Software

N

Python 4 Hmmm problems
+ 1 loop problem Assembly Language

alfs How does Python function ? MaChIne Language

Hmmm 5% M

RAM 47 >
. i ' I have a looming sense... Sk
reglsters & D09

1-bit memory: flip-flops R

arithmetic
bitwise functions
logic gates

transistors / switches

Hardware

Making memories...

o
—

=1
—1

6

1

eI

L =
ol = ay... U
one Wy "'+
e — AT Jl O
B 1 |
~ .
Inside the 12nGbits of memory...

-& My head is spinning... Circu itS ~ Mem 0 r‘y!

32x 8-bit

32 bytes of memory

the power of composition

ro [1}

“ B—
Az [1}

a3 [1}
A4E

Enable

o

32x 1-bit

Bit-In

Y

A0 A1 A2 A3 Enable
Bit-In Bit-Out

R 16x 1-bit RAM RD

—

—ﬂ
A0 A1 A2 A3 Enable
Bit-In Bit-Out
RD g

R 16x 1-bit RAM

wr [O}—

WR A0A1A1A1A1L

|_3_| [oTZToT 1]

RD

@

Ino@

InlE

In2E

In3 |O

Ir14

Ing O

In6

In7

Enable
Ap A1 AR A3 A4 Enable
BittIn Bit-Out §= ==
- P m—
W 3 1-bit RAM RD
AD A1 A2 A3 A4 Enable
BittIn Bit-Out g= ==
v 4x 1-bit RAM RO
Ab A1 Ae A3 A4 Enable
BittIn Bit-Out §= ==
- e —
W 3x 1-bit RAM RD
AD A1 Az A3 A4 Enable
BittIn Bit-Out §= ===
- e —
W 3 1-bit RAM RD
AD A1 Az A3 A4 Enable
BittIn Bit-Out §= ===
- b m—
W Fx 1-bit RAM RD
AD A1 A2 A3 A4 Enable
BittIn Bit-Out §= ===
- P m—
W Fx 1-bit RAM RD
AD A1 A2 A3 A4 Enable
BittIn Bit-Out §= =
- e
W Fx 1-bit RAM RD
Ao A1 Az A3 A4 Enable
Cit-In Bit-Out
ity
WR 32x 1-bit RAM RD

Add

Fun with control?

>
W
x
N
x
=]
x
o

o
=
&)
&)

y3 y2 y1 yO X3 X2 X1 X0
{Enable 4-git Adder

Z4 Z3 z2 71 Z0

¥3 y2 y1 yO X3 X2 X1 X0
4-Bit Sub Enable

Borrow Out Borrow In —@

Z3 z2 Z1 Z0

D [=

Z1

2

z3

E’E’E’%

Add

Y3 y2 y1 yO X3 %2 X1 X0
Enable 4-git Adder

Z4 zZ3 z2 71 Z0

X3 X2 X1 X0
|O| 1 |O|O|
| 1
T 1
Y3 y2 y1 yO X3 X2 X1 X0
4-Bit Sub Enable
Borrow Out Borrow In —@
z3 72 71 20

Y

=

g+

=

T

z0

Z1

z2

Z3

24

Early Binary Control...

Jacquard Loom, 1804

ahada bl

Babbage's Analytical Engine, 1833

| = Data
Contro
Big 1dea:

machine can ufSe
ﬁl o came kindt(})l
storage for bou
code and data!

04
J CCIuard Loom -
a

SEEEEE
IAARRRRRE L)
e

’ Machine, 1936
th:spa Turlng

v ung meavns i
U the cop tab, Umbeyg S
0 defipg and j Vestigate Compy, ble Unetio. F O
tegz'z e F Putaple Varig, e ‘Putahly ’
ates, ap forgp ta] Probjep, Volveq are,
OWevey the gy h eqaq ave g, Osen Comy, ble R by
explicrt treat, " A8 involy, I Mbroys techy; ue, Ope
shortly, ¢ 8ive , ount £ the ¢op, Putable ers, . 1833
ﬁmctio S anq g, fo to op T Thig will clude , OPmen Englne;
Of the eory o, Wetiong o va ‘Presseq ir 5 Of cop,. _:al
Putapy, Numpe o:‘ch‘ng Mtioy, Numpg, is computable
ifjtg dec Mal gqp be w, ten g, 1by a machine.
In §§9. 1 I givesomeaz‘guments With i:heinte tiozofshow"
computab]e Mumpey. inelyg all Numpe,
Tegardeg as ¢ mpubable. Parti-.
of Mumpgpg Com
Al alony

Some memory is more equal than others...

Registers

on the Central Processing Unit

8 flip-flops are an 8-bit register

D

D s

D

D s

D

D s

D

b s

D

D s

D

D s

100 Registers of 64 bits each

~ 10,000 bits

memory from
logic gates

Main Memory
(replaceable RAM)

10 GB memory
~ 100 billion bits

"Leaky Bucket”
capacitors

Disk Drive
magnetic storage

4 TB drive
~ 42 trillion bits (or more)

remagnetizing
surfaces

Some memory is more equal than others...

Registers

on the Central Processing Unit

(replaceable RAM)

8 flip-flops are an 8-bit register

D

D s

D

D s

D

D s

D

b s

D

D s

D

D s

100 Registers of 64 bits each
~ 10,000 bits

Price

Time

If aclock cycle
== 1 minute

~$50

10-° sec

1 min

1 clock cycle

Main Memory

Disk Drive
magnetic storage

10 GB memory 4 TB drive

~ 100 billion bits ~ 42 trillion bits (or more)

Atleast at my store! Sl

_—

~$50 ~$50
100 cycles 107 cycles
107 sec 1072 sec
1.5 hours 19 YEARS

Some memory is more equal than others...

Registers Main Memory Disk Drive
on the Central Processing Unit (replaceable RAM) magnetic storage

8 flip-flops are an 8-bit register

D Yo Yo Ao Ao Ao Ap Yo 2
D s D s D s bs |Ds D s D s D s

100 Registers of 64 bits each 10 GB memory 4 TB drive

~ 10,000 bits ~ 100 billion bits ~ 42 trillion bits (or more)
s are .
ogram nning -
; p¥eéhed and r:ograms «off" data 1>
eXeC\lted 1 pre stored saved way
Ti -nstruc ere.. (4)
time here:- o 1072 sec

e 1 min 1.5 hours 19 YEARS

How do we execute sequences of operations?

processor CPU stores all instructions and almost all data
the instruction's RAM live memory
bits select which
circuit to use... sends next instruction to the CPU ...
[[]]
B i—"""
L) x2[®]
T givider o i
} Dk =, Doe olo B
L=H} T - L
B = ory
runs 1 instruction g mem_
and sends back w8} n \0C
results for storage, [* Sl I_Q_
if requested... |, 1
‘r || @ Inside the 12nGbits of
|Irﬁ‘ ‘ -
D I,
o e
m\}\t\p\\ —T

sends next instruction to the CPU ...

