
Hardware

logic gates

transistors / switches

bitwise functions

arithmetic

1-bit memory: flip-flops

registers

RAM

Hmmm

4 Hmmm problems
+ 1 loop problem

Python

How does Python function ?

Software

Machine Language

Assembly Language

Jotto Corner

robot: 1
zebra: 1

hymns: 2
fluid: 1
hurry: 3

diner: 1
alien: 0
ghost: 2
lucky: 0
foods: 3

ZD guessCS5 guess

I have a looming sense…

Circuits ~ Memory!

Making memories…

My head is spinning…

32 bytes of memory

32x 1-bit

32x 8-bit

the power of composition

Fun with control?

Early Binary Control…
Jacquard Loom, 1804

Babbage's Analytical Engine, 1833

Big idea: Control = Data
Jacquard Loom, 1804

Babbage's Analytical Engine, 1833

Turing Machine, 1936

A machine can use
the same kind of
storage for both
code and data!

Registers Main Memory
 (replaceable RAM)

Disk Drive
 magnetic storageon the Central Processing Unit

Some memory is more equal than others…

~ 100 billion bits ~ 10,000 bits ~ 42 trillion bits (or more)

4 TB drive

memory from
logic gates

"Leaky Bucket"
capacitors

remagnetizing
surfaces

100 Registers of 64 bits each

s

D Q

8 flip-flops are an 8-bit register

s

D Q

s

D Q

s

D Q

s

D Q

s

D Q

s

D Q

s

D Q

10 GB memory

~$50 ~$50~$50

1.5 hours

Time

1 min

1 clock cycle 100 cycles 107 cycles
10-9 sec 10-7 sec 10-2 sec

19 YEARS

Some memory is more equal than others…

If a clock cycle
== 1 minute

Price

Registers Main Memory
 (replaceable RAM)

Disk Drive
 magnetic storageon the Central Processing Unit

~ 100 billion bits ~ 10,000 bits ~ 42 trillion bits (or more)

4 TB drive
100 Registers of 64 bits each

s

D Q

8 flip-flops are an 8-bit register

s

D Q

s

D Q

s

D Q

s

D Q

s

D Q

s

D Q

s

D Q

10 GB memory

At least at my store!

~$100 ~$100~$100

1.5 hours

Time

1 min

1 clock cycle 100 cycles 107 cycles
10-9 sec 10-7 sec 10-2 sec

19 YEARS

Some memory is more equal than others…

If a clock cycle
== 1 minute

Price

Registers Main Memory
 (replaceable RAM)

Disk Drive
 magnetic storageon the Central Processing Unit

~ 100 billion bits ~ 10,000 bits ~ 42 trillion bits (or more)

4 TB drive
100 Registers of 64 bits each

s

D Q

8 flip-flops are an 8-bit register

s

D Q

s

D Q

s

D Q

s

D Q

s

D Q

s

D Q

s

D Q

10 GB memory

How do we execute sequences of operations?

CPU

RAM

stores all instructions and almost all data

runs 1 instruction
and sends back

results for storage,
if requested…

sends next instruction to the CPU …

sends next instruction to the CPU …

the instruction's
bits select which
circuit to use…

live memory

processor

75 years ago…

limited, fast registers
+ arithmetic

larger, slower memory
+ no computation

central processing unit registers random access memory locations

CPU RAM
stored programprocessing fetch

execute

Manchester Baby, 1948

limited, fast registers
+ arithmetic

larger, slower memory
+ no computation

central processing unit registers random access memory locations

CPU RAM
stored programprocessing fetch

execute

75 years later…

John von Neumann

• Polymath

• On EDVAC team…
– Wasn't first stored-

program computer!

• Based on the work of J.
Presper Eckert and John
Mauchly and other
EDIAC/EDVAC designers.

– Prevented their patent.

