
Thinking loopily and cumulatively

sounds natural to me!

for a while +=

Today Loops have arrived…

Next week: putting loops to good use:

Coding in circles!

What we give you
on the midterm…

Jumping for Conditionals

100 INPUT X
110 INPUT Y

130 IF X < Y THEN GOTO 170
140 PRINT Y
150 PRINT X
160 GOTO 190
170 PRINT X
180 PRINT Y
190 STOP

00 read r1
01 read r2
02 sub r3 r1 r2
03 jltzn r3 07
04 write r2
05 write r1
06 jumpn 09
07 write r1
08 write r2
09 halt

BASIC — Dartmouth College, 1963Hmmm — Assembly

00 read r1
01 read r2
02 sub r3 r1 r2
03 jltzn r3 07
04 write r2
05 write r1
06 jumpn 09
07 write r1
08 write r2
09 halt

Jumping for Conditionals

100 INPUT X
110 INPUT Y

130 IF X < Y THEN GOTO 170
140 PRINT Y
150 PRINT X
160 GOTO 190
170 PRINT X
180 PRINT Y
190 STOP

x = int(input())
y = int(input())

if not x < y:
 print(y)
 print(x)
else:
 print(x)
 print(y)

BASIC — Dartmouth College, 1963Python

Factorial Revisited

100 INPUT N
110 LET R = 1
120 IF N == 0 THEN GOTO 160
130 LET R = R * N
140 LET N = N - 1
150 GOTO 120
160 PRINT R
170 STOP

00 read r1
01 setn r2 1
02 jeqzn r1 06
03 mul r2 r2 r1
04 addn r1 -1
05 jumpn 02
06 write r2
07 halt

BASIC — Dartmouth College, 1963Hmmm — Assembly

Factorial Revisited

100 INPUT N
110 LET R = 1
120 IF N == 0 THEN GOTO 160
130 LET R = R * N
140 LET N = N - 1
150 GOTO 120
160 PRINT R
170 STOP

00 read r1
01 setn r2 1
02 jeqzn r1 06
03 mul r2 r2 r1
04 addn r1 -1
05 jumpn 02
06 write r2
07 halt

BASIC — Dartmouth College, 1963Hmmm — Assembly

Factorial Revisited

100 INPUT N
110 LET R = 1
120 IF N == 0 THEN GOTO 160
130 LET R = R * N
140 LET N = N - 1
150 GOTO 120
160 PRINT R
170 STOP

00 read r1
01 setn r2 1
02 jeqzn r1 06
03 mul r2 r2 r1
04 addn r1 -1
05 jumpn 02
06 write r2
07 halt

BASIC — Dartmouth College, 1963Hmmm — Assembly

Factorial Revisited

100 INPUT N
110 LET R = 1
120 IF N == 0 THEN GOTO 160
130 LET R = R * N
140 LET N = N - 1
150 GOTO 120
160 PRINT R
170 STOP

n = int(input())
r = 1
while n != 0:
 r = r * n
 n = n - 1

print(r)

BASIC — Dartmouth College, 1963 Python

• Inspired by machine

• Modify old variables

• Repeat using loops

Two ways to program…

• Inspired by math

• Make new variables

• Repeat using
recursion

What we're doing now… What did in week one…

A common pattern…

foods = ["apple", "banana", "cherry"]

i = 0
while i < len(foods):
 food = foods[i]
 print(food)
 i = i + 1

A common pattern…

foods = ["apple", "banana", "cherry"]

i = 0
while i < len(foods):
 food = foods[i]
 print(food)
 i = i + 1

for food in foods:
 print(food)

for loops: four examples…

for i in [0,1,2]:

 print("i is", i)

This slide is
four for for!

for x in [40,41,42]:

 print(x)for

Imperative design in Python

x = 42

while x > 0:

 print(x)

 x -= 1

while

variables vary
x = 41

x += 1

addn r1 1

the initial value is often not
the one we want in the end

But we change it as we go…

for loops: four examples…

for i in [0,1,2]:

 print("i is", i)

This slide is
four for for!

for loops: four examples…

for i in [0,1,2]:

 print("i is", i)

This slide is
four for for!

i is 0

i is 1

i is 2

for loops: four examples…

for i in [0,1,2]:

 print("i is", i)