75 years ago...

processing fetch stored program

CPU RAM

central processing unit registers random access memory locations

N

limited, fast registers larger, slower memory
+ arithmetic + no computation

75 years later...

processing fetch stored program

RAM

random access memory locations

N

CPU

central processing unit registers

limited, fast registers larger, slower memory
+ arithmetic + no computation

John von Neumann

.* = = as e Polymath
e On EDVAC team...

- Wasn't first stored-
program computer!

e Based on the work of J.
Presper Eckert and John
Mauchly and other
EDIAC/EDVAC designers.

2 — Prevented their patent.

“Von Neumann”’ Architecture

processing

CPU —

central processing unit registers

program

Von Neumann
bottleneck

— RAM

ri the read instruction

Q/r‘andom access memory locations

General-purpose register, rl |

r2

General-purpose register, r2

Programs are run in
machine language

0 | 0000 0001 0000 0001
1 | 1000 0010 0001 0001
2 | 0110 0010 0010 0001
3 | 0000 0010 0000 0010
4 | 0000 0000 0000 0000
2 — (@ pits)

The Hmmm Instruction Set

There are 26 different instructions in Hmmm, each of which accepts between 0 and 3 arguments. Two of the instructions, setn and addn, accept a
signed numerical argument between -128 and 127. The load, store, call, and jump instructions accept an unsigned numerical argument between 0
and 255. All other instruction arguments are registers. In the code below, register arguments will be represented by 'rX', rY', and 'tZ', while
numerical arguments will be represented by '#'. In real code, any of the 16 registers could take the place of 'rX' 'rY' or 'rZ'. The available
instructions are:

| Assembly]Binary]Description

lhalt 0000 0000 0000 0000 [Halt program

Inop o110 0000 0000 0000 [Do nothing

read £X 0000 XXXX 0000 0001 gii)r}l)tsfczlﬁ 1111:2;' Lr;pmu{;c\:q}ig g;;i;g:?l ;Jecr sftoc;r;(lipiunt register rX (input is an integer from -32768 to +32767).
|write X]oooo XXXX 0000 0010]Print the contents of register rX on standard output

|setn X, # ’000 1 XXXX #4444 ## ’Load an 8-bit integer # (-128 to +127) into register rX
|loadr X, rY ’0 100 XXXX YYYY 0000 ’Load register rX from memory word addressed by rY: tX = memory[rY]

|storer X, rY ’0 100 XXXX YYYY 0001 ’Storc contents of register rX into memory word addressed by r¥: memory[rY] = rX

|popr XrY ’0 100 XXXX YYYY 0010 ’Load contents of register rX from stack pointed to by register r¥: r¥ -= 1; rX = memory[rY]

|pushr XrY ’o 100 XXXX YYYY 0011 ’Storc contents of register rX onto stack pointed to by register r¥: memory[r¥] =1X;1¥ +=1
|10adn X, # ’0010 XXXX #### #### ’Load register rX with memory word at address #

|st0ren X, # ’001 1 XXXX #### #### ’Store contents of register rX into memory word at address #
laddn X, # (0101 xxxx #### #### Add the 8-bit integer # (-128 to 127) to register rX
lcopy X, r¥ [0110 xXxxx v¥yy 0000 |SetrX=r¥

|neng,rY ’0111 XXXX 0000 YYYY ’SetrX:-rY

|ader,rY,rZ ’0110 XXXX YYYY ZZZ2 ’SetrX:rY+ rZ
|subrX,rY,rZ 10111 XXXX YYYY ZZZZ ’SetrX:rY—rZ M h o

|mul X, 1Y, 1Z ’1000 XXXX YYYY ZZZZ ’SctrX:rY* 1Z a C In e
|diva,rY,rZ ’1001 XXXX YYYY Z2Z2% ’SetrX:rY//rZ
|m0er,rY,rZ’1010 XXXX YYYY ZZZZ ’SetrX:rY% 1Z

ljumpr rX]oooo XXXX 0000 0011 ’Set program counter to address in £X 1 J a ng u ag e

ljumpn n ’101 1 0000 #### #### ’Set program counter to address #

ljeqzn X, # ’1 100 XXXX #### #### ’If rX = 0 then set program counter to address #
ljnezn X, # ’1 101 XXXX #### #### ’If rX # 0 then set program counter to address #
ljgtzn X, # ’1 110 XXXX #### #4## ’If rX > 0 then set program counter to address #
ljltzn X, # ’1 111 XXXX #### #### ’If rX < 0 then set program counter to address #
|calln X, # ’101 1 XXXX #### #### ’Set rX to (next) program counter, then set program counter to address #

The Hmmm Instruction Set

There are 26 different instructions in Hmmm, each of which accepts between 0 and 3 arguments. Two of the instructions, setn and addn, accept a
signed numerical argument between -128 and 127. The load, store, call, and jump instructions accept an unsigned numerical argument between 0
and 255. All other instruction arguments are registers. In the code below, register arguments will be represented by 'rX', rY', and 'tZ', while

numerical arguments will be represented by '#'. In real code, any of the 16 registers could take the place of 'rX' 'rY' or 'rZ'. The available]
instructions are: t h e rea d

| Assembly]Binary]Description

lhalt 0000 0000 0000 0000 [Halt program Instruction

Inop o110 0000 0000 0000 [Do nothing 1'

read £X 0000 XXXX 0000 0001 Stpp fc:r user input, wh“1ch will then be storfzd in register rX (input is an integer from -32768 to +327
Prints "Enter number: " to prompt user for input
|write X ’oooo xxxi \00 10 ’Print the contents of register rX on standard output \I

|setn X, # ’000 1 xxx(\ Ne## [Load an 8-bit integer # (-128 to +127) into register rX

|loadr X, rY ’0 100 XXXX YY)\ . hory word addressed by rY: rX = memory[rY]

|storer X, rY ’0 100 XXXX YYYY Wh |C h X into memory word addressed by r¥: memory[rY] = rX

|popr XrY ’0 100 XXXX YYYY o X from stack pointed to by register r¥: r¥ -= 1; rX = memory[rY]
|pushr XrY ’0 100 XXXX YYYY re gl Ste r to X onto stack pointed to by register r¥: memory[r¥] =1X;1¥ +=1
|lnadn X, # ’0010 XXXX #### d o ? rory word at address #

