
Things are awfully messy 'round here…
An example of a happy

Ripple-Carry Adder...

taking
the

circuit
"canvas"
literally

…

CS 5

logic gates

switches: transistors

bitwise functions

arithmetic

1-bit memory: flip-flops

main memory

computer

Hmmm...

registers

Python

A

B

S

T

R

A

C

T

I

O

N

O

U

R

C

S

P

A

T

H

hw5 ~ composing circuits

4-bit Ripple-Carry Adder

4-bit Multiplier

3x2-bit Divider

12 nGbits of memory (RAM)

extra credit

Prime tester

Optimized
Prime

using "minterm expansion"

3-bit Full Adder

Worst-case, so far...

Worst-case, so far...

Prime-tester...

pure "minterm expansion": one AND for each '1' output

Prime-optimizer?!
This one is

problem 5, EC

pure "minterm expansion": one AND for each '1' output

truth tables circuits

x y

0 0
0 0
0 1
0 1

0
0
1
0

IN OUT

c

0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

1
0
1
1

circuit output

A

B

C

D

(the truth table) (the circuit)

truth tables circuits

AND gate for
each 1 in the
truth table's

output

x y

0 0
0 0
0 1
0 1

0
0
1
0

IN OUT

c

0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

1
0
1
1

circuit output

A

B

C

D

(the truth table) (the circuit)

Challenge 1: There is a mismatch between this function (truth table) and circuit.

Challenge 2: Fix it on BOTH sides: Draw how to make the circuit match the table + how to make the table match the circuit

Name(s) __________________________

Extra Challenge: This "minterm" approach can implement any function. But functions miss most of what computers do! What's missing?

x y c

truth tables circuits

AND gate for
each 1 in the
truth table's

output

x y

0 0
0 0
0 1
0 1

0
1
1
0

IN OUT

c

0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

1
0
1
1

circuit output

A

B

C

D

(the truth table) (the circuit)

Challenge 1: There is a mismatch between this function (truth table) and circuit.

Challenge 2: Fix it on BOTH sides: Draw how to make the circuit match the table + how to make the table match the circuit

Try this on the other page first...

C

Extra Challenge: This "minterm" approach can implement any function. But functions miss most of what computers do! What's missing?

0

x y c

truth tables <-> circuits

AND gate for
each 1 in the
truth table's

output

x y

0 0
0 0
0 1
0 1

0
0
1
0

IN OUT

c

0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

1
0
1
1

circuit output

A

B

C

D

(the truth table) (the circuit)

Challenge 1: There is a mismatch between this function (truth table) and circuit.

Challenge 2: Fix it on BOTH sides: Draw how to make the circuit match the table + how to make the table match the circuit

Name(s) __________________________

Extra Challenge: This "minterm" approach can implement any function. But, functions miss most of what computers do! What's missing?

"It's not real unless
it can be done in

Minecraft."

Composing circuits

Full Adder
~ minterm

this FA gets "boxed up"

one FA for
each column

of binary
addition

Composing circuits

0 1 1 1

 1 1 0 1
+

4-bit Ripple-Carry Adder

8 bits in

5 bits out

one FA for
each column

of binary
addition

5 "sum" bits

5 full adders one FA for
each column

of binary
addition

Composing circuits

0 1 1 1

 1 1 0 1
+

4-bit Ripple-Carry Adder

8 bits in

5 bits out

one FA for
each column

of binary
addition

C
3
 C

2
 C

1
 C

0

 Y
3
 Y

2
 Y

1
 Y

0

 X
3
 X

2
 X

1
 X

0+

4-bit Ripple-Carry Adder

8 bits in

5 bits outZ
4
 Z

3
 Z

2
 Z

1
 Z

0

C
3
 C

2
 C

1
 C

0

 Y
3
 Y

2
 Y

1
 Y

0

 X
3
 X

2
 X

1
 X

0+

4-bit Ripple-Carry Adder

8 bits in

5 bits outZ
4
 Z

3
 Z

2
 Z

1
 Z

0

our ripple-carry schoolbus

Y
3
 Y

2
 Y

1
 Y

0

 X
3
 X

2
 X

1
 X

0+
8 bits in

5 bits outZ
4
 Z

3
 Z

2
 Z

1
 Z

0

Composing circuits

4-bit Ripple-Carry Adder

Now let's make lots of them!!

hw5pr3: A 4-bit multiplier

 1 1 0 1 Multiplicand

 x 0 1 1 0 Multiplier

 0 0 0 0 4 partial products

 1 1 0 1

 1 1 0 1

+ 0 0 0 0

 1 0 0 1 1 1 0 Final answer…

(Q3) How could THREE 4-bit ripple-carry adders help here?

