Coding in circles!

Thinking loopily e and cumulatively
T GoseoseosPoD:
;. sounds natural to me! ,_,s_,s_,

Today Loops have arrived...

Next week: putting loops to good use:

Wesiaf Jul 6, 20000 mGOOG 414.40
0.30%
060
0.50%
0.40%
0.30%
0.30%
0.40%

2004 2005 2006 2007 2008 2009

What we give you
on the midterm...

halt
read rX

setn rX
addn rX N
copy X rY

Arithmetic

add rX rY rZ
sub rX rY rZ
neg IX rY

mul rX rY rZ
div rX rY rZ
mod rX rY rZ

Jumps!
jumpn N
jumpr rX
jeqzn rX N
jnezn X N
jgzn rX N
jlezn rX N
calln rX N

pushr rX rY
POpT rX rY

1oadr TX rY
storer X r¥

You can use these

abs (x)

ind(e,L)
1en(L)
max (L)
min(L)

sort (L)
sum(L)

Interacting with

count (e ,L)

Hmmim Instructions

System instructions

Stop!
Place user input in register X

write X Pprint contents of register X
nop Do nothing
Setting register data

Set register X equal to the integer N (-128to0 +127)
Add integer N (-128t0 127) t0 register X
SetrX=rY

getrX=1Y+ 1Z

SetrX=1Y- 1Z

getrX=-1Y

SetrX=1Y *17

SetrX=1Y // rZ (integer division; rounds down; no rema'mder)
SetrX = Y %17 (returns the remainder of integer division)

Set program counter 10 address N

Set program counter 10 address in X

frX == 0, then jump to line N

£ X 1= 0, then jump to line N

11X >0, then jump t0 line N

1frX <0, then jump to line N

Copy addr. of next instt- into rX and then jump to mem. addr. N

memory (RAM)

Store contents of register rX onto stack po‘mted to by reg. Y

Load contents of register X from stack po'mted to by reg: 1Y

Load register X with the contents of memory address N

Store contents of register X into memory address N

Load register X with data from the address Jocation held in reg. Y
gStore contents of register X into memory address held in reg. Y

Useful Python Functions

The following are Python functions we've created in assignments or built-in functions that you may find useful.
functions in answers you write without needing t0 define/ explain them.

Returns the absolute value of ¥

Returns the number of imes ¢ appears in L
Returns the index of the first occurrence ofeinl
Returns the number of elements inL

Returns the largest element in L

Returns the smallest element in L

removeAll (e,l) Removes all occurrences of e from L
removeOne (e,l) Removes the first occurrence of e from L
removeUpto (e,) Removes all elements from L up t0 and including the first occurrence ofe

Returns anew list with the elements of L sorted
Returns the sum of the elements i L

S

Jumping for Conditionals

00
01
02
03
04
05
06
07
038
09

read rl
read r2
sub r3 rl r2

jltzn
write
write
jumpn
write
write
halt

r3 07/
N2
rl
09
rl
N2

Hmmm — Assembly

100 INPUT X
110 INPUT Y

130 IF X < Y THEN GOTO 176
140 PRINT Y

150 PRINT X

160 GOTO 1990

1760 PRINT X

180 PRINT Y

190 STOP

BASIC — Dartmouth College, 1963

Jumping for Conditionals

X = int(input()) 100 INPUT X
y = int(input()) 110 INPUT Y
if notx<vy: 130 IF X < Y THEN GOTO 1760
print(y) 140 PRINT Y
print(x) 150 PRINT X
else: 160 GOTO 190
print(x) 170 PRINT X
print(y) 180 PRINT Y
190 STOP

