Interactive programs!

Possible
hardware

User input...

meters = input('How many m? ')
cm = meters * 100

print ("That's", cm, 'cm.')

What will Pytho n think? e e e s better f

User input...

meters = 1input('How many m? ')
cm = meters * 100

Print("That's", cm’ 'Cm. |)

ALWA AYS Yeu

ut
inp matter whd

What will Python think? e

)

Fix #1: convert to the right type

m str = input('How many m?

meters =

float(m str)

cm = meters * 100

print ("That's", cm, 'cm.

l42|

")

42 .0

name: m_str
type: string

name: meters
type: float

")

4200.0

name: Cm

type: float

but crash-able

Fix #2: convert and check

m str = input('How many m? ')

try:
meters = float(m str)
except:

print ("What? Didn't compute!")
print ("Setting meters = 42")
meters = 42.0 try-except \eii\\elzf catch an

cm = meters * 100
print ('That\'s', cm, 'cm.')

lled exceptions.

User-errors are ca
handling.

4 This is exception

me ters o fl I except! e
except: cat(m_str))
print ("
Wha
P .
met etting m mpute!")
ers = 42.0 eters = 42")
tw-except \ets you Ty code
and — if it cra hes — catch an
d andle it

cm =
pr meters * 100
lnt('That\,s'
, CI v
4 Cm.y)

Fix #3: eval executes Python code!

m str = input('How many m? ')
meters = eval(m_str)

cm = meters * 100
print('That is', cm, 'cm.')

Fix #3: eval executes Python code!

m str = input('How many m? ')

try:
meters = eval(m str)

except:
print ("What? Didn't compute!")
42")

print ("Setting meters
meters = 42.0

cm = meters * 100
Print(' That iS ' 4 cm, ' cm. !) Eval?MoreIikeg
Evil 1!

4

More loop control...

Using return to return early from a function
def loopyo():
for i in range(1,10):
print(i)
if 1 % 3 == 0:
return
print("All done!")

Using break to exit a loop early
def loopyl():
for i in range(1,10):
print(i)
if i % 3 == 0:
break I need a break!
print("All done!") 8

~

More loop control...

g y

def 1oopy@():

for i in range(1,10): | # Usin

§ continye t,

: s
print(1) , i lOOPYZ(): tart a ney iteration
o3 9 3 == 0 for i ;
if i N range(1,19).
return ifi%3—_é):
; ‘.n -= .
print("All done) continye
. Print(i)
jégsing break to exit 3 loop early
00py1(): '
/1 : nothing
for i 1n range(1,10): # Using Sgii.to “
ri i o '
Ef) et £ rpi in range(1,10):
1/03==@: O. -73::@:
' break L
print("All done!") 1 —
else:
print(i)

print("All done!™)

Mystery sequences...

[-35, -24, -13, -2, 9, 20, 31, ?]
[26250, 5250, 1050, 210, ?]
[90123241791111, 93551622, 121074, 3111, ?]

[1,11, 21,1211, 111221, ?]

What's next?

I'm glad you asked! 8
v‘

A larger application ...

def menu() :
""" prints our menu of options """
print (" (0) Continue'")
print (" (1) Enter a new list")
print (" (2) Analyze")
print (" (9) Break (quit)")

def main() :
""" handles user input for our menu """

Calls a helper
e True;/,,,,,,//” function
menu ()
uc = input('Which option? ')
try:
Perhaps uc the _—>uc = int (uc)
£ reason for this? except

= continue

def main|() :
""" handles user input for our menu """
L = [30,10,20] # a starting list

while True:
menu() # print menu
uc = input('Which option? ')

i1f uc ==
(9) Quit break

elif uc ==

. continue

(0) Continue

elif uec == 1:

... input ... eval ...

(1) Get new list

elif uec == 2:

(2) Analyze ! ... and so on ...

def main() :
""" handles user input for our menu """
L = [30,10,20] # a starting list

while True:
menu() # print menu
uc = input('Which option? ')

if uc ==

(9) Quit break break breaks out of the loop...

elif uc ==

(0) Continue continue continue jumps back to the top...

elif uec == 1:

(1) Get new list nput...eval .. yses eval (+check) for a new L

elif uec == 2:

(2) Analyze ! other functions as needed... ... and soon ...