This slide is
four for for!

for i in range(0,3):

 print("i is", i)

i is 0

i is 1

i is 2

[0,1,2]

for loops: four examples…

for i in [0,1,2]:

 print("i is", i)

This slide is
four for for!

for i in range(0,3):

 print("i is", i)

for i in

 print('Happy birthday!')
There are a range of answers to this one…

for x in [2,5,2024]:

 print("x is", x)

i is 0

i is 1

i is 2

x is 2

x is 5

x is 2024

[0,1,2]

How could we get
this to run 42 times?

for loops: four examples…

for i in [0,1,2]:

 print("i is", i)

This slide is
four for for!

for i in range(0,3):

 print("i is", i)

for i in

 print('Happy birthday!')
There are a range of answers to this one…

for x in [2,5,2024]:

 print("x is", x)

i is 0

i is 1

i is 2

x is 2

x is 5

x is 2024

[0,1,2]

How could we get
this to run 42 times?

range(42)

range(0,42)

range(1,43)

for fun(ctions)

def funA():

 for i in range(0,3):

 print("i is", i)

 return

[0,1,2]

def funB():

 for i in range(0,3):

 print("i is", i)

 return

[0,1,2]

i is 1

i is 2

for fun(ctions)

def funA():

 for i in range(0,3):

 print("i is", i)

 return

[0,1,2]

def funB():

 for i in range(0,3):

 print("i is", i)

 return

[0,1,2]

i is 1

i is 2

Epic keyword battle...

for fun(ctions)

def funA():

 for i in range(0,3):

 print("i is", i)

 return

[0,1,2]

def funB():

 for i in range(0,3):

 print("i is", i)

 return

[0,1,2]

i is 1

i is 2

Epic keyword battle...

for fun(ctions)

def funA():

 for i in range(0,3):

 print("i is", i)

 return

[0,1,2]

def funB():

 for i in range(0,3):

 print("i is", i)

 return

[0,1,2]

i is 1

i is 2

i is 0

i is 1

i is 2

i is 0

def fun1():

 for i in range(1,6):

 if i%2 == 0:

 print("i is", i)

 return

def fun2():

 for i in range(1,6):

 if i%2 == 0:

 print("i is", i)

 return

def fun3():

 for i in range(1,6):

 if i%2 == 0:

 print("i is", i)

 return

def fun4():

 for i in range(1,6):

 if i%2 == 0:

 print("i is", i)

return

four fors

what prints:
what prints:what prints: what prints:

i is 2

i is 4
i is 2

The loop runs 5 times,
then the function returns
i=1, i=2, i=3, i=4, i=5

The loop runs 2 times,
then the function returns
i=1, i=2, i=3, i=4, i=5

The loop runs 1 time,
then the function returns
i=1, i=2, i=3, i=4, i=5

The loop never runs...
The function never runs...

A

of times the
for loop runs?

of times the
if-test is True?

The if-test is never True The if-test is True 1 time The if-test is True 2 times
The if-test never runs

B C D

Name: ________________ BDay! ________

def fun1():

 for i in range(1,6):

 if i%2 == 0:

 print("i is", i)

 return

def fun2():

 for i in range(1,6):

 if i%2 == 0:

 print("i is", i)

 return

def fun3():

 for i in range(1,6):

 if i%2 == 0:

 print("i is", i)

 return

def fun4():

 for i in range(1,6):

 if i%2 == 0:

 print("i is", i)

return

four fors

what prints:
what prints:what prints: what prints:

i is 2

i is 4
i is 2

The loop runs 5 times,
then the function returns
i=1, i=2, i=3, i=4, i=5

The loop runs 2 times,
then the function returns
i=1, i=2, i=3, i=4, i=5

The loop runs 1 time,
then the function returns
i=1, i=2, i=3, i=4, i=5

The loop never runs...
The function never runs...

A

of times the
for loop runs?

of times the
if-test is True?

The if-test is never True The if-test is True 1 time The if-test is True 2 times
The if-test never runs

B C D

Name: ________________ BDay! ________

for x in [40,41,42]:

 print(x)for

Iterative design in Python

x = 42

while x > 0:

 print(x)

 x -= 1

while

variables vary
x = 41

x += 1 addn r1 1

the initial value is often not
the one we want in the end

But we change it as we go…

?