Python BASIC — Dartmouth College, 1963

Factorial Revisited

00
01
02
03
04
05
06
Q7

read rl

seth r2 1
jegqzn rl 06
mul r2 r2 ril
addn rl1 -1
jumpn 02
write r2
halt

Hmmm — Assembly

100 INPUT N

110 LET R =

120 IF N ==

130 LET R =

140 LET N =

150 GOTO 120
160 PRINT R

170 STOP

BASIC — Dartmouth College, 1963

THEN GOTO 166
*

= 0 O
= 2 m

Factorial Revisitec

00
01
02
03
04
05
06
Q7

read rl 100 INPUT N
setn r2 1 110 LET R = 1
‘ R *

m
d

. dynamje
it , conditj o -t
e clause, progy, Hhonal clauge, ¢, . -
Categories: . ntelligibil;
% “‘GOTO Cons;j
onsidered Har '
Considered Har i

mful” Considered

I'enjoyed Frank Rubin’s Jetter

(““GOTO Considered Harmful’

an‘siqered Harmfy],” Mareh 1a0a~

90 read
rl
g; %etn r2 1 1@@ INPUT N
jeazn rl 06 10 LET R =
p 120 IF N ==

N GOTO 160

TH
X

(A

E
N

) X -
R T B g Sk acw

Considered Hrmf,,

Y e

STy Ar .
N,
= "

ered Harmfu

.

mful' essays considered
onsidered harmful

se 'l eventually

ESSay

sidered harmfyl” es
s

becom,
e obvi
productive b ous that their time h
oth in terms of enc as passed. Beca
ouragil 18E Sag

words, “ .
» considered harmfy]”
CSSays ca :
“‘Consmered Har
harmful” essays C

abitofa prain twister. He

ays.
These essays have

make some kind of

Wh
at Are ¢
. re “Considered Ha
€ has a short entry on “c
¥ Okay, that title i ar me out though: | promi
d essays, namely so-called sconsidered harmful' essays. o]

relate
about why something progra

pe of computer-
mewhat mainstream

Edsger w,
' Dijkstra’
th ljkStra ,
e first salvo in fkessz.om in the Marc

uctured pro gince the late 60’s, aly
grai !

supplied b
'y CACM .
5 edlt()r, le[aus Wi
Cons'\dered harmful essay

and page down
| essay, at least the first sO

s are all about writing page up

he first considered harmfu

aly)
_______ I\

100 INPUT N

110 LET R =

120 IF N ==

130 LET R =

140 LET N =

150 GOTO 120
160 PRINT R

170 STOP

BASIC — Dartmouth College, 1963

THEN GOTO 166
*

= 0 O
= 2 m

n = int(input())

r=1

while n 1= 0:
r=r*n
n=n-1

print(r)

Python

Two ways to program...

Imperative code! Functional coder

e Inspired by machine e Inspired by math

e Modity old variables ¢ Make new variables

e Repeat using loops e Repeat using
recursion

What we're doing now... What did in week one...

A common pattern...

foods = ["apple", "banana", "cherry"]

i=0

while i < len(foods):
food = foods|i]
print(food)
i=i+1

A common pattern...

foods = ["apple"”, "banana”, "cherry"]

i=0

while i < len(foods):
food = foods|i]
print(food)
i=i+1

for food in foods:
print(food)

for 1 in [0,1,2]:
print("i is", 1)

block of code it'll

execute each ime

Imperative design in Python

X [40,41,42]:
fOr print (x) <:
x = 42
) x > 0:
while print (x)

x =1

_ X addn rl 1
variables vary

= 41
k+=1 (%

This slide is

four for for! £
for loops: four examples... =

for i in [0,1,2]:
print("i is", 1)

This slide is

four for for! £
for loops: four examples... =

for i in [0,1,2]: g

print ("i is", i{\\\\\\\\ i is O
<

i is 1

i is 2

This slide is

four for for! e
for loops: four examples... oo
for 1 in [0,1,2]: 4 o
print("i is", i) iis O
+10,1,2] /< i is 1
for i in range(0,3): i1 1is 2

print("i is", 1) -

for loops: four examples...

i [0,1,2]:

print("i is", i)

[0,1,2]

i range (0, 3) :

print("i is", 1)

X [2,5,2024] :

print("x is", x)

-

This slide is
four for for! £
v.

i i1is O
i is 1
i is 2
X 1is 2

x 1s 5
x 1s 2024

i \ How could we get
this to run 42 times?
print ('Happy birthday!')

