Thursday, Mar 13 will be the CS 5 in-class midterm

CS5: Introduction to Computer Science at Harvey Mudd College
CS5 Web > WebHome
Submissions: CS submission site

CS 5: Q\felcome!

Administration Using Python Class Resources Exams & Projects Related Courses

Gold Midterm;
. Review
Homework Assignments .

Final Projects

Week O Week 1 Gold Final Review Week 2
Week 3 Week 4 Week 5
Lecture Slides

(Before class, the slides link will give a page not found error; shortly after class link the current slides will work.)

Gold
Week 0
1/16/24 Lecture O: Introduction
1/18/24 Lecture 1: Pico-fun!

(

Thursday, Mar 13 will be the CS 5 in-class midterm

y X
CS5: Introduction to Computer Science at Harvey Mudd College { @ D¢
CS5 Web > CS5GoldReviewExam1Point5 .

Submissions: CS submission site

CS 5 Midterm/Final Exam Review

The exam covers topics from lecture and homework, through assignment 6, but not assignment 8. That is, up to but not including the lecture prior to the
exam.

There will be 4 questions, covering the following topics: l
o Python syntax
e Recursion + list comprehensions

o Circuit design with minterm expansion
o Hmmm assembly

Many find the best way to study for the exam is to think through (or redo) the in-class "quizzes" and the various homework problems on paper. This is
similar to the exam experience: largely forgiving of syntax and primarily focusing on ideas. Jot down things you'd like to have at hand for the exam on the
page of notes you are allowed to bring to the test. (The quizzes are available inside the lectures, linked from the CS5 home page.)

To be a bit more complete, below is a list of topics in CS5 thus far. Further down are some practice problems you can try. Below those is a practice exam. (1
think there are solutions to everything, as well....)
CS5 midterm topics

Functions from class

EAit | Edit Qida | At+arh | Ranama | \Wah Drafaranrac | Tanis Drafarancac | Q+aff Daca | Mara

Thursday, Mar 13 will be the CS 5 "in-class” midterm

Un-warnings:

0]
concerns? accommodations? flexibility: S:

five pr,, 75 min., written worth 1 hw assignment

score worries? Extra extra-credit in hw9 and beyond

Suggestions:

go over hwk problems and our in-class exercises ...
create a page of notes, 2-sided is OK

consider small variations of old problems...
... and how the solutions would change...

that's our approach...

Assembly Language

|Instruction|Description

’ System instructions

lhalt stop!

|read rX |P1ace user input in register rX
|write rX |Print contents of register rX
|nop |D0 nothing

’ Setting register data

|setn rX N |Set register rX equal to the integer N (-128 to +127)

|addn rX N |Add integer N (-128 to 127) to register rX

|copy rX rY |Set rX = rY

] Arithmetic

|add rX ry erSet rX = r¥ + rZ

|sub rX ry rZ|Set rX = r¥ - rZ

|neg rX r¥Y |Set rX = -rY

|mu1 rX ryY erSet rX = r¥ * rZ

|div rX ry erSet rX = r¥ // rZ (integer division; rounds down; no remainder)

|mod rX ry rZ|Set rX = r¥ % rZ (returns the remainder of integer division)

’ Jumps!
|jumpn N |Set program counter to address N
|jumpr rX |Set program counter to address in rX
|jeqzn rX N |If rX == 0, then jump to line N
|jnezn rX N |If r¥X != 0, then jump to line N
|jgtzn rX N |If rX > 0, then jump to line N
|j1tzn rX N |If rX < 0, then jump to line N

’ Interacting with memory (RAM)

|10adn rX N |Load register rX with the contents of memory address N

|storen rX N |Store contents of register rX into memory address N

|loadr rX rY |L0ad register rX with data from the address location held in reg. rY

|storet rX rYlStore contents of register rX into memory address held in reg. rY

Hey, three instructions S
are missing here... —

It’s only the foolish who never climb
Mt. Fuji -- or who climb it again.

[ELlic—EbBSh/Hh, ZERS/H]

functions vs. instructions

Cs

s @%&(

Functions: Python Instructions: Hmmm

/ Python! CS § 1
How does Python function? %
Today o |§k§>‘“ﬁ“§§f

JGR=E *“cs

\ Hmmm

Grace Hopper, admiral +
author of the first high-level
(human-Ilevel) language,
COBOL

K Functions J Instructions

Moral equivalents...

