
COMMUNICATIONS OF THE ACM August 2006/Vol. 49, No. 8 67

There has been much discussion as to what
degree iterative and agile processes and soft-
ware evolution are different from previously

promoted practices based on the waterfall life cycle
model. Here, I argue that the departure is funda-
mental and, in fact, it represents a new paradigm.

The notion “paradigm” was used by Kuhn [8] to
describe a “coherent tradition of scientific research”
that includes knowledge, techniques, research
agenda, and so forth. Kuhn collected extensive his-
torical data and proved that change from an old par-
adigm to a new one takes place when the old
paradigm is in crisis and cannot explain compelling
new facts. It is a genuine revolution in a particular

branch of science and it represents a discontinuity in
the development of that branch.

Kuhn argues that there is always a substantial
investment in the old paradigm that causes a resis-
tance to the paradigm change. This resistance is
fueled by the fact that as a result of the paradigm
change, knowledge accumulated up to that point
may lose its significance. This makes the advantages
of the new paradigm disputable, especially among
those with the greatest knowledge of the old para-
digm. Those who have a vested interest in the old
paradigm will always attempt to extend that para-
digm to accommodate new facts. Thus, the final vic-
tory of the new paradigm can only be guaranteed by
a generation change.

With just a slight shift in the meaning, I use the
notion of “paradigm” as “coherent tradition of soft-
ware development,” and argue the current movement
toward software evolution and agile and iterative
processes of software development represent nothing
less than a paradigm change. In order to describe the
scene in which this change is taking place, it helps to
review the history of software technology.

Software separated in the 1950s from the under-
lying hardware and emerged as a distinct technology,
turning out independent products and requiring a

Software evolution, iterative,
and agile development represent a
fundamental departure from the
previous waterfall-based paradigm
of software engineering.

CHANGING the PARADIGM of
SOFTWARE ENGINEERING

By Václav Rajlich

68 August 2006/Vol. 49, No. 8 COMMUNICATIONS OF THE ACM

specialized set of skills. Original programmers were
recruited mostly from the ranks of hardware engineers
and mathematicians who used ad-hoc techniques
they carried from their former fields.

The first paradigm change occurred in the late
1960s. It was precipitated by the fact that the ad-hoc
techniques did not scale up to the large systems. The
situation is vividly described by Brooks in [2] where
the demands of the new operating system OS/360
taxed the limits of the programmers, project man-
agers, and the resources of IBM Corp. The result of
the crisis was a paradigm change that established a
new academic software engineering discipline and
introduced the waterfall metaphor into the produc-
tion of software.

The waterfall metaphor is widely used in the con-
struction industry and product manufacturing. It
requires the developer first to collect the requirements
that describe the functionality of the future product,
and then to create a design that
will be followed during the entire
construction. When the product is
finished, it is transferred to the
user and any residual problems
that may surface afterward are
resolved through maintenance.

The waterfall metaphor is an
intuitively appealing metaphor.
Common sense dictates to try to
avoid the expensive late rework;
requirements elicitation up front
and good design based on these
requirements lessens the need for
the expensive rework. Waterfall
became the dominant paradigm
through which the software devel-
opment was viewed.

However, in the context of
software development, waterfall is
beset by a serious problem of requirements volatility.
Requirements are not fully known in advance and are
often added during the course of the project. For
example, Cusumano and Selby [3] found that 30% of
the requirements for Microsoft projects were not
elicited in advance, but emerged only when the devel-
opment was already under way, possibly as a result of
the developer’s learning. Any design based on volatile
requirements must of necessity be only temporary
and cannot guide developers through the entire devel-
opment process.

Additional data indicated that in spite of wide-
spread use of waterfall, there were very few successful
projects [7]. In an oft-quoted report, the Standish
Group revealed that in 1995, 31.1% of all software

projects were canceled, 52.7% were “challenged”
(completed only with great difficulty, and with large
cost or time overruns), and only 16.2% could be
called successful. Obviously, the waterfall metaphor
did not solve the problems of software development.

Although use of waterfall is in decline in the
industry, it still explicitly or implicitly drives
much of the discussion and research. As in

other scientific revolutions, there are attempts to
extend the waterfall in order to adapt it to the new
data and address the most glaring deficiencies. One
such approach calls for the anticipation of the future
changes and proposes to build the software in such a
way that those changes will be easily implemented.
This again is a commonsense idea, but it requires a
crystal ball that often is not available. Examples of dra-
matic unanticipated events are unexpected company

mergers that require companies to unify their IT
efforts (example: Daimler Chrysler), unexpected
changes in the law, unexpected changes in technology
(arrival of the Internet) and so forth. Anticipating
future changes—if at all possible—can only lessen the
problem of requirements volatility, but cannot solve it.