There are a range of answers to this one...

for loops: four examples...

i [0,1,2]:
print("i is", 1)

[0,1,2]

i range (0, 3) :

print("i is", 1)

X [2,5,2024] :

print("x is", x)

i range (42)
print ('Happy birthday!')

This slide is
four for for! £
v.

r
iis O
i1s 1
i is 2
-
X is 2 °
x 1s 5
x is 2024
\ How could we get

this to run 42 times?

range (1,43)
range (0,42)

There are a range of answers to this one...

for fun(ctions)

funa () : P funB () : S
i range (0, 3) : i range (0, 3) :
print("i is", 1) print("i is", 1)
return return

for fun(ctions)

[0,1,2] [0,1,2]
def funA() : e def funB() :
for i in range(0,3): for i in range(0,3):
print("i is", 1) print("i is", 1)
return return

Epic keyword battle...

for fun(ctions)

[0,1,2] [0,1,2]
def funA() : e def funB() :
for i in range(0,3): for i in range(0,3):
print("i is", 1) print("i is", 1)
return return

/

teyword battle...

for fun(ctions)

[0,1,2]
funA () : e
i range (0, 3) :
print("i is", 1)
return

(

owrs e
he

|¢n7rb i 1is O
i1 1s 1

i is 2

\
getur™’

[0,1,2]
funB() :

i range (0, 3) :
print("i is", 1)

) return

de
e
(

i 1i1is O

\
ret“rn ’

funl () :

of times the

i range (1 V4 6) . for loop runs?

if 1i%2 ==

of times the
if-test is True?

print ("1 is", 1)

return

fun2 () :

Name:

fun3 () :

i range (1,6) :

if i%2 == 0:

print ("1 is", 1)

return

fun4 () :

BDay!

i range (1,6) :

if i%2 == 0:
print ("1 is", 1)
return

i range (1,6) :
if i%2 == 0:
print ("1 is", 1)
return

four fors

A C what prints: D

i is 2
i is 4
/ J /

The loop runs 5 times,
then the function returns
i=1, i=2, i=3, i=4, i=5

what prints: what prints: what prints:

i is 2

/

The loop runs 1 time, The loop never runs... The loop runs;times,
then the function returns The function never runs... then the function returns
i=1 i=1, i=2

The if-test is never True The if-test never runs

The if-test is True 1 time The if-test is True 2 times

Name: BDay!

funl () : fun3 () :
for i in range(l,6): o for i in range(l,6):

for loop runs?

if i%2 - 0 . # of times the if i%2 - 0 .
. "we . " . if-test is True? . "we . " .
print ("1 is", 1) print ("1 is", 1)

return D return

fun2 () : fun4 () :

for i in range(l,6): for i in range(1l,6):
if i%2 == 0: if i%2 == 0:
print ("1 is", 1) (::; print ("1 is", 1)
return return

four fors

what prints: C what prints: D

$ - -
Yn’ca i is 2 i 1is 2

what prints: what prints:

- oY i 1s 4
The loop runs 1 time, The loop never runs... The loop runs 2 times, The loop runs 5 times,
then the function returns The function never runs... then the function returns then the function returns
i=1 i=1, i=2 i=1, i=2, i=3, i=4, i=5

Ta i The if-test never runs . . .
The if-testis never True The if-test is True 1 time The if-test is True 2 times

Iterative design in Python

X [40,41,42]:
for print (x) <:
x = 42
) x > 0:
while print (x)

x -=1

variables vary

Xx += 1 addn rl 1
\

That's why they're called variables

Only in code can one's
newer age be older than

age — 4 1 The "old" value (41) one's older age...! 8

— =

age + 1

age

AN

The "new" value (42)

age += 1

age *= 2
age -= 74
age /=7

Echoes from Hmmm: addn ril 1

That's why they're called variables

Only in code can one's
newer age be older than

age - 4 1/ The "old" value (41) one's older age...! e
age = age + 1
\\ age += 1

The "new" value (42)