Programs are run in
machine language

central processing unit registers random access memory locations

CPU RAM
Von Neumann

bottleneck

“Von Neumann” Architecture

programprocessing

r1

r2
General-purpose register, r2

General-purpose register, r1

0

1

2

3

4

5

6

0000 0001 0000 0001

1000 0010 0001 0001

0110 0010 0010 0001

0000 0010 0000 0010

0000 0000 0000 0000

the read instruction

Machine
Language

Machine
Language

the read
instruction

which
register to
read into?

Programs are shown
in assembly language

central processing unit registers random access memory locations

CPU RAM
Von Neumann

bottleneck

“Von Neumann” Architecture

programprocessing

r1

r2
General-purpose register, r2

General-purpose register, r1

0

1

2

3

4

5

6

0000 0001 0000 0001

1000 0010 0001 0001

0110 0010 0010 0001

0000 0010 0000 0010

0000 0000 0000 0000

"mnemonics"
instead of bits

read r1

halt

mul r2 r1 r1

add r2 r2 r1

write r2

the read instruction

Assembly
Language

the read
instruction

which
register to
read into?

the read
instruction

which
register to
read into?

Assembly
Language

Programs are shown
in assembly language

central processing unit registers random access memory locations

CPU RAM
Von Neumann

bottleneck

“Von Neumann” Architecture

programprocessing

r1

r2
General-purpose register, r2

General-purpose register, r1

0

1

2

3

4

5

6

0000 0001 0000 0001

1000 0010 0001 0001

0110 0010 0010 0001

0000 0010 0000 0010

0000 0000 0000 0000

"mnemonics"
instead of bits

read r1

halt

mul r2 r1 r1

add r2 r2 r1

write r2

the mul instruction

“Von Neumann” Architecture

read r10

1

2

3

4

5

6

halt

mul r2 r1 r1

add r2 r2 r1

write r2

programprocessing

"mnemonics"
instead of bits

Human
readable?
I doubt it!

central processing unit registers random access memory locations

CPU RAM
Von Neumann

bottleneck

Assembly language
is human-readable
machine language

r1

r2
General-purpose register, r2

General-purpose register, r1

halt

mul r2 r1 r1

read r1

add r2 r2 r1

write r2

0

1

2

3

4

Screen

6

6 (input)

Example #1:

a five-line assembly-
language program

halt

mul r2 r1 r1

read r1

add r2 r2 r1

write r2

central processing unit registers random access memory locations

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

CPU RAM
Von Neumann

bottleneck

Screen

6

6 (input)

Example #1:

halt

mul r2 r1 r1

read r1

add r2 r2 r1

write r2

central processing unit registers random access memory locations

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

CPU RAM

Hmmm: Harvey mudd miniature machine

Von Neumann
bottleneck

vs. 2024 ?

Really, it's only 15,
r0 is special

halt

mul r2 r1 r1

read r1

add r2 r2 r1

write r2

central processing unit registers random access memory locations

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

CPU RAM

Hmmm vs 2024

Von Neumann
bottleneck

2022 Arm M1: 37-40 registers per core 2024: ~16,000,000,000 mem loc's

Why Assembly?

Why
Assembly?
Why Assembly?

Why Assembly?

Why Assembly?

Why Assembly?

Why Assembly?

Why Assembly?

Why Assembly?

Design… design of what?

Code? syntax

Python!

Assembly!!

Hmmm
the complete reference

At www.cs.hmc.edu/~cs5grad/cs5/hmmm/documentation/documentation.html

Today

Thursday

Assembly Language

div r1 r1 r2

add r3 r1 r2 reg3 = reg1 + reg2

This is why assignment is written R to L in Python!

sub r3 r1 r2 reg3 = reg1 – reg2

reg2 = reg1 * reg1

reg1 = reg1 / reg2
ints

only!