|st0ren X, # ’001 1 XXXX #### r e a I nto ® X into memory word at address #

|addn X, #]o 101 XXXX #### #### Add the 3-bit integer # (-128 to 127) to register rX

lcopy X, r¥ [0110 xXxxx v¥yy 0000 |SetrX=r¥

|neng,rY ’0111 XXXX 0000 YYYY ’SetrX:-rY

|ader,rY,rZ ’0110 XXXX YYYY ZZZ2 ’SetrX:rY+ rZ

[
|subrX,rY,rZ 10111 XXXX YYYY ZZZZ ’SetrX:rY—rZ Ma Ch In e
Imul rX, ¥, 1Z [1000 XxxX YYYY zzzszLY;r.E" Z [
|div X, 1Y, 1Z ’1001 XXXX YYYY Z2Z Z — n

|m0er,rY,rZ’1010 XXXX YYYY ZZZ

\
1] P S
e el the "bitpatter> | Language

lumpnn 1011 0000 #### #e## do mat'\',er‘. B

lieqzn tX, # [1100 xxxx #### #### u w
ljnezn X, # ’1 101 XXXX #### #### en set program counter to address #
ljgtzn X, # ’1 110 XXXX #### #### ’If rX > 0 then set program counter to address #
lj]tzn X, # ’1 111 XXXX #### #### ’If rX < 0 then set program counter to address #
|calln X, #

’101 1 XXXX #### #### ’Set rX to (next) program counter, then set program counter to address #

“Von Neumann”’ Architecture

processing program
CPU — e —— RAM
central processing unit registers random access memory locations
rl the read instruction | 0 | 00000001 0000 0001
SR 1 | 1000 0010 0001 00013}
2 | 01100010 0010 0001
r2 General-purpose register, r2 3 | 00000 read rl
4 | opopoog mul r2 rl rl
5 add r2 r2 rl
Programs are shown ¢ write r2

halt

in assembly language :|'> CT—

instead of bits

The Hmmm Instruction Set

There are 26 different instructions in Hmmm, each of which accepts between 0 and 3 arguments. Two of the instructions, setn and addn, accept a
signed numerical argument between -128 and 127. The load, store, call, and jump instructions accept an unsigned numerical argument between 0
and 255. All other instruction arguments are registers. In the code below, register arguments will be represented by 'rX', rY', and 'tZ', while
numerical arguments will be represented by '#'. In real code, any of the 16 registers could take the place of 'rX' 'rY' or 'rZ'. The available

instructions are:

| Assembly [Binary

]Description

x4

lhalt 0000 0000 00

0000 000

Inop o1

0
——

000 XXXX 000

the read

p prompt user for input

h will then be stored in register rX (input is an integer from -32768 to +32767).

i n St ru Ctio n ster rX on standard output

storer rX,rY
popr X rY
pushr rX rY
loadn X, #

which
register to

“hit integer # (-128 to +127) into register rX

er rX from memory word addressed by rY: rX = memory[rY]

nts of register rX into memory word addressed by rY: memory[rY] = tX

nts of register rX from stack pointed to by register r¥: r¥ -= 1; rX = memory[rY]

nts of register rX onto stack pointed to by register r¥: memory[r¥] =1X; 1Y +=1

re ad i nto ? er rX with memory word at address #

nts of register rX into memory word at address #

laddn X, # [0101 xxxx ####

#HA# ’Add the 8-bit integer # (-128 to 127) to register rX

|copy X, 1Y]o 110 XXXX YYYY

0000]Set X=rY

|neng,rY ’0111 XXXX 0000

YYYY ’Set rX=-rY

Iadd X, rY,rZ ’0 110 XXXX YYYY

2222 ’Set rX=rY+rZ

|sub X, rY, 17 ’0111 XXXX YYYY

b4 44 ’Set X=rY-1Z

|mul X, 1Y, 172 ’1000 XXXX YYYY

b4 44 ’Set rX=rY*rZ

|div X, 1Y, 172 ’1001 XXXX YYYY

b4 44 ’Set rX=rY//tZ

|m0d X, 1Y, 172 ’1010 XXXX YYYY

b4 444 ’Set rX=r1Y¥%1Z

jumpr rX [0000 xxxx 0000

jumpn n 1011 0000 ####

#H '\',h " b‘tp attern

Assembly
Language

ljeqzn X, # ’1100 XXXX ####

s" \
\
|

=t gontmatter! |

Linezn X, #]1 101 XXXX ### ####\ 58
ljgtzn X, # ’1 110 XXXX #### #### \//«Mram counter to address #
ljltzn X, # ’1 111 XXXX #### #### ’If 1X < 0 then set program counter to address #

|calln X, # ’1011 XXXX ####

#HH# ’Set rX to (next) program counter, then set program counter to address #

Documentation for HMMM
(Harvey Mudd Miniature Machine)

The Hmmm I

There are 26 diff}
signed numerica
and 255. All othg
numerical argu

instructions are:

Last update: 2024

Quick reference: Table of Hmmm Instructions

Instruction Description rm
Asse System instructions
halt balt oom I
op read rx
n

- - - +32767).
Place user input in register rx
write rx 'Print contents of register rx

read rX

I
nop ,_I\
fwrite o Setting register data

. Wsat register rx equal to the integer N (-128 to +127) ’_\
setn X, [addn zx & Add integer N (-128 to 127) to register rx [
loadr rX’ Y Ccopy rX ry Set rX = ry
storer rX, 1Y

. .
Arithmetic
popr X r¥ [add rx rv 17 [sor X = ry + rg ‘m Of
pushr rX rY Sub rX rY rz [set rx = ry - ¢ the rea n
loadn rX, # [neg rx -y Set rX = _ry -‘ Ons
mul rxX ry rg Set rX = ry % rg t

storen rX, # ne Struc

X # div rX ry rz Set rX = ry // g (integer dq ‘/er)
addn r ? ,mnd rX rY rz Set rX = ry g g (returns the nteger division) ,

X, rY
oy Jumps!
neg rX,rY r_

Y jumpn N Set program counter to address N '
add X, r¥, ,jumpr rx Set program counter to address in rx jump
sub rX, rY, g jegzn rx n ,If rX == 0, then jump to line y 'jeqz
mul rX, rY,]jnezn X N If rX 1= 0, then jump to line m jnez

. jgtzn rx N If rX > 0, then jump to line N jgtz
div rX, 1Y, _
X 1Y jltzn rx N If rX < 0, then jump to line y jltz

T _
mod r > ,calln rX N Copy addr. of next instr. inte rX and then jump to mem. addr. N ,call
jumpr rX . .