Python shortcuts

hwToGo 7

hwToGo = hwToGo - 1 hwToGo =1
amoebas = 21000000 b k= 9
amoebas = amoebas * 2 amoepas =
u235 = 84000000000000000; _

u235 = u235 / 2 u235 /= 2

It's what the fox
says: Duck! 8

for! =

1 X is assigned each value
from this sequence

r\.>.\

-

2 X [2,4,6,8]: 3

j:; LOOP back to

Z ' . v the top for

S (X 1S y x) EACH value in

o the list

S < the BODY or BLOCK of the

° for loop runs with that x

k<

1Y

v

L

AN ('Done! ')

0

L

= 4 Code AFTER the loop will not run anatomy?
until the loop is finished. ?

empty”

X unused?

Hmmm

Recursive Hmmm
factorial, hw6pr4

00 setn rld5 42
01 read ril

02 calln rl4 5
03 write rl3 ‘
04 halt 0 S .
05 Jjnezn rl 8 LO

06 setn rl3 1

07 Jumpr rl4

08 pushr rl4 rl5
09 pushr rl rl5
10 addn rl1l -1

11 calln rl4 5

12 popr rl ril5

13 popr rl4d ril5
14 mul rl3 rl ril3
15 Jumpr rl4

Functional
programming

Looping Hmmm factorial,
similar to hwépr2 and pr3

00 read rl
01l setn r2 1

rl 06
03 mul r2 r2 rl
04 addn rl -1

06 write r2
07 halt

Iterative
programming

Hmmm... I think I'll

take Python! s

.
—

what list is this!?

four questions for for ind the sum of he [t

printing partial sums?

factorial function?

X range (1, 8) :

print('x is', x)

what list is this!?

four questions for for ind the sum of he [t

printing partial sums?

factorial function?

[1121314151617]
X range(1,8):

print('x is', x)

how to use N?

tsum W]th fo r find the sum of the list?

printing partial sums?
create factorial?!
Four questions... 8
-

tsum(N) :

X range(1,5):

print("x is", x)

tsum with for

tsum (N) : Hey!? This is not

s the right answer...
YET

result = 0
X range (0,N+1) :

result = result + x

result

fac with for

fac(5):

We want to return 1 * 2 * 3 * 4 * 5

fac with for

fac(5):

We want to return 1 * 2 * 3 * 4 * 5

fac(N):

Wewanttoreturn 1 * 2 ¥ 3 * % N

how to use N?

fac W]th fo r find the sum of the list?

printing partial sums?
create factorial?!
Four questions... 8
-

fac(N):

X range () :

result

fac with for

fac (N) . Hey!? This is not

s the right answer...
YET

result =1

X range (1 ,N+1) :

result = result * x

result

for-loop "laddering”

result =1

X [2,5,1,4]:

result *= x

(result)

else uses this term...

result X

F un | What does the loop say?

res.

01234567 8 910111213

S = '"time to think this ovéff”'

result = "' [0.1.2,.,24]

/kg/Kgm;*\

! range (len(S)) :
S[1-1] == "' ':
result += S[1i]

(result)

Looks like a four-'t' "to" to me! ey

~—

S[i-1]

S[1]

|.l.

0O Jd o indWDMNDBKE O

F un | What does the loop say?

res.

01234567891 2 13 16 17 18 21 22 24
S = 'time to thlnk thlS over' '

result = "' 10,12 5., 24

/,___/K_E?_\

for 1 in range(len(S)):
if S[1-1] = ' ':
result += S[1i]

orint (result)

€LE€Q

Looks like a four-'t' "to" to me! agfe

»
—

S[i-1]

[

0O Jd o in WDKK O

F un ! What does the loop say?