mul r2 r1 r1

read r1

write r2

reads from keyboard into reg r1

setn r1 42
you can replace 42 with

anything from -128 to 127

addn r1 -1 a shortcut

reg1 = 42

reg1 = reg1 - 1

outputs reg r2 onto the screen

ought to be called register language

screen

"Quiz"

halt

setn r2 7

read r1

div r3 r1 r4

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

r3

General-purpose register r3

addn r3 -1

write r3

5

6

100

100 (input)

RAM
random access memory

CPU
central processing unit

r4

General-purpose register r4

mod r4 r1 r2

sub r3 r3 r2

7

(output)

Python

r1 = 100

Extra! Change only the instruction on line 4 to create
the overall output of 56 or 349 or 0 or 6 ... ?

r2 = 7

r4 = r1 % r2

r3 = r1 // r4

r3 = r3 – r2

r3 = r3 + -1

print r3

Names(s): __________________________________

Extra! Change the instruction on line 4 to create
the overall output of 56 or 349 or 0 or 6 ... ?

screen

Quiz

halt

setn r2 7

read r1

div r3 r1 r4

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

r3

General-purpose register r3

addn r3 -1

write r3

5

6

100

100 (input)

RAM
random access memory

CPU
central processing unit

r4

General-purpose register r4

mod r4 r1 r2

sub r3 r3 r2

7

(output)

Python

r1 = 100

r2 = 7

r4 = r1 % r2

r3 = r1 // r4

r3 = r3 – r2

r3 = r3 + -1

print r3

100

7

mod div

0 6

mul

349

exQuiz.hmmm solutions...

add

56

2

50

42

The Mark 1

ran at 0.00001 MHz

5 tons

530 miles of wiring

765,299 distinct parts!

Addition: 0.6 seconds

Multiplication: 5.7 seconds

Division: 15.3 seconds

http://www-03.ibm.com/ibm/history/exhibits/markI/markI_reference.html

Grace Hopper + Howard Aiken, Harvard ~ 1944

relay-based computer

Grace Hopper

Grace Murray Hopper ’28 taught math and physics at Vassar for 12 years
before joining the Navy reserves in 1943. During the war she learned to
program the Mark I, the world’s first large-scale computer, which was used
to perform the calculations needed to position the Navy’s weaponry: guns,
mines, rockets, and, eventually, the atomic bomb.

In 1945, she coined the term “debugging” after finding a moth stuck in the
computer’s machinery. Over the course of her career, Hopper invented the
compiler to automate common computer instructions, became the first to
start writing computer programs in English, and helped to develop the first
“user-friendly” computer language, COBOL

GMH dedications

“In the days they used oxen for heavy pulling, when one ox couldn't
budge a log, they didn't try to grow a larger ox. We shouldn't be trying
for bigger and better computers, but for better systems of computers.”

The first bug?

I'm glad it's not called
demothing.

The first bug?

I'm glad it's not called
demothing.

2

when would you want to?

Could you write a Hmmm program
that computes

x + 3x – 4

or

1/ x

?

2

when you'd want to!

Could you write a Hmmm program
to compute

x + 3x – 4

or

1/ x

?

2

when you'd want to!

Could you write a Hmmm program
to compute

x + 3x – 4

or

1/ x

?

Real Assembly Languages Hmmm is a subset
common to all real

assembly languages.

A few of the many basic
processor instructions (Intel)

Instruction Description

Real Assembly Languages Hmmm is a subset
common to all real

assembly languages.

A few of the many basic
processor instructions (Intel)

Instruction Description

#include <math.h>
int fun(int num) {
int result = num;
result = result*8;
result = 9001%num;
int y = 42 + result;
float z = 1.0/sqrt(y);
return z;
}

Real Assembly Languages Hmmm is a subset
common to all real

assembly languages.

two more recent Intel instructions (SSE4 subset)

A few of the many basic
processor instructions (Intel)

Instruction Description

Who writes all the assembly
language that gets executed?

clearly, it's not people!

Who writes all the assembly
language that gets executed?

other programs!

clearly, it's not people!