(Q2) What bit would be correct for the starred spot ?

(Q1) What circuit could you use to create the four "partial products" ??

0

Be sure you "see"
the 16 bits you'll
need to create!

Each bit will
have a wire!

Z
7
 Z

6
 Z

5
 Z

4
 Z

3
 Z

2
 Z

1
 Z

0

X
3
 X

2
 X

1
 X

0

Y
3
 Y

2
 Y

1
 Y

0

The Challenge...

hw5pr3: A 4-bit multiplier

 1 1 0 1 Multiplicand

 x 0 1 1 0 Multiplier

 0 0 0 0 4 partial products

 1 1 0 1

 1 1 0 1

+ 0 0 0 0

 1 0 0 1 1 1 0 Final answer…

(A1) Use a 4x1-bit helper circuit to find the four partial products…

(A3) You need three (3) ripple-carry adders to finish: see above…

(A1) The AND gate is single-bit multiplication.

0

(A2) == 0

Z
7
 Z

6
 Z

5
 Z

4
 Z

3
 Z

2
 Z

1
 Z

0

X
3
 X

2
 X

1
 X

0

Y
3
 Y

2
 Y

1
 Y

0

Division? hw5pr4

Division! hw5pr4

bit

"principled"
design Minterm Division

(0) All computation can be expressed as bits...

(1) Any function of bits can be made a truth table

INPUTS

Y2 Y1 Y0 X1 X0

OUTPUT

Z2 Z1 Z0 E

0 0anything

0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 0 1

1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

1

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0

1 1 0 0
1 0 1 0

1 1 1 0

0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0
0 1 0 0

0 1 1 0
0 1 0 0

0 1 1 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0

0 1 0 0
0 0 1 0

0 1 0 0

(2) Consider the output, one bit at a time...

(5) If not, use an AND gate to select each input
for which the output should be 1 (a minterm!)

(3) The circuit will output 0 by default!

(6) OR the outputs from step (5) together.

anything

(7) optimize your circuit later -- or never

To implement the red 1, how many
inputs will its AND gate need??

What division is that line?

How many NOT'ed?

dividend divisor quotient error

(4) Are there subcircuit patterns to notice?

div. by 0

Circuit Optimization?

Perhaps artistically
optimized! Optimizing for what?!

16 gates

7 gates

Time-optimized circuits: Carry lookahead adders

The following circuit is called a carry lookahead adder.

By adding more hardware, we reduce the number of levels in the circuit and speed things up.

We can "cascade" carry lookahead adders, just like ripple carry adders.
We'd have to do carry lookahead between the adders too.

How much faster is this?
For a 4-bit adder, not much. There are 4 gates in the longest path of a carry lookahead
adder, versus 9 gates for a ripple carry adder.

But if we do the cascading properly, a 16-bit carry lookahead adder could have only 8 gates
in the longest path, as opposed to 33 for a ripple carry adder.

Newer CPUs these days use 64-bit adders. That's 12 vs. 129 gates or 10x speedup!

The delay of a carry lookahead adder grows logarithmically with the size of the adder, while a
ripple carry adder's delay grows linearly.

The thing to remember about this is the trade-off between complexity and performance.

Ripple carry adders are simpler, but slower. Carry lookahead adders are faster but more complex.

“carry-out”,
not “c-zero”

A 4-bit carry-lookahead adder circuit

Sum bits

Carry bits

carry-in

xor

xor xor xor xor

xorxorxor

A 4-bit carry-lookahead
adder circuit

A 4-bit ripple-carry
adder circuit

speed vs. complexity tradeoffs ~ the "cs facets" of engineering

What information is needed? Where? How?

What's inside gates?

What's the other half
of computation?

Today's gates?

https://www.youtube.com/watch?v=2z9qme_ygRI
https://www.youtube.com/watch?v=Fxv3JoS1uY8

are from silicon-based switches ~ transistors

a single etched transistor labeled with
base (b), emitter (e), and collector (c)

switch?
gate?
door?

switches?

are from silicon-based switches ~ transistors

a single etched transistor labeled with
base (b), emitter (e), and collector (c)

switch?
gate?
door?
portcullis!

One transistor!

Then

1947

One transistor!

open-on-high type transistor
single-electron tunneling, or SET transistor

20 nm

E85's transistors

Then

Now

a +5v voltage here

allows current here

"high"

1947

open-on-high type transistor
single-electron tunneling, or SET transistor

20 nm

E85's transistors

Then

Now

a +5v voltage here

allows current here

"high"

Lots of transistors!

1947

Two types of transistors...