Interacting with memory (RAM)

jumpn n _

P IPushr rx ry Store contents of register rx onto stack pointed to by reg. ry '
eqzn X, 4 ,popr rX ry Load contents of register rxX from stack pointed to by reg. ry
jnezn rX, 4 loadn rx N 'Load register rX with the contents of memory address N '
'gtzn X, # ,storen rX N Store contents of register rX into memory address N
. 4 loadr rx ry Load register rx with data from the address location held in reg. ry loadi, load
Itzn X, _

In X7 storer rx ry Store contents of register rx into memory address held in reg. ry storei, store

calin rx, 4

“Von Neumann”’ Architecture

processing

CPU

program

Von Neumann
bottleneck

— RAM

central processing unit registers

rl

General-purpose reg

random access memory locations

0000 0001 0000 0001

the mul instruction

1000 0010 0001 0001

r2

General-purpose register, r2

Programs are shown
in assembly language

01100 7d rl

00000 ma1 r2 r1 ri1

00000 add r2 r2 r1

| | write r2

o O & W N B O

halt

| "mnemonics”
— instead of bits

“Von Neumann”’ Architecture

processing program
Von Neumann
— e
CPU RAM
central processing unit registers random access memory locations
0
rl read rl
General-purpose register, rl 1 mul r2 rl r1
2 ladd r2 r2 ri1
r2 _
General-purpose register, r2 3 wWrl te r2
4 | halt
Assembly language ° —
— mnemonics
6 . :
_______ instead of bits

is human-readable

Human

machine language e .

=

A

Example #1:

a five-line assembly-

language program

Screen 6 (iHPUt)

N

v
read rl

mul r2 rl rl

add r2 r2 rl

write r2

halt

(input)

Example #1: "IZ

Von Neumann
— _—
CPU RAM

central processing unit registers random access memory locations

6

rl

G o read rl/

General-purpose register rl

1mul r2 rl rl

r2 U2

General-purpose register r2

2ladd r2 r2 rl

3 write r2

1 ' halt

Hmmm: ﬂar\]ey mudd miniature machine

0
DeggU .

central processing unit registers

rl

r2

Really, it's only 15, Q
vs. 2024 ? r0 is special N

RAM

random access memor y locations

read rl

mul r2 r’

Hmmm vs 2024

CPU RAM

central processing unit registers random access memory locations

o read rl
rl

General-purpose register rl

1 mul r2 r1

r2 — OVV _1
6 Ye%.\ste(s A 256 mem NS

1 3 |y \06ﬁ¥) ‘

1 ' halt

2022 Arm M1: 37-40 registers per core 2024: ~16,000,000,000 mem loc's

Why Assembly?

Oct 2018 Oct 2017 Programming Language Ratings Change
Java 17.801% +5.37%
C 15.376% +7.00%
C++ 7.593% +2 59%
Python 7.156% +3.35%
Visual Basic .NET 5.884% +3.15%
C# 3.485% -0.37%
PHP 2.794% +0.00%
JavaScript 2.280% -0.73%
sQL 2.038% +2.04%
Swift 1.500% -0.17%
MATLAB 1.317% -0.56%

G0 1.253% -0.10%

Assembly language 1.245% -1.13%

R 1.214% -0.47%

Objective-C 1.202% -0.31%

Why Assembly?

Oct 2019 Oct 2018 Programming Language Ratings
Java 16.884%
Cc 16.180% +0.80%
Python 9.089% +1.93%
C++ 6.229% -1.36%
C# 3.860% +0.37%
Visual Basic NET 3.745% -2.14%
JavaScript 2.076% -0.20%
SaL 1.935% -0.10%
PHP 1.909% -0.89%
Objective-C 1.501% +0.30%
Groovy 1.394% +(0.96%
Swift 1.362% -0.14%

Ruby 1.318% +0.21%

Assembly language 1.307% +(0.06%

R

Linsafe ‘.-'I"IiE|EE, hills, and hilc:sn::ph}-' go hand in hand.

Why Assembly?

Oct 2018 Oct 2017 Programming Language Ratings

Oct 2019 Oct 2018 Change Proegramming Language Ratings Change
May 2021 May 2020 Change Programming Language Ratings Change
1 1 C 13.38% -3.68%
2 5 Python 11.87% +2.75%
3 2 v Java 11.74% -4.54%
4 4 C++ 7.81% +1.69%
5 5 C# 4.41% +0.12%
6 6 Visual Basic 4.02% -0.16%
7 7 JavaScript 2.45% -0.23%
8 14 Assembly language 2.43% +1.31%

13 18 Ruby

14 13 v Assembly language 2 02 1 -

R +0.05%

Linsafe vehicles, hills, and philosophy go hand in hand.

Why Assembly?

May

May 2022 May 2021 Change Programming Language Ratings Change
1 2 A @ Python 12.74% +0.86%
2 1 v e (@ 11.59% -1.80%
3 3 A, Java 10.99% -0.74%
4 4 @ C++ 8.83% +1.01%
5 5 @ C# 6.39% +1.98%
6 6 @ Visual Basic 5.86% +1.85%
7 7 JS JavaScript 212% -0.33%
8 8 @ Assembly 1.92% -0.51%
language

Objective-C

Linsafe vehicles, hills, and philosophy go hand in hand.

Change
-3.68%
+2.75%
-4.54%
+1.69%
+0.12%
-0.16%
-0.23%

+1.31%

omblv?

Why /

Oct 2022 Oct 2021 Change
1 1
2 2
3 3
May 4 4
1 5 5
2 6 6
3 7 7
4 8 10
5 9 9
6 10 8 v
7 11 12
8 12 14
13 29
14 13 v