[0] Which line of code handles an input of 1 ?

[1] Which line of code handles an input of 5 ?

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

looping program

Big-picture view!

[2] Which line below handles an input of 7 ?

[3] What does input 3 print that 0 does not?

def menu():
""" a function that simply prints the menu
print("\n")
print("(@

Continue!")

print("(1) Enter a new list")
print("(2
print("(9

Analyze! (next element)")
Break (Quit)")

print()

def predict(L):

predict ignores its input and returns
what the next element _should_ have been

return 42

def main():

main function

[6a] What could
you input for
newl that would
reach line 235?

[6b] how about
reaching line 239?

""" the main user-intera
print("\n")

print (" ++++++ttttr bbbt bbb bbb)
print("welcome to the PREDICTOR!")

Print (" ++4+++++ bbb b 3
print()

secret_value = 4.2 secret_value

L = [30,10,20] # an initial lis

while True: # the user-interaction loop while True:

print("\nThe list is", L)
menu ()

uc = input{ "Choose an option: ") input
"clean and check" the user's ing (option from menu)
try:
uc = int(uc) # make into an int
except:

print{"I didn't understand your input! Continuing...")
continue
menu option

run the appropriate

Full-program menu-interaction example

LL9
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

[4] What line of code runs after
this break ? and continue ? ;

b

(

if uc == 9:
break

to continue...

elif uc == @:

continue # goes back to the top of

the while loop

elif uc == 1: # we want to enter a new list
newL = input("Enter a new list: ") # enter _something
"clean and check" the user's input (new list)
try:
newL = eval(newL) # eval runs Python's interpreter! Danger

if type(newL) !'= list:
print("That wasn't of type list. Not changing L.")
else:
L = newL # here, things were OK, so let's set our list,
except:
print("I didn't understand your input. Not changing L.")
elif uc == 2: # predict and adc > next element
n = predict(L) g# get the next
print("The next element is", m)
print("Adding it to your list...")

from the predict functior

[5] Where is

L=1L+In] # and add it to the list predktdeﬁned?
elif uc == # unannounced menu option

pass # this the "nop" in Pyt
elif uc == 4: # unannounced menu option (slightly more int sting

m = find_min(L)

print("The minimum value in L is", m)
F]]f uc == # another inannounced menu option (even more 1
minval, minloc = find_min_loc(L)
print("The minimum value in L is", minval, "at day #", minloc)

1teresting. ..

else:
print(ue, " 7 That's not on the menu!")
t last line of code while True loop

print("\nLooping back again... !\n")

print()

print{"I predict... \n\n . that you'll be back!")

[EC] How could a user learn the value of secret_value if they guessed that
variable name and could run the program -- but didn't have this source code?

[0] Which line of code handles an input of 1 ?

[1] Which line of code handles an input of 5 ?

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

looping program

[2] Which line below handles an input of 7 ?

[3] What does input 3 print that 0 does not?

def menu():
""" a function that simply prints the menu
print("\n")
print("(@

Continue!")

print("(1) Enter a new list")
print("(2
print("(9

Analyze! (next element)")
Break (Quit)")

print()

def predict(L):

predict ignores its input and returns
what the next element _should_ have been

return 42

def main():

main function

[6a] What could
you input for
newl that would
reach line 235?

[6b] how about
reaching line 239?

""" the main user-intera
print("\n")

print (" ++++++ttttr bbbt bbb bbb)
print("welcome to the PREDICTOR!")

Print (" ++4+++++ bbb b 3
print()

secret_value = 4.2 secret_value

L = [30,10,20] # an initial lis

while True: # the user-interaction loop while True:

print("\nThe list is", L)
menu ()

uc = input{ "Choose an option: ") input
"clean and check" the user's ing (option from menu)
try:
uc = int(uc) # make into an int
except:

print{"I didn't understand your input! Continuing...")
continue
menu option

run the appropriate

Full-program menu-interaction example

maig-picture view!