Who writes all of the assembly
language that gets executed?

other programs!
https://godbolt.org/

2

Could you write a Python program
that writes a Hmmm program

that computes

x + 3x – 4

or

1/ x

?

Is this all we need?

0

1

2

3

4 halt

mul r2 r1 r1

read r1

add r2 r2 r1

write r2

Why couldn't we implement Python using only our
Hmmm assembly language up to this point?

For systems, innovation is
adding an edge to create a cycle,

not just an additional node.

NOR

NOR

S

R

0

1

0

"Set"

"Reset"

1

0

0

Q 1 bit of storage

feedback
loops

"Output"

Loops and ifs

"straight-line code"

jumpn!

We couldn't implement Python using Hmmm so far...

0

1

2

3

4 halt

write r1

setn r1 42

addn r1 1

jumpn 1

loop

jumpn!

halt

write r1

setn r1 42

addn r1 1

jumpn 1

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

RAM
random access memory

CPU
central processing unit

Screen

exJump.hmmm

halt

write r1

setn r1 42

addn r1 1

jumpn 1

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

RAM
random access memory

CPU
central processing unit

Screen42

43

44

45

46

47
...

42434445...

if we jumpn 1

What would happen IF…
 • we replace line 3 with jumpn 0
 • we replace line 3 with jumpn 2
 • we replace line 3 with jumpn 3
 • we replace line 3 with jumpn 4

halt

write r1

setn r1 42

addn r1 1

jumpn 1

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

RAM
random access memory

CPU
central processing unit

Screen Screen Screen Screen

42 42 42 42

42

42

42

42

...

Screen

42

43

44

45

46

...

What would happen IF…
 • we replace line 3 with jumpn 0
 • we replace line 3 with jumpn 2
 • we replace line 3 with jumpn 3
 • we replace line 3 with jumpn 4

halt

write r1

setn r1 42

addn r1 1

jumpn 1

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

RAM
random access memory

CPU
central processing unit

Screen Screen Screen Screen

42 42 42 42

42

42

42

42

...

Screen

42

43

44

45

46

...

What would happen IF…
 • we replace line 3 with jumpn 0
 • we replace line 3 with jumpn 2
 • we replace line 3 with jumpn 3
 • we replace line 3 with jumpn 4

jumpn 4 jumpn 3 jumpn 2 jumpn 0

Jumps in Hmmm

Conditional jumps

jeqzn r1 42

jgtzn r1 42

jltzn r1 42

jnezn r1 42

IF r1 == 0 THEN jump to line number 42

IF r1 > 0 THEN jump to line number 42

IF r1 < 0 THEN jump to line number 42

IF r1 != 0 THEN jump to line number 42

This is making me
jumpy!

Unconditional jump

jumpn 42 Jump to program line # 42

Jumps in Hmmm

Conditional jumps

jeqzn r1 42

jgtzn r1 42

jltzn r1 42

jnezn r1 42

IF r1 == 0 THEN jump to line number 42

IF r1 > 0 THEN jump to line number 42

IF r1 < 0 THEN jump to line number 42

IF r1 != 0 THEN jump to line number 42

This is making me
jumpy!

Unconditional jump

jumpn 42 Jump to program line # 42

if equal to zero…

if greater than zero …

if less than zero…

if not equal to zero …

Mnemonics!

Hmmm
the complete reference

At www.cs.hmc.edu/~cs5grad/cs5/hmmm/documentation/documentation.html

jgtzn

RAM
random access memory

read r10

1

2

3

4

5

6

7

8

jgtzn r1 7

setn r2 -1

mul r1 r1 r2

nop

nop

nop

Gesundheit!

write r1

halt

CPU
central processing unit

r1

General-purpose register r1

r2

General-purpose register r2

With an input of -6, what does this code write out?

What Python f'n is this?

Screen -6 (input)

Try it!