0: 0000 0001 0000 0001 00 read ril

1: 0000 00190 0000 0001 01 read r2

2: 0111 0011 0001 0010 02 sub r3 rl r2
3: 0110 0000 00O 00O 03 nop

4: 1110 0011 0000 0111 04 jgtzn r3 7
5: 0000 0001 0000 0010 05 write ri

6: 1011 0000 0000 1000 06 jumpn 8

/. 0000 00190 00090 00109 07 write r2

8: 0000 0000 0VYO 00O 08 halt

x = int(input("Num:
y = int(input("Num:
diff = x - ry
if diff < o:
print(rl)
else:
print(r2)

))
"))

Moral equivalents...

: 0000 0001 0000 0001 00 read r

coNOuUVITA~, WDNEO
=
=
=
S

“Mindless” translation...

Make it so simple it can be automated...

e Put variables into registers in order they
occur (starting with rl1, then r2, etc...)

e Use jumps to simulate if blocks.

What about functions?

def min(x, y): 10 sub r3 rl1 r2

diff = x -y 11 jgtzn r3 14

if diff < o: 12 copy ri3 ril
return x 13 ..?? return ??..

else: 14 copy rl3 r2
return y 15 ..?? return ??..

a = int(input("Num: ")) 00 read ril
b = int(input("Num: ")) 01 read r2
r = min(a, b) 02 .. ??? .
print(r) 03 halt

* Putvariables into registers (starting with r1, then r2, etc...)
e Use jumps to simulate if blocks.
* Return the resultin ri3

What about functions?

def min(x, y): 10 sub r3 rl1 r2

diff = x -y 11 jgtzn r3 14

if diff < o: 12 copy ri3 ril
return x 13 jumpn ©3

else: 14 copy rl3 r2
return y 15 Jjumpn ©3

a = int(input("Num: ")) 00 read ril

b = int(input("Num: ")) 01 read r2

r = min(a, b) 02 jumpn 10

print(r) 03 write ri3
04 halt

* Putvariables into registers (starting with r1, then r2, etc...)
e Use jumps to simulate if blocks.
* Return the resultin ri3

What about functions?

def min(x, y): 10 sub r3 rl1 r2
diff = x -y 11 jgtzn r3 14
if diff < o: 12 copy ri13 ri 14
return x 13 jumpr ri4 Jump* ine
else: 14 copy rl13 r2 wwms“ﬁWi4
return y 15 jumpr ril4 held I

a = int(input("Num: ")) 00 read ril
b = int(input("Num: ")) 01 read r2
r = min(a, b) 02 setn rl4 o4
print(r) ©3 jumpn 10
04 write ri3
05 halt

* Putvariables into registers (starting with r1, then r2, etc...)
e Use jumps to simulate if blocks.

e Return the resultin rl3

e Use rl4 to hold where to return to...

What about functions?

def min(x, y):

d

b = int(input("Num:
r = min(a, b)
print(r)

diff = x -y
if diff < 0:
return Xx
else:
return y

int(input("Num:

10
11
12
13
14
15

00
01
02
03
04

sub r3 rl r2
jgtzn r3 14
copy rl13 ril
jumpr rl4
copy rl13 r2
jumpr rl4

read rl

read r2
calln ri14 10
write ri3
halt

* Putvariables into registers (starting with r1, then r2, etc...)
e Use jumps to simulate if blocks.
* Return the resultin ri3

* Use ri4 to hold where to return to (+ use calln instruction)

.
Does it work? "00 read ri

@1 read r2
a = int(input("Num: ")) 02 read r3
b = int(input("Num: ")) _ 03 calln ri4 10
c = int(input("Num: ")) £ 04 copy ril ri3
rl = min(a, b) ©5 copy r2 r3
r2 = min(rl, c) 6 calln ri4 10
print(r2) 07 write ri3
- 08 halt
def min(x, y): [_10 sub r3 ri1 r2
diff = x -y 11 jgtzn r3 14
if diff < o: <12 copy ri3 ri
return x 13 jumpr ri4

else: 14 copy ri13 r2
return y 15 jumpr rl4

* Putvariables into registers (starting with r1, then r2, etc...)
« Use jumps to simulate if blocks.