LL9
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

[4] What line of code runs after
this break ? and continue ? ;

b

(

if uc == 9:
break

to continue...

elif uc == @:

continue # goes back to the top of

the while loop

elif uc == 1: # we want to enter a new list
newL = input("Enter a new list: ") # enter _something
"clean and check" the user's input (new list)
try:
newL = eval(newL) # eval runs Python's interpreter! Danger

if type(newL) !'= list:
print("That wasn't of type list. Not changing L.")
else:
L = newL # here, things were OK, so let's set our list,
except:
print("I didn't understand your input. Not changing L.")
elif uc == 2: # predict and adc > next element
n = predict(L) g# get the next
print("The next element is", m)
print("Adding it to your list...")

from the predict functior

[5] Where is

L=1L+In] # and add it to the list predktdeﬁned?
elif uc == # unannounced menu option

pass # this the "nop" in Pyt
elif uc == 4: # unannounced menu option (slightly more int sting

m = find_min(L)

print("The minimum value in L is", m)
F]]f uc == # another inannounced menu option (even more 1
minval, minloc = find_min_loc(L)
print("The minimum value in L is", minval, "at day #", minloc)

1teresting. ..

else:
print(ue, " 7 That's not on the menu!")
t last line of code while True loop

print("\nLooping back again... !\n")

print()

print{"I predict... \n\n . that you'll be back!")

[EC] How could a user learn the value of secret_value if they guessed that
variable name and could run the program -- but didn't have this source code?

[0] Which line of code handles an input of 1 ?

[1] Which line of code handles an input of 5 ?

maig-picture vie

I [4] What line of code runs after
this break ? and continue ?

if uc == 9: 0 t

break > while p altogether
elif uc == 0: want to continue...

continue #&% goes back to the top of the while loop
elif uc == 1: # we want to enter a new list

newL = input("Enter a new list: ")

"clean and check" the user's input
try:
newL = eval(newL) # eval runs P s interpreter! Da
if type(newL) !'= list:
print("That wasn't of type list. Not changing L.")
else:
L = newL # here, thing 0K
except:

print("I didn't understand your input. Not changing L.")

b

(

(new list)

nger

elif uc == 2: # predict and adc ne ement
n = predict(L) # get the next om the predict functior
print("The next element s,) —
print("Adding it to your list...") [5] Where is
L=L+ In] # and add it to the list predict defined?
elif uc == # unannounced menu option
pass this the "nop" ir

elif uc == 4: # unannounced menu option (s
m = find_min(L)

print("The minimum value in L is", m)
Inannounced menu option (eve inte

elif uc == # another

minval, minloc = find_min_loc(L)

resting...

print("The minimum value in L is", minval, "at day #", minloc)

else:
print(ue, " 7 That's not on the menu!")
t last line of code while True loop

print("\nLooping back again... !\n")

print()

print{"I predict... \n\n . that you'll be back!")

s _ [2] Which line below handles an input of 7 ?
176 # example looping program ‘ 222
177 # . . 223
178 [3] What does input 3 print that 0 does not? .
179 def menu(): 225
180 """ a function that simply prints the menu """ 226
181 print("\n") 27
182 print("(@) Continue!") ‘ 228
183 print("(1) Enter a new list") 229
184 print("(2) Analyze! (next element)") [Ga] What could 230
185 print("(9) Break (Quit)") . 231
186 print() you input for .
e newlL that would 233
188 def predict(L): X 234
189 "' predict ignores its input and returns reach line 2357 335
190 what the next element _should_ have been 236
191 237
gi return 42 [Gb] hOW about 238
H H 239
194 def main(): , main function reaching line 2397 240
195 """ the main user-intera 241
196 print("\n") 242
197 print (" ++++++++H+HbHb) 243
198 print("wWelcome to the PREDICTOR!") 244
199 print (" ++++++++ e ma ‘) 245
200 print() 246
201 247
202 secret_value = 4.2 secret_value 248
203 249
204 L = [30,10,20] # an initial List 350
205 . 251
206 while True: # the user-interaction loop while True: 252
207 print("\nThe list is", L) 253
208 menu () . 254
209 uc = input("Choose an option: ") |nput 255
210
211 # "clean and check" the user's ing (option from menu) ;:S
212 / 258
213 try: 259
214 uc = int(uc) ake into an i 260
215 except: 261
216 print{"I didn't understand your input! Continuing...") 262
217 continue 263
218 264
219 # run the appropriate menu option 265
220 -
Full-program menu-interaction example
e