Another approach advocates software prototyping.
The prototype is a first throw-away version of the
software and its purpose is to elicit the requirements.
This is only a partial solution to the problem; it
assumes the programmers elicit all requirements while
prototyping. In reality, late new requirements emerge
due to environment volatility and the developer
learning that still goes on through the rest of the
development. Both anticipation and prototyping
lessen the problems of volatility, but they do not offer
a complete solution. Indeed, a complete solution can
only come from a new paradigm.

Rajlich figure (8/06)

Figure 1. Incremental Change design.

Concept

User

Software

Impact Set
Impact
Analysis

Impact
Analysis

Concept
Location

Impact
Analysis

Impact
Analysis

Incremental change
design.

THE NEW PARADIGM IS BASED ON SOFTWARE EVOLUTION

The current revolution in software engineering is the
response to the data that proved the waterfall life
cycle, including its change anticipation and proto-
typing variants, cannot solve the problem of require-
ments volatility. As in other scientific revolutions,
the new paradigm comes from several independent
sources. It gained momentum recently and surfaced
as a flood of new ideas, books, and articles.

One source is the empirical studies of actual soft-
ware life cycles, which resulted in a staged model [9]
that divides the software life cycle into five stages.
There is initial development that creates the first ver-
sion of the software, and establishes the fundamental
commitments that will characterize the software
through the rest of its life cycle. The next stage, evo-
lution, consists of iterations that adapt the software to
the changing requirements caused by the environ-
ment volatility and add new functionality and other
new properties. The value and size of the software
grows during the evolution, so sometimes the evolu-
tion is called “growth stage.”

The factor that stops the evolution is either a man-
agement decision or the code decay [4] that brings the
loss of architecture coherence and the loss of the
knowledge about the program. The software enters the
servicing stage, where the value no longer grows and
changes are limited to patches and wrappers that only
fix minor deficiencies. The life cycle ends with the
phase-out stages, where no more servicing is provided
and the users work around the known deficiencies, and
close-down that discontinues the software use.

Iterative program development is another source of
the new paradigm [6]. It is based on the observa-
tion that during the program development, there

is a contradiction between the need of programmers
to have a predictable and stable environment and the
volatility of requirements. The attempt to freeze the
requirements for the entire duration of the project
does not work, because the accumulation of both the
external and internal changes is too large and results
in project failures. The opposite extreme—flooding
the programmers with the constant stream of
changes—also does not work because it creates project
chaos. A reasonable compromise is to freeze the envi-
ronment for a limited time, called iteration.

At the end of the iteration, the stakeholders (pro-
grammers, managers, users) evaluate the progress, take
into account the changes in the environment, and
decide the direction for the next iteration. The itera-
tions provide feedback and lessen the risks of the sur-
prises and failures. Fast iterations are recommended

by agile processes like eXtreme Programming (XP)
[1]. In terms of the staged life cycle, iterative program
development extends the stage of evolution at the
expense of the initial development, which becomes
just one of the iterations.

THE NEW RESEARCH AGENDA

With its emphasis on software evolution, the new
paradigm focuses on the modifications in the exist-
ing software. This puts a new research agenda into
the spotlight. One of the increasingly important top-
ics is incremental change (IC), the purpose of which
is to add a new functionality or a new property to
the existing software [10]. Under the old paradigm,
IC was supposed to happen only rarely, because all
required functionalities and properties should have
been identified in advance and implemented during
the initial development. In the modified old para-
digm, where all changes are anticipated, all changes
should be local and trivial. As the result of these
views, IC was largely ignored by researchers and edu-
cators as something of little importance; in fact, cur-
rent programmers must learn it on their own.

Software evolution, iterative development, and
agile development are all based on repeated IC.
Because of that, IC is poised to move into the center
of the research interest. The questions are: can the
practice of IC be summarized, modeled, formalized,
improved, taught, and supported by tools? For exam-
ple, many issues of the IC design are open and require
additional research. IC design has been divided into
two closely related activities: concept location and
impact analysis (see the accompanying figure).

Concept location [10] starts with the change request
and determines where in the existing software the
change should be made. Programmer’s knowledge
might be sufficient for concept location in small and
familiar programs, but it fails in large or unfamiliar
ones. Ideally in that situation, there should be an
external documentation that guides the programmers
to the proper place in the code. However, such docu-
mentation is very rare and the programmers must rely
on their skills. A crude but widely used string pattern
matching technique locates identifiers or comments
that indicate the presence of the concept in the code.
Unix utility “grep” is the best known example of a pat-
tern-matching tool and therefore this technique is
often called grep technique. For example, if the pro-
grammers want to locate the concept “pay stub” in the
code, they look for identifiers “paystub,” “payStub,”
“paystb,” and so on.

