex to 
code for the average user. These include: 
 

Loading programs into memory from external storage (e.g. disk). 
 
Communication with devices, interrupt-handling, etc. 
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A file system for program and data storage. 
 
Virtual memory services, to give the user program the illusion that it has much 
more memory available than it really does. 
 
Multiple-user coordination, so that the processor resource can be kept in constant 
use if there is sufficient demand. 
 

The close connection between processors and operating systems demands that operating 
systems, as well as other software, must be kept in mind when processors are designed. 
For this reason, it is unreasonable to consider designing a modern processor without a 
thorough knowledge of the kind of operating system and languages that are anticipated 
being run on it.  
 
Exercises 
 
1 ••• Modify the design of the ISC to include an interrupt handling facility. Show all 

additional registers and define the control sequences for when an interrupt occurs. 
 
2 ••• Design a channel processor for the ISC. Show how the ISC would initiate channel 

operations and how the channel would interact with the interrupt mechanism. 
 
3 ••• Design a paging mechanism for the ISC. 
 
4 ••• A feature of most modern processors is memory protection. This can be 

implemented using a pair of registers in the processor that hold the lower and 
upper limit of addresses having contents modifiable by the currently-running 
program. Modify the ISC design to include memory protection registers. Provide 
an instruction for setting these limit registers under program control. 

 
13.14 Chapter Review 
 
Define the following terms: 
 

assembly language 
complex-instruction set computer 
direct memory access (DMA) 
directives (assembler) 
effective address 
handshaking 
instruction decoding 
interpreter 
interrupt 
linear addressing principle 
memory address register 
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memory data register 
recursion 
reduced-instruction set computer 
stack 
strobe 
switch statement 
trap 
virtual memory 
wait state 
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