it
Try it |

[EC] How could a user learn the value of secret_value if they guessed that
variable name and could run the program -- but didn't have this source code?

[0] Which line of code handles an input of 1 ?

[1] Which line of code handles an input of 5 ?

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

m&g-plctu re Vlewl [4] What line of code runs after £

this break ? and continue ?)

(

if uc == 9:
break » altogether

elif uc == @: > want to continue...

continue # goes back to the top of the while loop
elif uc == 1: # we want to enter a new list
newL = input("Enter a new list: ") # enter _something

"clean and check" the user's input (new list)
try:
newL = eval(newL) # eval runs Python's interpreter! Danger
if type(newL) '= list:
print("That wasn't of type list. Not changing L.")
else:
L = newL # here, things were 0K, so let's set our list,
except:

print("I didn't understand your input. Not changing L.")

elif uc == 2: predict an

n = predict{L) # get the next

element from the predict function

print("The next element s, AT —_— .
print("Adding it to your list...") [5] Where IS
L=1L+ [n] # and add it to the list predict defined?

elif uc == 3: # unannounced menu option! 188
pass # this is the "nop" (do-nothing) statement in

elif uc == 4: # unannounced menu option (slightly more interesting...)
m = find_min(L)
print("The minimum value in L is", m)

elif uc == 5: # another unannounced menu option (even more interesting...

minval, minloc = find_min_loc(L)
print("The minimum value in L is", minval, "at day #", minloc)

else:
print(ue, " 7 That's not on the menu!")
last line of code while True loop

print("\nLooping back again... !\n")

print()
print{"I predict... \n\n ..« that you'll be back!")

S [2] Which line below handles an input of 7 ?
example looping program ‘ 222
. . 223
[3] What does input 3 print that 0 does not? o
def menu(): 225
""" a function that simply prints the menu """ 276
print("\n") 227
print("(@) Continue!") | 228
print("(1) Enter a new list") 279
print("(2) Analyze! (next element)") [Ga] What could 230
print("(9) Break (Quit)") . 231
print() you input for .
233
St predict(L): newlL that would 23
""" predict ignores its input and returns reaCh Ilne 235? 235
what the next element _should_ have been 236
237
return 42 [6b] how about 238
. . . i i 2 239
def main(): | main function reaching line 2397
""" the main user-intera 241
print("\n") 242
Print (" ++++++ttt bbbt bbb a4 243
print("Welcome to the PREDICTOR!") 244
Print (" ++++++++ bbb ") 245
print() 246
247
secret_value = 4.2 secret_value 248
249
L = [30,10,20] # an initial List S50
9 251
while True: # the user-interaction loop Wh||e True: 252
print("\nThe list is", L) 253
menu () 254
uc = input("Choose an option: ") ir]p[Jt 255
"clean and check" the user's input (option from menu) ;g:
’ 258
try: 259
uc = int(uc) # make into an int! 260
except: 261
print("I didn't understand your input! Continuing...") 262
continue 263
264
run the appropriate menu option 265

Full-program menu-interaction example

[EC] How could a user learn the value of secret_value if they guessed that
variable name and could run the program -- but didn't have this source code?

b

[0] Which line of code handles an inputof 1 ? m - - . | [4] What line of code runs after
Sig-picture view! e

this break ? and continue ? ;
[1] Which line of code handles an input of 5 ? - an