wi Unsate vehicles, hills, and philosophy go hand in hand. ||

TIOBE Index for October 2022 —

October Headline: The big 4 languages keep increasing their dominance

Programming Language

A

C

= MOy

Js

Python

Java

C++

C#

Visual Basic

JavaScript

Assembly language

PHP

SQL

Objective-C

MATLAB

Ratings

17.08%

15.21%

12.84%

9.92%

4.42%

3.95%

2.74%

2.39%

2.04%

1.78%

1.27%

1.22%

Change

+5.81%

+4.05%

+2.38%

+2.42%

-0.84%

-1.29%

+0.55%

+0.33%

-0.06%

-0.39%

-0.01%

+0.03%

Change

-3.68%

+2.75%

-4.54%

+1.69%

+0.12%

-0.16%

-0.23%

+1.31%

Feb 2024

1

10

1

12

13

14

15

16

17

18

19

Feb 2023

1

11

10

24

14

13

18

15

33

20

30

Change

«

«

Programming Language

r

C/
C

N

@;®@O®s

v el@ e

Python

Cc

C++

Java

C#

JavaScript

SQL

Go

Visual Basic

PHP

Fortran

Delphi/Object Pascal

MATLAB

Assembly language

Scratch

Swift

Kotlin

Rust

COBOL

Rubv

S FE

Ratings

15.16%

10.97%

10.53%

8.88%

7.53%

3.17%

1.82%

1.73%

1.52%

1.51%

1.40%

1.40%

1.26%

1.19%

1.18%

L LIKE
Change

-0.32%
-4.41%
-3.40%
-4.33%
+1.15%
+0.64%
-0.30%

+0.61%
-2.62%

+0.21%
+0.82%
+0.45%
+0.27%
-0.19%

+0.42%

Change
-3.68%
+2.75%
-4.54%
+1.69%
+0.12%
-0.16%
-0.23%

+1.31%

I i
I] ELue | B4
| f
Feb 2024 Feb 2023 Change Programming Language Ratings Change ‘j -
|
! 15.16% 3
I
Change
JavaScript 3.17% +0.64% -3.68%
+2.75%
1.73% +0.61%
-4.54%
Visual Basic
+1.69%
+0.21%
+0.12%
+0.82%
0
Delphi/Object Pascal 1.40% +0.45% -0.16%

+0.27%

-0.23%
Assembly language 1.19% -0.19% +1.31%
Scratch 1.18% +0.42%
Swift 1.16% +0.23%

Kotlin

Rust

COBOL

Rubv

i - PEELUkE | 4

Feb 2024 Feb 2023 Change Programming Language Ratings Change B -
]

1 1 [od Python 15.16% -0.32%

2 2 @ c 10.97% -4.419%

3 3 @ 10.53% -3.40%

+1.15%

+0.64%

+0.61%

+0.21%
an 1.40% +0.82%
i/Object Pascal 1.40% +0.45%
cAB 1.26% +0.27%

@ Assembly language

1.19% -0.19%

= Scratch

S Oftwa re iS % Swift

ron in many e
written :
language

1.18% +0.42%

+0.23%

Rust

COBOL

4 Rubv

Change
-3.68%
+2.75%
-4.54%
+1.69%
+0.12%
-0.16%
-0.23%

+1.31%

The

Economist W politics Business & finance Economics Science & technology Culture deSign Of What?

T

The Economist explains e

Explaining the world, daily FROM lifts to cars to airliners to smartphones, modern civilisation is powered by software,
the digital instructions that allow computers, and the devices they control, to perform
calculations and respond to their surroundings. How did that software get there?
Someone had to write it. But code, the sequences of symbols painstakingly cr d by
programmers, is not quite the same as software, the sequences of instructions| pt

Previous Next Latest The Economist explains

The Economist explains computers execute. So what exactly is it? Syn tax

What IS Code? : Coding, or programming, is a way of writing instructions for computers that bridges the

gap between how humans like to express themselves and how computers actually work.
Programming languages, of which there are hundreds, cannot generally be executed by
i computers directly. Instead, programs written in a particular “high level” language such as
i people.data.users: Cot J A lated b ial o f softw '
response - client.api.statuse : Pythmjl or Java are _rans a y a special piece of software (a compiler or an

LA SR T ey interpreter) into low-level instructions which a computer can actually run. In some cases

len(response.data) 0: programmers write software in low-level instructions directly, but this is fiddly. It is usually
Ltdate response.data [e] miuch pasier tn nse a hinh-level nronramminn lanmians heranse such lanmianes make it
ltdate2 - datetime.strptime S B0 "ol “ofis 00l s 0 ¢
today - datetime.now()
howlong = (today-ltdate2).days
howlong < daywindow:
i.screen_name, 'has tweeted in the past' , daywindow,
totaltweets len(response.data)

Sep 8th 2015, 23:50 BY T.S.

Ud JOuvY

ite
j response.data: po writ
j.entities.urls: [
k in j.entities.urls: | Python!
newurl = k['expanded_url']
urlset.add((newurl, j.user.screen_name))
to run!

i.screen_name, 'has not tweeted in the past', daywind

Assembly!!

Instruction |Description | Aliases
System instructions
halt Stop!
read ri Place user input in register r¥ Hmmm
write ri Print contents of register r¥
= = L . . the complete reference
Setting register data
setn ri N Set register r¥ equal to the integer N (-128 to +127)
addn ri N Add integer W (-128 to 127) to register rX
copy riory Set rX = r¥ mow
Arithmetic
add rX rY ri Set rX = r¥ + rZ
sub r¥X ry ri Set rX =r¥ - ré
neg rX ry set rX = -ry At www.cs.hmc.edu/~cs5grad/cs5/hmmm/documentation/documentation.html
fmul r¥ rY rZ Set rX =rY * ri
div r¥ rY rZ Set rX = r¥ J rZ (integer division; no remainder)
mod rX rY rZ Set rX = r¥ ® rZ (returns the remainder of integer division)
Jumps!
jumpn M Set program counter to address N
jumpr rx Set program counter to address in rX Jump
jegzn rX H If rX == @, then jump to line M jeqz
jnezn rX H If rX != @, then jump to line M jnez
jetzn X H If rX > 8, then jump to line M jetz
jltzn ri N If r¥ < 8, then jump to line N jltz Today
calln rX M Copy the next address into rX and then jump to mem. addr. N call
Interacting with memory (RAM) Th d
pushr rXxX ry Store contents of register r¥ onto stack pointed to by reg. rY .lllaf; El}’
popr r£ rYy Load contents of register riX from stack pointed to by reg. rY
loadn rX B Load register rX with the contentz of memory address N
storen rix N Store contents of register r¥ into memory address N
loadr r¥ rY Load register rX with deta from the address location held in reg. rY||loadi, load
storer rx rY Store contents of register rX into memory address held in reg. rY storei, store

ought to be called register language

Assembly Language s

read rl reads from keyboard into reg rl
Write r2 outputs reg r2 onto the screen
setn rl 42 regl = 42 et 127
addn rl _1 regl — regl -1 a shortcut
This is vjhy assignment is written R to L in Python!
add r3 rl r2 reg3 = regl + reg2
sub r3 rl r2 reg3 = regl - reg2
mul r2 rl rl reg2 = regl * regl

ints
only!

regl // reg2

div rl rl r2 regl

Names(s):

o

rl

r2

r3

r4

Extra! Change only the instruction on line 4 to create
the overall output of 56 or349 orQor6 ... ?