20 nm

a +5v voltage here

allows current here

0v

0v "opens" this wire

Transistors are
current gates:

5v "cuts" this wire

5v

0v

0v "cuts" this wire 5v "opens" this wire

5v

open-on-low (pmos)

open-on-high (nmos)

open-on-high-type transistor

"high"

an input of 1 opens the portcullis...

Two types of transistors...

20 nm

a 0v voltage here

blocks current here

0v

0v "opens" this wire

Transistors are
current gates:

5v "cuts" this wire

5v

0v

0v "cuts" this wire 5v "opens" this wire

5v

open-on-low (pmos)

open-on-high (nmos)

open-on-high-type transistor

"low"

an input of 0 closes the portcullis!

Rotations are common...

0v

0v "opens" this wire

Transistors are
current gates:

5v "cuts" this wire

5v

0v

0v "cuts" this wire 5v "opens" this wire

5v

open-on-low (pmos)

open-on-high (nmos)

(0 or 1)

+5 v

Ground = 0v

INPUT
OUTPUT

(1 or 0)

0v "opens" this wire

Transistors are
current gates:

5v "cuts" this wire

0v "cuts" this wire 5v "opens" this wire

open-on-low (pmos)

open-on-high (nmos)

POWER

0v 5v

0v 5v

Building a NOT gate

Building a NOT gate from transistors:

outputinput
NOT

a two-
transistor
NOT gate

a NOT gate

(0 or 1)

+5 v

Ground = 0v

INPUT
OUTPUT

(1 or 0)

Implemented!

0v "opens" this wire

Transistors are
current gates:

5v "cuts" this wire

0v "cuts" this wire 5v "opens" this wire

open-on-low (pmos)

open-on-high (nmos)

POWER

0v 5v

0v 5v

a two-
transistor
NOT gate

(0 or 1)

+5 v

Ground = 0v

INPUT
OUTPUT

(1 or 0)

0v "opens" this wire

Transistors are
current gates:

5v "cuts" this wire

0v "cuts" this wire 5v "opens" this wire

open-on-low (pmos)

open-on-high (nmos)

POWER

0v 5v

0v 5v

Building a NOT gate

Building a NOT gate from transistors:

outputinput
NOT

a two-
transistor
NOT gate

(1) NOT's
truth table

In Out

10
01

(0 or 1)

+5 v

Ground = 0v

INPUT
OUTPUT

(1 or 0)

0v "opens" this wire

Transistors are
current gates:

5v "cuts" this wire

0v "cuts" this wire 5v "opens" this wire

open-on-low (pmos)

open-on-high (nmos)

POWER

0v 5v

0v 5v

Building a NOT gate

Building a NOT gate from transistors:

outputinput
NOT

a two-
transistor
NOT gate

(1) NOT's
truth table

In Out

10
01

Ground, 0 or 0v

Output: Z

X Y

NAND

"not and"

OR NOR XOR

"not or"

Z

(3) Extra! How could

you alter the transistor-level
design to make the design
above into an AND gate?

Power, 1 or +5v

"exclusive or"

(1) Fill in this
circuit's truth table

Z

(2) Challenge: What gate is the above diagram? It's one of these four:

Transistors!
(1) What will be output?

Fill out the truth table to the right

Z is either 0 or 1,
depending on X , Y

Y

X

each is 0 or 1
independently

Inputs: X, Y

X

Y
1

1

let's follow these
inputs together...

X Y

0 0
0 1
1 0
1 1

each is 0 or 1
independently

Ground, 0 or 0v

Inputs: X, Y

Output: Z

X

Y

X Y

NAND

"not and"

OR NOR XOR

"not or"

Z

(3) Extra! How could

you alter the transistor-level
design to make the design
above into an AND gate?

Power, 1 or +5v

"exclusive or"

(1) Fill in this
circuit's truth table

X Y Z

0 0
0 1
1 0
1 1

(2) Challenge: What gate is the above diagram? It's one of these four:

Transistors!
(1) What will be output?

Fill out the truth table to the right

Y

X

1
0
0
0

Z is either 0 or 1,
depending on X , Y

1

1

0

1

1

0

0

0

0

0

0 0

these 3 result in outputs
of 0 – not detailed here

each is 0 or 1
independently

Ground, 0 or 0v

Inputs: X, Y

Output: Z

X

Y

X Y

NAND

"not and"

OR NOR XOR

"not or"

Z

(3) Extra! How could

you alter the transistor-level
design to make the design
above into an AND gate?

Power, 1 or +5v

"exclusive or"

(1) Fill in this
circuit's truth table

X Y Z

0 0
0 1
1 0
1 1

(2) Challenge: What gate is the above diagram? It's one of these four:

Transistors!
(1) What will be output?