!

That's why they're called variables

age = 41

age = age + 1

Only in code can one's

newer age be older than

one's older age… !
The "old" value (41)

The "new" value (42)

age += 1

05 addn r1 1Echoes from Hmmm:

age *= 2

age -= 74

age /= 7

That's why they're called variables

age = 41

age = age + 1

hwToGo = 7

hwToGo = hwToGo - 1

amoebas = 21000000

amoebas = amoebas * 2

u235 = 84000000000000000;

u235 = u235 / 2

The "old" value (41)

The "new" value (42)

Python shortcuts

amoebas *= 2

hwToGo -= 1

u235 /= 2

age += 1

Only in code can one's

newer age be older than

one's older age… !

for!

for x in [2,4,6,8]:

 print('x is', x)

print('Done!')

anatomy?

empty?

x unused?

x is assigned each value
from this sequence

the BODY or BLOCK of the
for loop runs with that x

Code AFTER the loop will not run
until the loop is finished.

1

2

3

4

LOOP back to
the top for

EACH value in
the list

T
h

is
 is

 t
h

e
 #

1
fo

r-
lo

o
p

 e
rr

o
r!

 (
w
h
at

?
w
h
y?

)

It's what the fox
says: Duck!

00 setn r15 42

01 read r1

02 calln r14 5

03 write r13

04 halt

05 jnezn r1 8

06 setn r13 1

07 jumpr r14

08 pushr r14 r15

09 pushr r1 r15

10 addn r1 -1

11 calln r14 5

12 popr r1 r15

13 popr r14 r15

14 mul r13 r1 r13

15 jumpr r14

Recursive Hmmm
factorial, hw6pr4

Hmmm… I think I'll
take Python!

Functional
programming

Looping Hmmm factorial,
similar to hw6pr2 and pr3

Iterative
programming

Hmmm

00 read r1

01 setn r2 1

02 jeqzn r1 06

03 mul r2 r2 r1

04 addn r1 -1

05 jumpn 02

06 write r2

07 halt

four questions for for

for x in range(1,8):

what list is this!?

find the sum of the list?

printing partial sums?

factorial function?

print('x is', x)

for x in range(1,8):

print('x is', x)

[1,2,3,4,5,6,7]

four questions for for
what list is this!?

find the sum of the list?

printing partial sums?

factorial function?

tsum with for

def tsum(N):

 result = 1

 for x in range(1,5):

 print("x is", x)

 return result

how to use N?

find the sum of the list?

printing partial sums?

create factorial?!

Four questions...

tsum with for

def tsum(N):

 result = 0

 for x in range(0,N+1):

 result = result + x

 return result

Hey!? This is not
the right answer…

YET

thought experiments w/ return

fac(5):

fac with for

We want to return 1 * 2 * 3 * 4 * 5

fac(5):

fac with for

We want to return 1 * 2 * 3 * 4 * 5

fac(N):

We want to return 1 * 2 * 3 * ... * N

fac with for

def fac(N):

 result = 1

 for x in range():

 return result result

how to use N?

find the sum of the list?

printing partial sums?

create factorial?!

Four questions...

fac with for

def fac(N):

 result = 1

 for x in range(1,N+1):

 result = result * x

 return result

thought experiments w/ return

Hey!? This is not
the right answer…

YET

for-loop "laddering"

result = 1

for x in [2,5,1,4]:

 result *= x

print(result)

result x

meets up with
Jacob's ladder

Warning: no one
else uses this term…

Quiz What does the loop say?

i

0

1

2

S[i]

't'

'i'

'm'

S[i-1]

3

4

5

'e'

' '

't'

't'

'i'

'm'

'e'

' '

't' 6

7

8

'o'

' '

't'

'o'

' '

' '

res.

S = 'time to think this over! '

result = ''

for i in range(len(S)):

 if S[i-1] == ' ':

 result += S[i]

print(result)

25

[0,1,2,...,24]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

'tttto'

Looks like a four-'t' "to" to me!

Fun!

Quiz What does the loop say?

i

0

1

2

S[i]

't'

'i'

'm'

S[i-1]

3

4

5

'e'

' '

't'

't'

'i'

'm'

'e'

' '

't' 6

7

8

'o'

' '

't'

'o'

' '

' '

res.