In spite of its wide use, “grep” has serious limita-
tions as it depends on the presence of relevant com-
ments and identifiers in the code. It frequently fails

COMMUNICATIONS OF THE ACM August 2006/Vol. 49, No. 8 69

because of the use of synonyms or homonyms that
lower precision and recall. Search for better concept
location techniques is one of the important research
issues of IC. The new concept location techniques
broadly fall into static and dynamic categories, where
static techniques analyze the static software source
code while dynamic techniques analyze results of the
program execution [12].

Impact analysis [10] is also a part of IC design and
it determines full extent of the change, by finding all
software components that will be affected by the IC.
After the actual change in the software was made,
change propagation [10] finds all places where the sec-
ondary changes are to be made in order to complete
the change. Program dependency analysis plays an
important part in both impact analysis and change
propagation.

Refactoring is a change to the software that does not
modify the functionality but modifies the structure.
After repeated incremental changes, the architecture
of the program can become disorganized and refac-
toring reintroduces the order. Opportunistic refactor-
ing prepares software for a specific incremental
change.

There are many different refactoring transforma-
tions, starting with simple renaming of an entity of
the program, and including more sophisticated
changes like refactoring a base class, refactoring
design patterns, and so forth. Refactoring has been
covered in numerous articles and books [5]. Many
currently available software environments are
equipped with tools to support at least some refactor-
ing transformations.

Code decay [4] causes transition from the stage of
evolution, where large changes in the functionality are
possible, to a servicing stage where only minor patches
and wrappers are possible, therefore substantially low-
ering the value of the software. Software managers
should be aware of this phenomenon, as it can happen
by accident. There has been very little research into
what causes code decay and how to prevent it.

Cognitive aspects of software development and pro-
gram comprehension [11] are also emphasized by the
new paradigm. The software evolution presents an
opportunity for the programmers to learn, and this
learning will determine the success of the project.
New programmers joining the project must absorb
project knowledge and current documentation sys-
tems fail to capture this knowledge adequately, mak-
ing the entrance of the new programmers into an old
project difficult. It was speculated that the code decay
is characterized by the situation where complexity of
the code outruns the cognitive capabilities of the pro-
grammers [9].

CONCLUSION

The old waterfall paradigm tried to freeze require-
ments for the duration of software development and
created a situation where requirements volatility
caused too many project failures, while the new par-
adigm addresses this shortcoming by its emphasis on
software evolution. The new paradigm brings a host
of new topics into the forefront of software engi-
neering research. These topics have been neglected
in the past by the researchers inspired by the old par-
adigm, and therefore there is a backlog of research
problems to be solved.

References
1. Beck, K. Extreme Programming Explained. Addison Wesley, Reading,

MA, 2000.
2. Brooks, F.P. The Mythical Man-Month. Addison-Wesley, Reading,

MA, 1982.
3. Cusumano, A.M. and Selby, R.W. How Microsoft builds software.

Commun ACM 40, 6 (June 1997), 53–61.
4. Eick, S.G., Graves, T.L., Karr, A., Marron, J.S., and Mockus, A. Does

code decay? Assessing the evidence from change management data.
IEEE Trans. Software Engineering 27, 1 (2001), 1–12.

5. Fowler, M. Refactoring: Improving the Design of Existing Code. Addison
Wesley, Reading, MA, 1999.

6. Jacobson, I., Booch, G. and Rumbaugh, J. The Unified Software Devel-
opment Process. Addison Wesley, Reading, MA, 1999.

7. Johnson, J.H. The CHAOS Report. The Standish Group International,
Inc., (1994); www.standishgroup.com/sample_research/ index.php.

8. Kuhn, T.S. The Structure of Scientific Revolutions. The University of
Chicago Press, Chicago, 1996.

9. Rajlich, V. and Bennett, K. A staged model for the software lifecycle.
Computer 33, 7 (July 2000) 66–71.

10. Rajlich, V. and Gosavi, P. Incremental change in object-oriented pro-
gramming. IEEE Software 21 (July/Aug. 2004), 62–69.

11. Xu, S., Rajlich, V., and Marcus, A. An empirical study of programmer
learning during incremental software development. In Proceedings of
the IEEE International Conference on Cognitive Informatics (2005),
340–349

12. Wilde, N., Buckellew, M., Page, H., Rajlich, V. and Pounds, L. A com-
parison of methods for locating features in legacy software. J. Systems
and Software 65, 2 (Feb. 2003), 105–114.

This research was supported in part by grants from the National Science Foundation
(CCF-0438970), the National Institute for Health (NHGRI 1R01HG003491), and
by 2005 IBM Faculty Award. Any opinions, findings, conclusions, or recommenda-
tions expressed in this material are those of the author and do not necessarily reflect
the views of the NSF, NIH, or IBM.

Václav T. Rajlich (rajlich@wayne.edu) is a professor and
former chair in the Department of Computer Science at Wayne State
University, Detroit, MI.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/0800 $5.00

c

70 August 2006/Vol. 49, No. 8 COMMUNICATIONS OF THE ACM