Fill out the truth table to the right

Y

X

1
0
0
0

Z is either 0 or 1,
depending on X , Y

1

1

0

1

1

0

0

0

0

0

0 0

these 3 result in outputs
of 0 – not detailed here

each is 0 or 1
independently

Ground, 0 or 0v

Inputs: X, Y

Output: Z

X

Y

X Y

NAND

"not and"

OR NOR XOR

"not or"

Z

(3) Extra! How could

you alter the transistor-level
design to make this an AND?

Power, 1 or +5v

"exclusive or"

(1) Fill in this
circuit's truth table

X Y Z

0 0
0 1
1 0
1 1

(2) Challenge: What gate is the above diagram? It's one of these four:

Screenshot this for hw5ss4 (1) What does this gate do?
Fill out the truth table to the right

Z is either 0 or 1,
depending on X + Y

Their Mark 1

http://www-03.ibm.com/ibm/history/exhibits/markI/markI_reference.html

Grace Hopper + Howard Aiken, Harvard ~ 1944

an early, relay-based computer

Signal Input, A

Signal
Output

Q

Spring

Electromechanical "gates" (relays)

External
Power (6v)

Electro-
magnet

metal
plate

Which gate is this?

Input, A

Signal
Output

Q

External
Power (6v)

AND NAND OR NOR XOR

Input, B

here, gold + green
are conductive...

Which gate is this?

Input, A

Signal
Output

Q

External
Power (6v)

AND NAND OR NOR XOR

Input, B

ran at 0.00001 MHz

5 tons

530 miles of wiring

765,299 distinct parts!

Addition: 0.6 seconds

Multiplication: 5.7 seconds

Division: 15.3 seconds

http://www-03.ibm.com/ibm/history/exhibits/markI/markI_reference.html

Grace Hopper + Howard Aiken, Harvard ~ 1944

an early, relay-based computer Their Mark 1

Our Mark 1? an "early," quantum-based computer

hw5pr0.txt this week

Transistors as disruptive technology

1947: Bell Labs

seeking better amplifiers for phone lines

team of physicists: W. Brattain, W.
Shockley, and J. Bardeen

1948: junction transistor

1956: Shockley Semiconductor Co.

1957: Fairchild Semiconductor Co.

much more robust design

in a few months...
 the "traitorous eight" left to found

point contact transistor

in hometown of Palo Alto...

... and so begins the valley's siliconization

What's inside gates?

What's the other half
of computation?

Half a computer: the CPU

transistors

6 x 7… !

arithmetic

gates

For systems, a face-lift is to add
an edge that creates a cycle, not

just an additional node.

NOR

X
NORinputs

outputY

NOR's Truth Table

X YZ Z

0 0

0 1

1 0

1 1

1
0

0

0

- also Alan Perlis

Q still stays (!) at __ _0_

Q is then set to __ _1_

Q still stays (!) at __ _1_

Q is then set to __ _0_

• What happens if S stays 0 and R is set back to 0?

• What happens if R is 0 and S is set to 1?

Memory!

Take a look at this circuit:

The D (data) line holds a
single bit we want to store

(either a 0 or a 1).

 How does the strobe bit
help store the bit D into Q?

Why does "S" stand for "Set" and R for "Reset" ?

• What happens if S is 0 and R is set back to 0?

Hint: What happens when the "strobe" is 1?

NOR

NOR

S

R

1

0

0

"Set"

"Reset"

1

Q

• The circuit starts with R being 0 + S being 0

• What if S stays 0 and R is set to 1?

S "sets" Q to 1; R "resets" it back to 0.

"we are ready
to handle the

data"

Q is a single
bit of storage

and Q starts at _0_ the "loopback wire"
from S to R will be 1

NOR

NOR

inputs

The flip-flop

D data

"strobe"
AND

AND

strobe

D

Q

1 bit of memory!

the flip-flop's diagram

Q

Q is 1 bit
of storage

"we are ready
to handle the

data"

NOR

NOR

inputs

The flip-flop

D data

"strobe"
AND

AND

strobe

D

Q

1 bit of memory!

the flip-flop's diagram

Q

Q is 1 bit
of storage

Random Access Memory
Extra: Design 12 nano-Giga-bits of RAM

3 data output bits

Inputs

3 data input bits

Simplified
Prototype for
Accessing
Memory

Outputs

2 data address bits

3 bits stored at location 00

 3 bits stored at location 01

 3 bits stored at location 10

 3 bits stored at location 11

12 bits of RAM

4

2

5

6

values
memory
locations

3
2
1
0

write enable line

read enable line

Animusic's Fiber Bundles

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: hw5pr3: A 4-bit multiplier
	Slide 18
	Slide 20: hw5pr3: A 4-bit multiplier
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