S = 'time to think this over! '

result = "' [0’/1’\2""’24]
4 25\
i list (range(len(S))) :
S[i-1] == " ':
result += S[i]

(result) 'tttto'

Looks like a four-'t' "to" to me! el

—

change change change
' 'to'i! 1to4 -to+
Extra! How could you change or another or another
mns etnsr eoks!

one character above to yield to yield to yield

res.

't'

'tt'

'ttt'

S[i-1]

0O O 01 WD KR O

for: two types

L = [3, 15, 17, 7]

=

X

eS
Elements VS 1ndex Indices

for x in L:
print (x)

element-based loops

for: two types

L[O] L[1] L[2] L[3]
L = [3, 15, 17, 7]
O 1/7/273
1
for 1 in Iiit:ange(len(L)) :
print (L[i])

X

index-based loops

for x in L:
print (x)

element-based loops

for: two types

L[O] L[1] L[2] L[3]
L = [3, 15, 17, 7]
0 1 2 3 .
\f // .NOT €5 eC\i\i\zs
gt Koo«
on gl
com™ o for 4P

for 1 in Iiit:ange(len(L)) :
print (L[i])

X

index-based loops

for x in L:
print (x)

element-based loops

simpler vs. flexibler

X

%\)
L. = [3, 15, 17, 7]

O\}. 2 3
X,Y,Z,€,2, /'/7 i,j,k,a,
i

element-based loops index-based loops
sum (L) : sum (L) :
total = 0 total = 0
for x in L: for 1 in range(len (L))
total += x total += L[1]

return total return total

simpler vs. flexibler

X

%\)
L. = [3, 15, 17, 7]

O\\\; 2 3
X,Y,Z,€,2, /'/7 i,j,k,a,
i

element-based loops index-based loops
sum (L) : sum (L) :)
(indices
total =0

€S.
Elements vs INAeXC80

_ _.usi1 TOtal return total

for: two types

L[O] L[1] L[2] L[3]
L = [3, 15, 17, 7]
0 1 2 3 .
\f // .NOT €5 eC\i\i\zs
gt Koo«
on gl
com™ o for 4P

for 1 in Iiit:ange(len(L)) :
print (L[i])

X

index-based loops

for x in L:
print (x)

element-based loops

Extreme Looping What does this loop do?

guess = 42
print('It keeps on')
continuing i £ while guess == 42 -

print ('going and')

print ('Phew! I\'m done!')

['m whiling away my
time with this one! £

A

Extreme Looping What does this loop do?

guess = 42

print('It keeps on')

the loop keeps on running
as long as the test is True

while

|OOp while . guess ?= - \ other tests we
body print ('going and') could use here?

print ('Phew! I\'m done!')

This won't print until the while loop finishes -

In this case, it never prints! I'm whiling away my
time with this one!

Extreme Looping

many different tests...

print('It keeps on')

while 42 == 42: —
others?

print('going and')

print ('Phew! I\'m done!')

['m whiling away my
time with this one! £

A

Extreme Looping

lots of different tests...

print('It keeps on')

a "while True" loop

while True:
print('going and')

print('Phew! I\'m done!')

['m whiling away my
time with this one! 8

A

while we escape?!

import random

starting value, not the

def escape(N): final or desired value!
guess = 0 test to see if we
while guess 1= 42: keep looping watch out for

random.uniform!

infinite loops!

print ('Help! Let me out!')
guess = random.choice([41,42,43])

print ('At last!') after the loop ends

return count
Yikes! How should we count here?!

how could we count the number of loops we run?

how could we accumulate a LIST of all the guesses?

	Slide 1
	Slide 2
	Slide 3: Jumping for Conditionals
	Slide 4: Jumping for Conditionals
	Slide 5: Factorial Revisited
	Slide 6: Factorial Revisited
	Slide 7: Factorial Revisited
	Slide 8: Factorial Revisited
	Slide 9: Two ways to program…
	Slide 10: A common pattern…
	Slide 11: A common pattern…
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