1
Follow this Hmmm program.
First run: use r1 = 42 and r2 = 5.
Next run: use r1 = 5 and r2 = 42.

Write an assembly-language program that reads a
positive integer into r1. The program should compute

2

Hint: On line 2, could you write a test that checks if the factorial
is finished; if it's not, compute one piece and then jump back!

the factorial of the input in r2. Once it's computed, it
should write out that factorial. Two lines are provided:

read r1

read r2

sub r3 r1 r2

nop

jgtzn r3 7

write r1

jumpn 8

Memory - RAM
0

Memory - RAM

Registers - CPU

1

2

3

4

5

6

7

8

9

r1

r2

Registers - CPU

0

1

2

3

4

5

6

write r2

halt

7

8

r3

r1

r2

r3

read r1

setn r2 1

1

I think this language has
injured my craniuhmmm!

(1) What common function does this compute?
Hint: try the inputs in both orders...

(2) Extra! How could you change only line 3 so that, if inputs
r1 and r2 are equal, the program will ask for new inputs? Extra! How few lines can you use here? (Fill the rest with nops…)

Run 1 Run 2

42

5

Output 1 Output 2

42

5
5input

result – so far

write r2

halt

not needed; OK to use

r2r1

let r1 be the input
and the "counter"

let r2 become
the output

factorial: the plan …

5

input

1

output (to be)

starting
value!

fac(5) is 1*5*4*3*2*1

Try it!

1
Follow this Hmmm program.
First run: use r1 = 42 and r2 = 5.
Next run: use r1 = 5 and r2 = 42.

Write an assembly-language program that reads a
positive integer into r1. The program should compute

2

Hint: On line 2, could you write a test that checks if the factorial
is finished; if it's not, compute one piece and then jump back!

the factorial of the input in r2. Once it's computed, it
should write out that factorial. Two lines are provided:

read r1

read r2

sub r3 r1 r2

nop

jgtzn r3 7

write r1

jumpn 8

Memory - RAM
0

Memory - RAM

Registers - CPU

1

2

3

4

5

6

7

8

9

r1

r2

Registers - CPU

0

1

2

3

4

5

6

write r2

halt

7

8

r3

r1

r2

r3

read r1

setn r2 1

1

I think this language has
injured my craniuhmmm!

(1) What common function does this compute?
Hint: try the inputs in both orders...

(2) Extra! How could you change only line 3 so that, if inputs
r1 and r2 are equal, the program will ask for new inputs? Extra! How few lines can you use here? (Fill the rest with nops…)

Run 1 Run 2

42

5

Output 1 Output 2

42

5
5input

result – so far

write r2

halt

not needed; OK to use

1

(1) What function does this program compute in general?

(2) Extra! How could you change only line 3 so that, if the original
two inputs were equal, the program asked for new inputs?

Follow this assembly-language program from top to bottom.
First use r1 = 42 and r2 = 5, then swap them on the next run:

read r1

read r2

sub r3 r1 r2

nop

jgtzn r3 7

write r1

jumpn 8

Run #1

0

1

2

3

4

5

6

write r2

halt

7

8

r1

r2

r3

42

5

Memory - RAM Run #2

r1

r2

r3

5

42
jeqzn r3 0

37 -37

5 5

output output

0

1

2

3

4

5

6

7

8

9

r1

r2

r3

a factorial solution
read r1

setn r2 1

jeqzn r1 8

mul r2 r2 r1

addn r1 -1

write r2

halt

jumpn 2

nop

nop

Memory - RAM

Registers - CPU

input

result – so far

not needed, but OK to use!

https://understandinguncertainty.org/node/1066

Randohmmm
Numbers…

where you'll write your own random number generator…

This week in lab:

... in Hmmm assembly language

https://understandinguncertainty.org/node/1066

Which one
is NOT

random... ?

CS ~ Compositional expression

building blocks can be bits, circuits, data, functions, programs, ...

music-driven animation
https://www.youtube.com/watch?v=hyCIpKAIFyo

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: John von Neumann
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