CPU

central processing unit

General-purpose register r1

General-purpose register r2

General-purpose register r3

General-purpose register r4

"Q u iZ I screen 100 (input)
(output)
RAM
random access memory 100 Python
|
olread rl r1=100
1| setn r2 7 =7 |
|
2 mOd r4 rl r2 rd=r1%r2
: |
3|div r3 rl r4 (3=r1//r4
4 SUb r3 r3 r2 r3=r3-r2
5 addn r3 _1 r3=r3+-1
6 Wri te r3 print r3

7 'halt

exQuiz.hmmm screen
: ’ 100
he back page first: Q Uuiz

(input)
Try thisont
y 42 (output)

CPU RAM

central processing unit random access memory

Python

100 |

rl 100 o/read rl —
General-purpose register rl 1 S e tn r2 7 o |

r2 7 2 |
mod r4 rl r2 %2

General-purpose register r2 |

w 3 div r3 rl r4 r3=rl1//rd
r3 50
qGiefanu\:)zegister r3 &7 SUb r3 r3 r2

5 addn r3 _1 r3=r3+-1

r3=r3-r2

r4 z

General-purpose register r4 6 wri te r3

dd ﬁxtra! Change the instruction on line 4 to create mul LmOdJ div
= 7 'halt

56 the overall output of 56 or349 or0Qor6 ... ? 349 0 6

print r3

The Mark 1 relay-based computer

¢ SR i -

7W—03 mcom/ibm/history/exﬁibits,‘r'ﬁarkﬂl/m'a‘rk]'- Star

o™ & htpy/

- -,

Grace Hopper + Howard Aiken, Harvard ~ 1944

ran at 0.00001 MHz

5 tons Addition: 0.6 seconds
530 miles of wiring Multiplication: 5.7 seconds
765,299 distinct parts! Division: 15.3 seconds

Grace Hopper

The US Army CECOM requested approval for the dedication of Building 6007 in memory of
Rear Admiral Grace Hopper, a pioneer Computer Programmer and co-inventor of the Common
Business Oriented Language (COBOL).

Grace Murray Hopper ’28 taught math and physics at Vassar for 12 years
before joining the Navy reserves in 1943. During the war she learned to
program the Mark I, the world’s first large-scale computer, which was used
to perform the calculations needed to position the Navy’s weaponry: guns,
mines, rockets, and, eventually, the atomic bomb.

In 1945, she coined the term “debugging” after finding a moth stuck in the
computer’s machinery. Over the course of her career, Hopper invented the
compiler to automate common computer instructions, became the first to
start writing computer programs in English, and helped to develop the first
“user-friendly” computer language, COBOL

Bulldm@ 6007 is named after Grace
Hopper

GMH dedications

“In the days they used oxen for heavy pulling, when one ox couldn't
budge a log, they didn't try to grow a larger ox. We shouldn't be trying
for bigger and better computers, but for better systems of computers.”

s e

The first bug?

/4 14 |
pgro Gakam M i’-*ﬁoo 9037 sy7 ox5
J 00 : "mJ&n / G037 §¥YL 773 covucl
13 ve 3% MP = me LA b8) 70/ 5 T25055(0)
03y PRO > 2. 130y20CYis
Cons b a.id0b2ews
RIS | (=2] 033 _;wa s?.oJ et
i {’L i, uo -
,,b—-‘
119 Dfd‘r'f‘-:j Co,s.,v\e (Slne c-‘\cr.‘:)
I\;.-' lﬂ\'Tv.. " \A]“ Aj‘z\“ ‘C&l
1SAL | { 62&\04«*70 (Pqﬂ'e.‘
- (Mo'.ﬂ)\n rt\““’\ ’ I'm glad it's not called
demothing. @
"«-t-—o-—« : '~ g ; ass
st O«d'\a -{ buc' Lum‘{un}\
1'6;,:'}" GAJW.J« C\J

Qe

92

T LISt e

e Lo G R
/000 /ix) e |
. . . 01
A$. o ! / { Je0 F.0%7 ¥ 7 oLS
13 v 10};) I .- i, G 0y7 §YL ¥5 :

Joun bug (“@ defect OF faultind machine,
orted (11 Mar- 1) that

«The CED supplement records semnse (4b) of the?

plamn, oF the like”) as early as 1889. In that year the pall Mall Gazette rep

as earty r- ——

‘hug’ in his phmmgmph an

r. Edison .- had been up the two previous nights discovering @

e —
expression for solving 4 difficulty, and implying that some imaginary ingect has secreted

itself inside and is causing all the trouble.’...

This meaning was conmon enough by 1934 to be ?‘emgmzred in Webster’s New Infermn'ﬂmi

pictionary- bug, M- 3- A defectin apparatus or its operation... slang, U.S."" (citation)

& _ Mom\n celay -
| R \“'W I'm glad it's not called
demothing. &

Het) s‘s'o-r.la.qql Lo {6\.“4\, Q

Could you write a Hmmm program
that computes

X +3x-4 —
or

1 /\/i e
?

when would you want to?

when you'd want to!

Could you write a H

ool
{ Motivat -

otivation [edit]

The inverse square root of a floating point number is
used in calculating a normalized vector.[*] Since a 3D
graphics program uses these normalized vectors to
determine lighting and reflection, millions of these
calculations must be done per second. Before the

1 creation of specialized hardware to handle transform Surface normals are used &5
and lighting, software computations could be slow. extensively in lighting and shading
Specifically, when the code was developed in the early calculations, requiring the calculation of

norms for vectors. A field of vectors

1990s, most floating point processing power lagged normal to a surface is shown here.

behind the speed of integer processmg

1AX

when you'd want to!

Real Assembly Languages Hmmm is a subset

Instruction

HLT
IDIV
IMUL

Description

Enter halt state

Signed divide

Signed multiply

Input from port

Increment by 1

Call to interrupt

Call to interrupt if overflow

Return from interrupt

common to all real
assembly languages.

\ A few of the many basic

processor instructions (Intel)

Real Assembly Languages

Instruction

Hmmm is a subset
common to all real
assembly languages.