S = 'time to think this over! '

result = ''

for i in range(len(S)):

 if S[i-1] == ' ':

 result += S[i]

print(result)

25

[0,1,2,...,24]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

'tttto'

Looks like a four-'t' "to" to me!

Fun!

Quiz What does the loop say?

i

0

1

2

S[i]

't'

'i'

'm'

S[i-1]

3

4

5

'e'

' '

't'

't'

'i'

'm'

'e'

' '

't' 6

7

8

'o'

' '

't'

'o'

' '

' '

res.

S = 'time to think this over! '

result = ''

for i in list(range(len(S))):

 if S[i-1] == ' ':

 result += S[i]

print(result)

25

[0,1,2,...,24]

'tttto'

Looks like a four-'t' "to" to me!

Extra! How could you change
one character above to yield

eoks! mns etnsr
or another

to yield
or another

to yield

change
' ' to 'i'

change
1 to 4

change
- to +

't'

'tt'

'ttt'

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Fun!

for: two types

L = [3, 15, 17, 7]

for x in L:

 print(x)
element-based loops

x

for: two types

L = [3, 15, 17, 7]

for x in L:

 print(x)
element-based loops

for i in range(len(L)):

 print(L[i])
index-based loops

i

0 1 2 3

L[3]L[2]L[1]L[0]

list

x

for: two types

L = [3, 15, 17, 7]

for x in L:

 print(x)
element-based loops

for i in range(len(L)):

 print(L[i])
index-based loops

i

0 1 2 3

L[3]L[2]L[1]L[0]

list

x

element-based loops

L = [3, 15, 17, 7]

i

0 1 2 3

simpler vs. flexibler

def sum(L):

 total = 0

 for i in range(len(L))

 total += L[i]

 return total

index-based loops

def sum(L):

 total = 0

 for x in L:

 total += x

 return total

x

i,j,k,a,bx,y,z,e,a,b

element-based loops

L = [3, 15, 17, 7]

i

0 1 2 3

simpler vs. flexibler

def sum(L):

 total = 0

 for i in range(len(L))

 total += L[i]

 return total

index-based loops

def sum(L):

 total = 0

 for x in L:

 total += x

 return total

x

i,j,k,a,bx,y,z,e,a,b

for: two types

L = [3, 15, 17, 7]

for x in L:

 print(x)
element-based loops

for i in range(len(L)):

 print(L[i])
index-based loops

i

0 1 2 3

L[3]L[2]L[1]L[0]

list

x

What does this loop do?

guess = 42

print('It keeps on')

while guess == 42:

 print('going and')

print('Phew! I\'m done!')

Extreme Looping

I'm whiling away my
time with this one!

continuing if

This won't print until the while loop finishes -
In this case, it never prints!

other tests we
could use here?

while
loop
body

the loop keeps on running
as long as the test is True

What does this loop do?

guess = 42

print('It keeps on')

while guess == 42:

 print('going and')

print('Phew! I\'m done!')

Extreme Looping

I'm whiling away my
time with this one!

many different tests…

print('It keeps on')

while 42 == 42:

 print('going and')

print('Phew! I\'m done!')

I'm whiling away my
time with this one!

Extreme Looping

others?

lots of different tests…

print('It keeps on')

while True:

 print('going and')

print('Phew! I\'m done!')

I'm whiling away my
time with this one!

Extreme Looping

a "while True" loop

while we escape?!
import random

def escape(N):

 """ keeps guessing! """

 guess = 0

 while guess != 42:

 print('Help! Let me out!')

 guess = random.choice([41,42,43])

 print('At last!')

 return count

how could we accumulate a LIST of all the guesses?

how could we count the number of loops we run?

random.uniform!

after the loop ends

starting value, not the
final or desired value!

test to see if we
keep looping watch out for

infinite loops!

Yikes! How should we count here?!

	Slide 1
	Slide 2
	Slide 3: Jumping for Conditionals
	Slide 4: Jumping for Conditionals
	Slide 5: Factorial Revisited
	Slide 6: Factorial Revisited
	Slide 7: Factorial Revisited
	Slide 8: Factorial Revisited
	Slide 9: Two ways to program…
	Slide 10: A common pattern…
	Slide 11: A common pattern…
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