(

s & _ _ [2] Which line below handles an input of 7 ? if uc
176 # example looping program : 222 break /;_: loop altogether
177 # . . 223
178 [3] What does input 3 print that 0 does not? . CLif ue o B 5 et o continue. ..
179 def menu(): 225 continue # goes back to the top of the while loop
180 """ a function that simply prints the menu """ 276
181 print(*\n") . 227 elif uc == 1: # we want to enter a new list
182 print("(8) Continue!") ‘ 228 newL = input("Enter a new list: ") # enter _something
183 print("(1) Enter a new list") 229
184 print("(2) Analyze! (next element)") [63] What could 230 # "clean and check" the user's input (new list)
185 print("(9) Break (Quit)") . 231 &
186 print() you input for . -
187 HEWL that WOUId 233 newL = eval(newL) # eval runs Python's interpreter! Danger
188 def prEdlCt(L.]:))) . b 234 if type(newL) != list:
189 """ predict ignores its input and returns reaCh Ilne 2357 235 print("That wasn't of type list. Not changing L.")
190 what the next element _should_ have been 236 else:
191 p 3
237 L = newL # here, things were 0K, so let's set our Llist, L
192 return 42 [Gb] how about 238 except:
193)) .
H H "I didn't understand your input. Not changing L.")
: . : reaching line 239? 239 print(
194 def main(): . . main funct|0n g | 240
195 """ the main user-intera 241 elif uc == 2: # predict an next
196 print(*\n") 242 n = predict(L) # get the next element from the predict function
197 Print (" ++++++ttt bbbt bbb a4 243 print("The next‘element TR
198 print("Welcome to the PREDICTOR!") Sa4 print("Adding it to your list...") [5] Where is
199 Print (" s+ttt T " 245 L=1L+ [n] # and add it to the list predict defined?
200 print() 246
201
247 elif uc == 3: # unannounced menu option!
202 secret_value = 4.2 secr‘et_value 248 pass # this is the "nop" (do-nothing) statement in | 188
203 249
ig: L = [30,10,20] # an initial List 250 elif uc == 4: # unannounced menu option (slightly more interesting...)
. 251 m = find_min(L)
206 while True: # the user-interaction loop Whlle True: 252 print("*The minimum value in L is*, m)
207 print("\nThe list is", L) 253
208 menu[]l) . . 254 elif uc == 5: # another unannounced menu option (even more interesting...
209 uc = input{ "Choose an option: ") |nput 255 minval, minloc = find_min_loc(L)
210 . T) . ;
: 256 print("The minimum value in L is", minval, "at day #", minloc)
211 # "clean and check" the user's input (option from menu) 257
212 ’ 258 else:
213 try: 259 print(ue, " ? That's not on the menu!")
214 uc = int(uc) # make into an int! 260
215 except: 261 # last line of code while True loop
216 print("I didn't understand your input! Continuing...") 262 print ("\nLooping back again nn")
217 continue 263
218 - _ 264 print()
i;g ! run the appropriate menu optior 265 print("I predict... \n\n ... that you'll be back!")
input [0, 1, 2, secret_value]
Full-program menu-interaction example [EC] How could a user learn the value of secret_value if they guessed that

variable name and could run the program -- but didn't have this source code?

def fac(N):

;Tsult.= 1 ‘
Loops s equences.

Is one more reasonable
than the other?

def fac(N):

Recursion

fac(N):

result =1
X range (1,N+1) :
result *= x

return result

Is one more reasonable
than the other?

fac(N):
N ==

Recursion eturn 1

return N*fac (N-1)

for: two "loop patterns”

L = [3, 15, 17, 7]

L=

X

"deceptively easy"

elements

for x i1n L:
total += x element-based loops

for: two "loop patterns”

L[O] L[1] L[2] L[3]

L. = [3, 15, 17, 7]
0 1 2 3

NP

i

for 1 1n range(len(L)) index-based loops

total += L[1i] — access data indirectly,
(by its index)

elements

for x in L: element-based loops
total += x — access data directly

for: two "loop patterns”