HLT
IDIV
IMUL
IN
INC
INT
INTO
IRET

#include <rath.h>
int fun(int num) {
int result = num;
result = result*s;
result = 9601%nun;
inty = 42 + result;
float z = 1.0/sart(y);
return z;

Description
e
& C @ godbolt.org a h %« » 0@ :
=t COMPILER =z . .
=_EXPLORER Add-.~ More~ Templates 5 Bacl<traceln|:e| Share v Policies@¥~ Other~
C source #1 X o X x86-64 clang 12.0.0 (C, Editor #1, Compiler #1) & X D_X
A- B +- v @c ~ x86-64clang12.00 ~ @ | [Compiler options... <
1 // Type your code here, or load A~ @output..~ YFiter..v B Libraries < Addnew..~ ¢ Add tool...~
2 #include <math.h> -]
1 .LCPIO O:
3 int fun(int num) { -
a 2 .quad 0x3££0000000000000 # double 1
4 int result = num;
- 3 fun: # @fun
5 result = result*8;
4 push rbp
6 result = 9001%num;
. 5 mov rbp, rsp
7 int y = 42 + result;
6 sub rsp, 16
8 float z = 1.0/sqrt(y);)
7 mov dword ptr [rbp - 4], edi
9 return z;
10 } 8 mov eax, dword ptr [rbp - 4]
9 mov dword ptr [rbp - 8], eax
10 mov eax, dword ptr [rbp - 8]
11 shl eax, 3
12 mov dword ptr [rbp - 8], eax
13 mov eax, 9001
14 cdg
15 idiv dword ptr [rbp - 4]
16 mov dword ptr [rbp - 8], edx
17 mov eax, dword ptr [rbp - 8]
18 add eax, 42
19 mov dword ptr [rbp - 12], eax
20 cvtsi2sd xmmQ, dword ptr [rbp - 12]
21 call sqgrt
22 movaps xmml, xmmO
23 movsd xmm0, gword ptr [rip + .LCPIO 0] # xmm0 = mem[0],zero
24 divsd xmm0, xmml
25 cvtsd2ss xmm0, xmmO
26 movss dword ptr [rbp - 16], xmm0
27 cvttss2si eax, dword ptr [rbp - 16]
28 add rsp, 16
29 pop rbp
30 ret

Real Assembly Languages Hmmm is a subset

Instruction

HLT
IDIV
IMUL

Instruction

MPSADBW

PHMINPOSUW

common to all real
assembly languages.

Description
Enter halt state

Signed divide
Signed multiply

Input from port (\
Increment by 1 A few of the many basic

Call to interrupt processor instructions (Intel)
Call to interrupt if overflow

Return from interrupt

two more recent Intel instructions (SSE4 subset)

Description

Compute eight offset sums of absolute differences (i.e. Ixg-ygl+xq-yql+1xa-ysl+xa-yal, begyql+Ix4-
yol+Ixa-yal+lxa-y4l, ...); this operation is extremely important for modern HOTV codecs, and (see

[}y allows an Bx8 block difference to be computed in less than seven cycles. One bit of a three-bit
immediate cperand indicates whether yg .. y41 Or y4 .. ¥15 should be used from the destination

operand, the other two whether xg..xa, x4..%7, Xg..X41 OF X45..%45 should be used from the source.

Sets the bottom unsigned 16-bit word of the destination to the smallest unsigned 16-bit word in the

source, and the next-from-bottom to the index of that word in the source.

Who writes all the assembly
language that gets executed?

Who writes all the assembly
language that gets executed?

other programs!

Who writes all of the assembly
language that gets executed?

1 square(int):
2 ush rb
A~ BSave/load =4 Addnew..> WV 2 iov rbi, rep
4 mov DWORD PTR [rbp-20], edi
1 // Type your code here, or 5 mov eax, DWORD PTR [rbp-20]
2 int Square(int num) .{ 6 mov DWORD PTR [rbp-4], eax
. 7 add DWORD PTR [rbp-4], 42
3 int result = num;
8 mov eax, 7000
4 result = result + 42; 9 cdg
5 result = 7000%num; 10 idiv DWORD PTR [rbp-20]
11 mov DWORD PTR [rbp-4], edx
6 result = result*2; 12 sal DWORD PTR [rbp-4]
7 return l7*result; 13 mov eax, DWORD PTR [rbp-4]
14 mov edx, eax
8 } 15 sal edx, 4
16 add eax, edx
17 pop rbp
18 ret

other programs!

Could you write a Python program
that writes a Hmmm program
that computes

X’ +3x-4

[s this all we need?

o/l read rl

%‘)M’ﬁ 1mul r2 rl ril
migsma 2ladd r2 r2 rl
1
here: 3'write r2

s ' halt

Why couldn't we implement Python using only our
Hmmm assembly language up to this point?

For systems, innovation 1s
adding an edge to create a cycle,
not just an additional node.

feedback

1 bit of storage

Loops and ifs

We couldn't implement Python using Hmmm so far... ystotinea™

"straight-line code"

ojsetn rl 42

1write rl

2laddn rl 1

3)Jjumpn 1

s halt

CPU

central processing unit

RAM

random access memory

rl

setn rl 42

General-purpose register rl

r2

write rl

General-purpose register r2

Screen

Jjumpn!

addn rl 1

Jjumpn 1

halt

rl

r2

CPU

central processing unit

45 44 43 42

General-purpose register rl

General-purpose register r2

42
43
44
45
46
47

Screen

cr ash*

RAM

random access memory

setn rl 42

write rl

addn rl 1

Jjumpn 1

halt

ifwe jumpn 1

What would happen IF...
e we replace line 3 with jumpn 0
e we replace line 3 with jumpn 2
e we replace line 3 with jumpn 3
e we replace line 3 with jumpn 4

rl

r2

Screen

42

CPU

central processing unit

General-purpose register rl

General-purpose register r2

Screen Screen

42 42

cxash"

Screen

42
42
42
42
42

RAM

random access memory

setn rl 42

write rl

Screen

addn rl 1 42
43

: 44
Jumpn 1 a5

halt 46

c\‘as“"

<= What would happen IF...

e we replace line 3 with jumpn
e we replace line 3 with jumpn
e we replace line 3 with jumpn
e we replace line 3 with jumpn

= W DN O

CPU

central processing unit

rl

General-purpose register rl

jumpn 4 jumpn 3 jumpn 2
Screen Screen Screen
42 42 42

@ @

crash&

jumpn 0

Screen

42
42
42
42
42

RAM

random access memory

o setn rl 42

1lwrite rl

2laddn rl 1

3)Jumpn 1

s halt

Screen

42
43
44
45
46

craghx

<= What would happen IF...

e we replace line 3 with jumpn
e we replace line 3 with jumpn
e we replace line 3 with jumpn
e we replace line 3 with jumpn

= W DN O

Jumps in Hmmm

Conditional jumps

jeqzn
Jjgtzn
Jjltzn

jnezn

rl 42
rl 42
rl 42
rl 42

Unconditional jump

jumpn 42

[Fr1 ==0 THEN jump to line number 42
[Fr1>0 THEN jump to line number 42

[Fr1 <0 THEN jump to line number 42

[Fr1'!'=0 THEN jump to line number 42

This is making me

jumpy!