* Return the resultin ri3

e Use rl4 to hold where to return to (+ use calln instruction)

Quiz

Name(s)

rl

r2

r3

ri3

rl4d

Try with the input 5, 42, 54

What
var(s)?

Mem

[00
01
02
03
04
05
06
07
- 08

main

10
11

P wN

|
|

I
Ul

read ril

read r2

read r3
calln ri14 10
copy rl ri3
copy r2 r3
calln rl14 10
write ri3
halt

sub r3 rl r2
jgtzn r3 14
copy ri3 ril
jumpr rl4
copy ri13 r2
jumpr rl4

 What variable(s) from the original Python do r1, r2 and r3 hold?
* Does it work? If not, what went wrong and how could you fix it...?

Quiz

rl

r2

r3

ri3

rl4d

Name(s)

s %

37

Y27 $

- X

74

Try with the input 5, 42, 54
What variable(s) from the original Python do r1, r2 and r3 hold?
Does it work? If not, what went wrong and how could you fix it...?

What
var(s)?

Mem

@1
02
03
04
05

main

read ri ':37

read r2

read r3
calln ri14 10
copy rl ril3
copy r2 r3
calln rl14 10
write ri3

halt ¥~
sub r3 rl r2 <EJ

jgtzn r3 14
copy ri3 ril
jumpr rl4
copy ri13 r2
jumpr rl4

Fixing it...

a = int(input("Num: "))
b = int(input("Num: "))
c = int(input("Num: ™))
rl = min(a, b)

r2 = min(rl, c)
print(r2)

def min(x, y):
diff = x -y
if diff < o:
return x
else:
return y

* Save/restore registers that we'll
“clobber”.

Mem

main

min —

00
01
02
03
04
05
06
07
08

10
11
12
13
14
15
16
17

read ril

read r2

read r3
calln ri14 10
copy rl ri3
copy r2 r3
calln rl14 10
write ri3
halt

SAVE r3

sub r3 rl r2
jgtzn r3 15
copy ri3 ril
jumpn 16
copy ri13 r2
RESTORE r3
jumpr rl4

Big idea for save/restore: Stack!

Empty Stack

Push 5

Stack

Last in First Out

NV

6

5

Push 6

—Yy

Fixing it...

a = int(input("Num: "))
b = int(input("Num: "))
c = int(input("Num: ™))
rl = min(a, b)

r2 = min(rl, c)
print(r2)

def min(x, y):
diff = x -y
if diff < o:
return x
else:
return y

* Use ri5 to refer to stack memory to
pushr/popr...

Mem

main

min

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

setn rl5 42
read rl

read r2

read r3
calln rl4 10
copy rl ril3
copy r2 r3
calln rl4 10
write ril3
halt

push r3 ri5
sub r3 rl r2
jgtzn r3 15
copy ri3 ril
jumpn 16
copy ri13 r2
pop r3 ril5
jumpr rl4

WA r2

O | 2348 67 € 9 12 111213
Storage

* IS holds +he offset,
Nnot Yhe valunes.

Behind the scenes...

a = int(input("Num: "))
b = int(input("Num: "))
c = int(input("Num: ™))
rl = min(a, b)

r2 = min(rl, c)
print(r2)

def min(x, y):
diff = x -y
if diff < o:
return x
else:
return y

Use r15 to refer to scratch memory to
save/restore...

Mem

main

min

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

setn rl5 42
read ril

read r2

read r3
calln ri14 10
copy rl ril3
copy r2 r3
calln rl14 10
write ri3
halt

storer r3 ril5
addn ri15 1
sub r3 rl r2
jgtzn r3 16
copy ri3 ril
jumpn 17
copy rl3 r2
addn rl15 -1
loadr r3 ri5
jumpr rl4

Fixing it...

a = int(input("Num: "))
b = int(input("Num: "))
c = int(input("Num: ™))
rl = min(a, b)

r2 = min(rl, c)
print(r2)

def min(x, y):
diff = x -y
if diff < o:
return x
else:
return y

* Use ri5 to refer to stack memory to
pushr/popr...

Mem

main

min

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

setn rl5 42
read rl

read r2

read r3
calln rl4 10
copy rl ril3
copy r2 r3
calln rl4 10
write ril3
halt

push r3 ri5
sub r3 rl r2
jgtzn r3 15
copy ri3 ril
jumpn 16
copy ri13 r2
pop r3 ril5
jumpr rl4

These are "conventions"

“Mindless” translation...