L[O] L[1] L[2] L[3]

L = [3, 15, 17, 7]

i

for i 1n range(len(L)) index-based loops
tOtal += L[l] — accece Ant- T

€S
Elements VS Index Indices

for x in L: element-based loops
total += x — access data directly

for: two variables

L[O] L[1] L[2] L[3]

L = [3, 15, 17, 7]
fo//B —

1
for i in range (len (L)) .
index-b

total += L[i]
€S
Elements VS Index Indices

for x in |
total element-based loops ~ "Getintoarut.. s
and stay there!" &= y

azeiat: T T. Securities (TTS)

azeiat: T T. Securities (TTS)

Analyzing a sequence of ... anything!

(0)
(1)
(2)
(3)
(4)
(3)
(6)
(9)

Input a new list
Print the current list

Find
Find
Find
Find
Your
Quit

the
the
the
the
TTS

average price
standard deviation
min and its day
max and its day
investment plan

Enter your choice:

hw8pr4: T.T. Securities (TTS)

Analyzing a sequence of ... stock prices?!

L

:l' day

0
[40,

X

day
1

80,

day day day day day day
2 3 4 5 6 7
10, 30, 27, 52, 5, 15]
elements
(0) Input a new list
(1) Print the current list
(2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan
(9) Quit

Enter your choice:

hw8pr4: T.T. Securities (TTS)

Analyzing a sequence of ... stock prices?!

l day day day
1 2

0

X

\m?\eme e{\\l‘-
“e%ﬂ w

webbrowser.open new_ tab (url)

day

3

day

a4
L = [40, 80, 10, 30, 27,

dgv dgv d%v
52, 5, 15]

elements ~ prices

(0)
(1)
(2)
(3)
(4)
(3)
(6)
(9)

Input a new list
Print the current list

Find
Find
Find
Find
Your
Quit

the
the
the
the
TTS

average price

standard deviation

min and its day
max and its day
investment plan

Enter your choice:

let’s see...

T. T. Securities

(0)

(1)
t brokerage. (4)
ovt 0 (5)

(6)
(9)

Software side ...

Input a new list
Print the current list

Find
Find
Find
Find
Your
Quit

the
the
the
the
TTS

average price
standard deviation
min and its day
max and its day
investment plan

Enter your choice:

Hardware
side...

Investment analysis for the 21st century ... and beyond

One motivation for TT securities...

Market Summary > Zoom Video Communications Inc

66.94 . N

+4.94 (7.98%) 4 past 5 years

Mar 21, 12:29 PM EDT -« Disclaimer

1D 5D M A~ 6M ~ YTD ~ 1Y ~5Y A~ Max

600

400

200

PR 3

@4\\‘_‘-’/ 559.00 USD Oct 16, 2020
: @ &

T | T
2020 2021 2022

T
2023

T
2024

Name(s)

The TTS-strategy:

Your stock's prices: L =140, 80, 10, 30, 27,52, 5, 15]

Day P
0

SSooOodkd WD KR

Important fine print:

element
rice
40.0
80.0
10.0
30.0
27 .0
52.0
5.0
15.0

[0] TT. Securities's customer pledge:
"We select the day to buy and day to sell that
will maximize your price-difference..."*

[1] What is the best TTS investment strategy for this list, L?

[1b] Which day would you _buy_ (and at what price) ?

[1c] Which day would you _sell_ (and at what price) ?
[1d] What is the per-share profit in this best case? (!!!)

for each buy-day, b:

[2] How could nested loops help us find the

best TTS strategy?

for each sell-day, s:

(a "code sketch...")

It's NOT 75!

this all seems sketch...

*To make our business plan realistic, however, we only allow selling after buying. =

Name(s)

The TTS-strategy:

Your stock's prices:

element

Day Price

0 40.0
1 80.0
2 10.0
3 30.0
4 27.0
5 52.0
6 5.0
7 15.0

Important fine print:

[0] TT. Securities's customer pledge:

"We select the day to buy and day to sell that

will maximize your price-difference..."*

L =40, 80, 10, 30, 27,52, 5, 15]

[1] What is the best TTS investment strategy for this list, L?

