Risk Analysis I

Risks 

Tanks 

Time-stepping interacting with player turns 

Gravity (on selected objects) 

Disable debugging controls 

Bullet life timer 

Interface 

Code clean-up 

CVS/Wiki 

Assignments 

Tanks – Create the tank class, implementing them as spheres. Demo sphere-sphere collision and ball launching. (Krislin) 

Time-stepping – Modify Triangle World to perform time-stepping in a way is appropriate for this turn-based game. (Jacob) 

Gravity – Turn it on and see what happens. (Jacob)

Disable debugging controls - Start playing with the existing ones, and re-do the interface. (Chris) 

Bullet life-timer – Discuss an algorithm, and test an implementation. (Jacob) 

Interface – Assign keys, determine what the keys do and how this affects ball’s velocity. (Chris) 

Code clean-up – Clean up Triangle World. (all three of us) 

CVS/Wiki – Learn to use them, use them, and back up files. This would probably involve talking to Prof Z. Use FTP for file transfers in the meantime. (all three of us) 

Risk Resolution

Tanks – A functional Tank and Bullet class was created. The Tank class has the functionality to create bullets and change it’s aim’s phi, theta, and power. Sphere-sphere collision was implemented in the World. The Tank and Bullet class were successfully integrated into the World.

Time-stepping – The program successfully performs player’s turn-changing and time-stepping within those turns.

Gravity – Gravity behaves as expected.

Disable debugging controls – Many of the controls that made debugging verbose were removed. The debug option was turned off in the code.

Bullet life-timer – The Tank and Bullet class were added fairly late, and the prototype was just completed, so the bullet life-timer could not yet be implemented.

Interface – Keys will change the current tank’s phi, theta, and power, which then determine the ball’s velocity. Key assignments are still debatable.

Code clean-up – We removed some of the excess functionality for Triangle World that are not required in this game, such as ball rebound. More work is needed in this area.

CVS/Wiki – We were unsuccessful in getting this up and running. We will continue to work on this.

Risk Analysis II

Risks 

Features:

Random terrain generation

Graphics (icons, explosions, textures, etc.)

Sound effects 

Bullet life-timer

Interface

Code clean-up

CVS/Wiki

Assigments 

(Note: Due to rough schedules at this point in the process, we did not try to address many of the risks at this point.)

Bullet life-timer – Discuss an algorithm, and test an implementation. Note: Theoretically, this should never come into play, but we should implement it as a fail safe to prevent the game from doing an infinite loop. (Jacob)

Interface – Assign keys. (Krislin) 

Code clean-up – Finish cleaning up Triangle World, along with Doom Tanks code, and add more comments. (all three of us)

CVS/Wiki – Learn to use them, use them, and back up files. This would probably involve talking to Prof Z. Use FTP for file transfers in the meantime. (all three of us)

Risk Resolution

Bullet life-timer – The bullet life-timer was implemented by giving the bullet a certain amount of life, having the World decrement it over time, and having the World destroy the bullet after it runs out of life.

Interface – Key assignments were not finalized.

Code clean-up – More code removal and encapsulation were done to the code. This still needs more work.

CVS/Wiki – We have a Wiki page now. CVS is still in question.

Risk Analysis III

Risks 

Bug in collision detection

Random terrain generation

Placement of tanks on differing height terrain

Graphics (icons, explosions, textures, etc.)

Sound effects 

Camera angle and panning

Play test

Interface

Code clean-up

CVS

Assignments

Bug in collision detection – Fix the bug that causes the bullet to hit the terrain behind a tank when moving at the tank with too much speed. (whoever gets it first)

Random terrain generation – Create a Terrain class that constructs a random terrain. (Chris)

Placement of tanks on differing height terrain – Determine a way to place tanks on the terrain in a realistic way. (Jacob)

Graphics (icons, explosions, textures, etc.) – Explore the options and implement whatever seems doable. (Chris)

Sound effects – Find a way to implement sound effects, and find appropriate sounds for the events. (Krislin)

Camera angle and panning – Have the camera start at a reasonable position. Add panning to allow the players to get a better angle to aim from. (Jacob) 

Play test – Test the game for playability. (all of us, specifically Krislin)

Interface – Assign keys. (all of us)

Code clean-up – Continue to clean the code of excess code, and add comments. (all of us)

CVS – Get CVS working. Ask Z for more help. (all of us)

Risk Resolution

Bug in collision detection – The detection code was rearranged to not stop at the first found collision. Professor Z helped us with further debugging having to do with unfunctional code in our collision detector. The bug was thus fixed.

Random terrain generation – A Terrain class was successfully implemented.

Graphics (icons, explosions, textures, etc.) – All graphical elements other than terrain textures were deemed low-priority, and thus were not completed. Terrain texture was implemented by applying a bitmap to the terrain surface using OpenGL.

Sound effects – Sound effects were chosen and implemented successfully.

Camera angle and panning – The camera’s starting position was adjusted to a better location, and panning was implemented.

Play test – The game was played and constants were changed to make it playable.

Interface – Key assignments were set to the number pad for most of the tank controls.

Code clean-up – Code continued to be cleaned. The detection was rearranged, and many comments were added. Many of the excess computations in this section were removed.

CVS – With the help of Professor Z, we finally got our project into CVS, and were able to use that to keep a current copy of the code. There were a few glitches with the files in CVS not being happy with Visual Studio. However, for the most part, this was extremely helpful in the process of transferring changes.

Due Dates 

Scheduled—Objective—Status with Date
Tues 11/18: Progress Report #1 – completed on 11/20 

Thurs 11/20: Prototype – completed on Mon 12/1

Tues 12/2: Basic game with a few simple features – completed on Fri 12/5

Tues 12/9: Code Freeze – Code Freeze except for comments and sounds was held on Tues 12/9
Wed 12/10: Work on presentation – completed on Wed 12/10

Thurs 12/11 - Project Due