Make it so simple it can be automated...

e Put variables into registers in order they occur
(starting with r1, then r2, etc...)

e Use jumps to simulate if blocks.
e Return theresultinril3

e Use rl4 to hold where to return to (+ use
calln instruction)

e Use ril5 to refer to stack memory

e Use pushr/popr to save/restore any register
we'll clobber (i.e.,, whose value we don't want to lose)

IInstructionIDescription

’ System instructions

|halt |Stop!

Iread rX IPlace user input in register rX
|write rXx |Print contents of register rX
|nop |Do nothing

’ Setting register data

Isetn rX N ISet register rX equal to the integer N (-128 to +127)

|addn rX N |Add integer N (-128 to 127) to register rX

Icopy rX ryY ISet r¥ = ryY

Hmmm

four instructions that
make functions possible

’ Arithmetic

|add rX ry erSet rX = rY¥ + rZ

Isub rX ry rZISet rX = r¥ - r2

|neg rX rYy |Set rX = -rY¥
|mu1 rX rY erSet rX = rY¥ * rZ

calln

Idiv rX rY rZ|Set rX = rY¥ // rZ (integer division; r

|mod rX rY erSet rX = rY % rZ (returns the remainde]
’ ' Jumps! (call)
Ijumpn N ;Set program counter to address N

|jumpr rX |Set program counter to address in rX

Ijeqzn rX IIf rX == 0, then jump to line N

|jnezn rXx |If rX != 0, then jump to line N

|If rX > 0, then jump to line N

Ijltzn rX IIf rX < 0, then jump to line N

N
N
|jgtzn rX N
N
N

|calln rX I.‘opy addr. of next instr. into rX and then jump to mem. addr. N

jumpr

(return)

(to the stack)

Interacting with memory (RAM)

Ipushr rX ryY IStore contents of register rX onto stack pointed to by reg. r¥

|popr rX ry |Load contents of register rX from stack pointed to by reg. rY¥

Iloadn rX N ILoad register rX with the contents of memory address N

Istoren rX N |Store contents of register rX into memory address N

|loadr rX ryY |Load register rX with data from the address location held in reg. rY

Istorer rX rYIStore contents of register rX into memory address held in reg. rY

(from the stack)

We must go deeper...

a = int(input("Num: "))
r = fact(a)
print(r)

def fact(n):

if n ==
return 1
else:
r = fact(n-1)
r=r *n

return r

We must go deeper...

a = int(input("Num: "))
r = fact(a)
print(r)

def fact(n):
if n ==
return 1
else:
r = fact(n-1)
r=r *n
return r

01
02
03
04
10
11
12

15
16

19
20

read ril
calln ri14 10
write ri13
halt

jnezn rl 13
setn rl13 1
jumpr rl4

addn rl -1
calln rl4 10

mul r13 rl1 ri3
jumpr rl4

We must go deeper...

a = int(input("Num: "))
r = fact(a)
print(r)

def fact(n):
if n ==
return 1
else:
r = fact(n-1)
r=r *n
return r

00
01
02
03
04
10
11
12
13
14
15
16
17
18
19
20

setn rl5 42
read ril
calln ri14 10
write ri13
halt

jnezn rl 13
setn rl3 1
jumpr rl4
pushr ri4 ri5
pushr rl ril5
addn r1 -1
calln ri4 10
popr rl rl5
popr rl4 rl5
mul rl3 rl ri13
jumpr rl4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Moral equivalents…
	Slide 8: Moral equivalents…
	Slide 9: “Mindless” translation…
	Slide 10: What about functions?
	Slide 11: What about functions?
	Slide 12: What about functions?
	Slide 13: What about functions?
	Slide 14: Does it work?
	Slide 15
	Slide 16
	Slide 17: Fixing it…
	Slide 18: Big idea for save/restore: Stack!
	Slide 19: Fixing it…
	Slide 20
	Slide 21: Behind the scenes…
	Slide 22: Fixing it…
	Slide 23: “Mindless” translation…
	Slide 24
	Slide 25: We must go deeper…
	Slide 26: We must go deeper…
	Slide 27: We must go deeper…