[1b] Which day would you _buy_ (and at what price) ?
[1c] Which day/would you _sell_ (and at what price) ?

maximum price-
difference: 42

buy on day 2
sell on day 5

[1d] What is the per-share profit in this best case? (!!!)

/

set max-so-far =0
for each buy-day, b:

for each sell-day, s: /
compute the profit .

if profit is > max-so-far:

‘ remember it in a variable!

return profit, its b-day, and s-day

[2] How could nested loops help us find the

best TTS strategy?

It's NOT 75!

(a ”COde SketCh. 00 ”) this all seems sketch...

*To make our business plan realistic, however, we only allow selling after buying.

ole
_—

Name(s)

[0] TT. Securities's customer pledge:
"We select the day to buy and day to sell that
Th e T T S - S trate gy : will maximize your price-difference..."*
Your stock's prices: L =140, 80, 10, 30, 27,52, 5, 15]

[1] What is the best TTS investment strategy for this list, L?

element

. [1b] Which day would you _buy_ (and at what price) ? sl sl

Day Price [1c] Which daywould you _sell_ (and at what price) ?

0 4 0 0 [1d] What is che per-share profit in this best case? (!!!)

1 80.0 set max-so-far =0

2 10.0 maximum price- for each buy-day, b:

difference: 42
3 30.0 g ‘
buy on day 2 '
4 27.0 n future .
5 : \\Y
iT profit is > max-so-far:
6 | ‘ remember it in a variable!
7 +2.0 / return profit, its b-day, and s-day
[2] How could nested loops help us find the
Important fine print: best TTS strategy? (a "code sketch...") this all seems sketch..

*To make our business plan realistic, however, we only allow selling after buying. =

hw8pr4: T.T. Securities (TTS)

Analyzes a sequence of “stock prices”

L

l day day day
1 2

0

= [40, 80, 10, 30, 27,

X

Implement a text menu:

day
3

(0)
(1)
(2)
(3)
(4)
(3)
(6)
(9)

day

4

day day day
5 6 7

52, 5, 15]

Input a new list
Print the current list

Find
Find
Find
Find
Your
Quit

the
the
the
the
TTS

average price
standard deviation
min and its day
max and its day
investment plan

Enter your choice:

hw8pr4: T.T. Securities (TTS)

Analyzes a sequence of “stock prices”

l dav d iv div dgv d ?lv dgv d gv d%v

L = [40, 80, 10, 30, 27, 52, 5, 15]
X

(0) Input a new list
(1) Print the current list

Implement a (text) menu: (2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day :>
(5) Find the max and its day
(6) Your TTS investment plan

(9) Quit
Enter your choice:

Functions you'll write All use 100ps...

Menu average(L)

<
. stdev(L)

(0) Input a new list L

(1) Print the current list l

(2) Find the average price

(3) Find the standard deviation Z (L [l] - Lav) 2

(4) Find the min and its day i

(5) Find the max and its day

(6) Your TTS investment plan len (L)

(9) Quit

Enter your choice:

minprice(L)E>

maxday(L) [j>

webbrowser.open new_ tab (url) f d ISO, max...

. . Just callmin ? e
Min price vor

L=1[40, 80, 10, 30, 27, 52, 5, 15]
m=

m is the
"min so far"

What's the idea for finding the smallest (minimum) price?

track the value of the minimum so far as you loop over L

Min price vs. min day

L= [40, 80, 10, 30, 27, 52, 5, 15]

m= m= m =
> _—

EE——
40 10 5 .
5is

returned

minprice(L):

m = L[O]
> < L: What about tracking BOTH
x < m: the day of the mjnimpm
price and that min price?
m = x

m

minday =0 —— =2
i day diy diy

L= [40, 80, 10,
minprc 4; —> 1;

def min prc day(L):

minprc = L[O]
minday = 0

for i in range(len(L)):

if

6is

returned

return minprc, minday

> =6 —
%v ﬁv %v %v gy
30, 27, 52, 5, 15]
5 —
3 5is

returned

minday =0 —— =2
i dav div div
L = [40, 80, 10,
minprc 4; —> 1;
minprc
minday

6is

returned

for i in range(len (L)) :

if L[i] < minprc:

minprc = L[1]
minday = 1

> =6 —
d;v d ?ly dgv d gv d%v
30, 27, 52, 5, 15]
> N —>
3 5is

returned

The TTS advantage!