Jump to program line # 42

=

(]
A

Jumps in Hmmm

Conditional jumps
j egz n- if equal to zero... THEN jump to line number 42
j gtzn- if greater than zero ... EN jump to line number 42
j 1 tZII- if 1less than zero... THEN jump to line number 42

j ne Zn- if not equal to zero ... HEN jump to line number 42

This is making me

Mnemonics! jumpy! e

(]
A

Unconditional jump

jumpn 42 Jump to program line # 42

Instruction |Description | Aliases
System instructions
halt Stop!
read ri Place user input in register r¥ Hmmm
write ri Print contents of register r¥
= = L . . the complete reference
Setting register data
setn ri N Set register r¥ equal to the integer N (-128 to +127)
addn ri N Add integer W (-128 to 127) to register rX
copy riory Set rX = r¥ mow
Arithmetic
add rX r¥ rZ Set rX = rY + ri
sub r¥X r¥ rZ SetrX =r¥ - ri
neg rX ry set rX = -r At www.cs.hmc.edu/~cs5grad/cs5/hmmm/documentation/documentation.html
fmul r¥ rY rZ Set rX =rY * ri
div rX r¥ rZ et rX = rY / rZ (integer divizion; no remainder)
mod r¥X rY rZ Set ¥ = rY ¥ rZ (returns the remainder of integer division)
- Jumps! N
Jumpn [Set program counter to address N
Jumpr rx Set program counter to address in rX Jump
jeqgzn rX N If rX == @, then jump to line N |Beq1
jnezn rX H If rX != @, then jump to line N |Bne1
Jjetzn rX N If rX > 8, then jump to linme M |Egt1
jltzn rX N If rX < 8, then jump to line N |j]t1
N Copy the next address into rX and then jump to mem. addr. N

Interacting with memory (RAM)

pushr rxX ry Store contents of register rX onto stack pointed to by reg. rY

popr r£ rYy Load contents of register rX from stack pointed to by reg. rY

loadn rX N Load register rX with the comtentsz of memory address N

storen rx N Store contents of register rX into memory address N

loadr ri rYy Load register rX with deta from the address location held in reg. rY||loadi, load

storer ri ry
- —

Store contents of regiﬂter r¥ into memory address held in reg. ry

storei, store

Gesundheit!

j gtzn 0n) What Python f'n is this?

A

write rl

CPU RAM
central processing unit random access memory
1 b - 6 0 | read ri1 {
: 1| jgtzn rl 7
General-purpose register rl
2 | setn r2 -1
r2 "_:Z— 3| mul rl rl r2
General-purpose register r2 4 nop
5 | nop
Screen -6 (inpun 6 | nop
7
8

6

With an input of -6, what does this code write out?

halt

Try it!

11| Firstrun:
Next run:

Registers - CPU

Run1l Run 2

rl
r2
r3
Output 1 Output 2

I think this language has
injured my craniuhmmm! t

0
—

Follow this Hmmm program.

7 | Writean assembly-language program that reads a
positive integer into rl. The program should compute

userl=42andr2=5.
userl=5andr2=42.
Memory - RAM
read rl
read r2

0o Jd oo U1 e W N B O

sub r3 rl r2

nop

jgtzn r3 7

write rl

jumpn 8

write r2

halt

(1) What common function does this compute?
Hint: try the inputs in both orders...

(2) Extra! How could you change only line 3 so that, if inputs
rl and r2 are equal, the program will ask for new inputs?

the factorial of the input in r2. Once it's computed, it
should write out that factorial. Two lines are provided:

Memory - RAM
Registers - CPU read ril
setn r2 1
rl
input
r2

result — so far

r3

not needed; OK to use

write r2

halt

(o] (o 0] ~ (o)) 9] [w N = O

Hint: On line 2, could you write a test that checks if the factorial
is finished; if it's not, compute one piece and then jump back!

Extra! How few lines can you use here? (Fill the rest with nops...)

factorial: the plan ... = fce) s irsrarsan

output (to be)

rl / = M al r2 xL/
‘/ starting
U

I\

> 62

—r
2. & » 120
_
<
S ——F— 2o
letrl @e input J eot.z v) let r2 become
and the "counter” the output

Try it!

11| Firstrun:
Next run:

Registers - CPU

Run1l Run 2

rl
r2
r3
Output 1 Output 2

I think this language has
injured my craniuhmmm! t

0
—

Follow this Hmmm program.

7 | Writean assembly-language program that reads a
positive integer into rl. The program should compute

userl=42andr2=5.
userl=5andr2=42.
Memory - RAM
read rl
read r2

0o Jd oo U1 e W N B O

sub r3 rl r2

nop

jgtzn r3 7

write rl

jumpn 8

write r2

halt

(1) What common function does this compute?
Hint: try the inputs in both orders...

(2) Extra! How could you change only line 3 so that, if inputs
rl and r2 are equal, the program will ask for new inputs?

the factorial of the input in r2. Once it's computed, it
should write out that factorial. Two lines are provided:

Memory - RAM
Registers - CPU read ril
setn r2 1
rl
input
r2

result — so far

r3

not needed; OK to use

write r2

halt

(o] (o 0] ~ (o)) 9] [w N = O

Hint: On line 2, could you write a test that checks if the factorial
is finished; if it's not, compute one piece and then jump back!

Extra! How few lines can you use here? (Fill the rest with nops...)

Follow this assembly-language program from top to bottom.
First use r1 =42 and r2 =5, then swap them on the next run:

Memory - RAM

Run #1

0 | read rl

ri 49 1l | read r2
2 |sub r3 rl r2
3 | jegzn r3 0

r2 d 4 | jgtzn r3 7 N
5«wwrite rl W)

r3 37 6 | jumpn 8 S
7TypWrite r2 e

5 (::3 halt
output

Run #2
rl)
r2 42
r3 -37
5

output

(1) What function does this program compute in general?

(2) Extra! How could you change only line 3 so that, if the original

two inputs were equal, the program asked for new inputs?

a factorial solution

Registers - CPU

1 p 4ZZ UK

<2256 28 KN
3| oo |20

Memory - RAM

read rl

setn r2 1

jeqzn rl 8

mul r2 r2 rl

addn rl -1

Jjumpn 2

space for
future :
expansion

write r2

halt U/;

This week in lab:

Randohmmm
Numbers...

where you'll write your own random number generator...

... In Hmmm assembly language

My examples of Richter-like displays are shown below using 9 colours chosen at

random within each sq i clusters and
patterns in the colours] Can you spot the fake piece of random art?

Which one
is NOT

Four § by 9 colour squares - can you spot which one is not random?
random... ?

https://understandinguncertainty.org/node/1066

CS ~ Compositional expression

building blocks can be bits, circuits, data, functions, programs, ...

a

.
s’/
7
/7
'y,

vy

)//

w
"

-

P »l o) 0:14/328

https://www.youtube.com/watch?v=hyCIpKAIFyo

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: John von Neumann
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