Your stock's prices:

Day Price

0

SSooOodkd WD KR

Important fine print:

40.0
80.0
10.0
30.0
27.0
52.0

5.0
15.0

What is the best
TTS investment
strategy here?

L =40, 80, 10, 30, 27,52, 5, 15]

(0)
(1)
(2)
(3)
(4)
(3)
(6)
(9)

Input a new list
Print the current list

Find
Find
Find
Find
Your
Quit

the
the
the
the
TTS

average price
standard deviation
min and its day
max and its day
investment plan

Enter your choice:

To make our business plan realistic, however, we only allow selling after buying.

What is the best

The TTS advantage! S s

Your stock's prices:

Day Price

0

SSooOodkd WD KR

Important fine print:

40.
80.
10.
30.
27.
52.

5.
15.

O O O O O O OO

L =40, 80, 10, 30, 27,52, 5, 15]

set max-so-far=0

for each buy-day, b:

for each sell-day, s:
compute the profit» N
if profit is > max-so-far:

remember it in a variable!

return profit, its b-day, and s-day

To make our business plan realistic, however, we only allow selling after buying.

mindiff([42,3,100,-9,7])

Write mindiff to return the smallest abs. diff.
between any two elements from L.

mindiff([42,3,100,-9,7])

Hint: This uses nested loops!

mindiff([42,3,100,-9,7])

Write mindiff to return the smallest abs. diff.
between any two elements from L. 4

mindiff([42,3,100,-9,7])
a4

Hint: This uses nested loops!
for i in range(4):

for j in range(4):

Track the value of the
minimum so far as you
loop over L twice...

mindiff([42,3,100,-9,7])

Write mindiff to return the smallest abs. diff.

between any two elements from L. 4 i '
J
N J
Y
def mindiff(L): L
mdiff = abs(L[1]-L[O0])
for i in range (len (L)) : Hint: This uses nested loops!

.. for i in range(4):
for j in range(,len(L)): o
for j in range(4):

if
Track the value of the
minimum so far as you

loop over L twice...

return mdiff

mindiff([42,3,100,-9,7])

Write mindiff to return the smallest abs. diff.

between any two elements from L. 4 i '
J
N J
Y
def mindiff(L): L
mdiff = abs(L[1]-L[O0])
for i in range (len (L)) : Hint: This uses nested loops!

.. for i in range(4):
for J 11 range(i+l,len(L)) : Lo
- for j in range(4):

1f abs(L[j]-L[i]) < mdiff:
Track the value of the

minimum so far as you
loop over L twice...

mdiff = abs(L[j]-L[i])

return mdiff

What is the best

The TTS advantage! S s

Day Price

0

SSooOodkd WD KR

Important fine print:

40.
80.
10.
30.
27.
52.

5.
15.

O OO OO O O O

indift

ov, 27,52,5,15]

set max-so-far=0

for each buy-day, b:

for each sell-day, s: v
compute the profit

if profit is > max-so-far:

remember it in a variable!

return profit, its b-day, and s-day

To make our business plan realistic, however, we only allow selling after buying.

What is the best

The TTS advantage! TTS investment

strategy here?

Your stock's prices: L =140, 80, 10, 30, 27,52, 5, 15]

Day Price

. compute the profit
4 27.0 if profit is > max-so-far:
5 52.0
6 5.0 l remember it in a variable!
7 15.0 return profit _i&s b-day, and s-day
Important fine print: e hW8 IS ready tO help!

To make our business plan realistic, however, we only allow selling after buying.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

