
Welcome back to CS 5 ! Wally

Homework 0

Alien

Problem 1:  Four-fours program: Can be done for lab...

Problem 2:  Rock-paper-scissors + Adventure

Problems 3-4:  Picobot!  empty room (3) maze (4)

Our Week 0 
CS5 gallery

Problem 0:  Reading + response… 

Picobot



Picobot ~ problems... ?

Grammarly agrees !

My Grammarly is in
valid-Picobot-only 

mode



Wally

Alien

Looking forward to Week 1...

Homework 1

due next Tuesday

Problems 1+2:  Slicing and indexing:  These are lab ...

Problem 3:  Functions!   In lab or beyond... due next Tuesday

hw2pr4  PythonBat functions      (not due this week - but they can be addictive!)

Problem 0:  Reading + response… 
due next Tuesday

due next next Tuesday!



The challenge of programming…

syntax semantics intent
How it looks What it does What it should do

human-
typed 
input

machine-
produced

output

human-
desired 
output

?



learning a language   ~   syntax

… but learning CS   ~   semantics

unavoidable, but not the point

guiding how machines think!





Inside the machine…

name: x

type: int

LOC:  312

41

variables ~ boxes

memory location 312

Computation Data Storage

name: y

type: int

LOC:  324

42

memory location 324

id, del

What's behind the scenes:   Processing + Memory:



Memory!

name: x

type: int

LOC:  312

41

Random Access Memory 

name: z

type: int

LOC:  336

83

name: y

type: int

LOC:  324

42

a big line of boxes, each with a name, type, location, and value

name: 

type: int

LOC:  348

83

Join me, 

in the 

machine!



Memory!

name: x

type: int

LOC:  312

41

Random Access Memory 

name: z

type: int

LOC:  336

83

name: y

type: int

LOC:  324

42

a big line of boxes, each with a name, type, location, and value

512 MB of memory

name: 

type: int

LOC:  348

83

Deeper?



Memory!

byte = 8 bits

bit = smallest amt. of info.:  0 or 1

name: x

type: int

LOC:  312

on or off

41

Random Access Memory 

name: z

type: int

LOC:  336

83

name: y

type: int

LOC:  324

42

a big line of boxes, each with a name, type, location, and value

512 MB of memory

name: 

type: int

LOC:  348

83

word = 64 bits

TrueFalse

Now, that's a 

bit, unboxed!



Hey!  Someone 
can't spelle !

All languages use types

bool

int

float

Type Example What is it?

numeric values with a 
fractional part, even if 
the fractional part is .0

integers – Python has 
“infinite” precision ints!

George Boole

the T/F results from a 
test or comparison:

==, !=, <, >, <=, >= 

10**10042 or

3.14 3.0or

True Falseor

"Boolean values"
"Boolean operators"

type( x )



(   )

**

-

* / % //

+ -

> == <

=

Operate! higher precedence



(   )

**

-

* / % //

+ -

> == <

=

Operate! higher precedence



Python operators
(   )

**

-

+ -

> == <

=

parens

power

negate

times, mod, divide

add, subtract

compare

assign

It's not worth remembering all these %+/* things!     

I’d recommend parentheses over  precedence.

higher precedence

* / % //



the "equals" operators 

= != ==

This is true – but what is it saying!?



= != ==
SET 

(make equal to)

isn't equal to TEST equals

the "equals" operators 

x = 41

y = x+1

x == 42

y == 42

I want  ===  !===



= != ==
isn't equal to TEST equals

the "equals" operators 

x = 41

y = x+1

x == 42

y == 42

I want  ===  !===

SET 
(make equal to)



= != ==
isn't equal to TEST equals

the "equals" operators 

x = 41

y = x+1

x != 42

y != 42

I want  ===  !===

SET 
(make equal to)



= != ==
isn't equal to TEST equals

the "equals" operators 

x = 41

y = x+1

x != 42

y != 42

I want  ===  !===

SET 
(make equal to)



7 % 3

%   the mod operator 

8 % 3

9 % 3

30 % 7

x%4 == 0

x%2 == 0

For what values of x 

are these True?

What happens on these 
years, football-wise!?

x%y  is the remainder when x is divided by y 

x%2 == 1

x%4 == 3

If x is a year, what happens 
on these years!?

What values x make 
this test True?

What values x make 
this test True?



7 % 3

%   the mod operator 

8 % 3

9 % 3

30 % 7

x%4 == 0

x%2 == 0

For what values of x 

are these True?

What happens on these 
years, football-wise!?

x%y  is the remainder when x is divided by y 

x%2 == 1

x%4 == 3

If x is a year, what happens 
on these years!?

What values x make 
this test True?

What values x make 
this test True?



7 // 3

//   integer division

8 // 3

9 // 3

30 // 7

x//y  is x/y,   

rounded-down 

to an integer



7 // 3

8 // 3

9 // 3

30 // 7

x//y  is x/y,   

rounded-down 

to an integer

x == (x//y)*y + (x%y)

Why?

# of full y's in x remainder after "taking" all of the full y's in x

30 ==  (4)*7  +  (2) 

Decomposition of 30 into 7's:

Decomposition of x into y's:

//   integer division



how  =  works

x = 41

y = x + 1

z = x + y

x = x + y

"Quiz"

What are x, y, and 
z at this time?

a = 11//2

b = a%3

c = b** a+b *a

Try it!

x y z

x y z

Run
these 
lines

Then run 
this line

What are the values of a, b, and c 

after the 3 lines, at left, run?

What are x, y, and 
z at this time?

a b c

Name(s)  ______________________________



Inside the machine…

name: x

type: int

LOC:  312

What's happening in python:

id, del

Computation Memory (Data Storage)

name: y

type: int

LOC:  324

x = 41

y = x + 1

z = x + y

x = x + y

What's happening behind the scenes (in memory):

name: z

type: int

LOC:  312



Inside the machine…

name: x

type: int

LOC:  312

41

What's happening in python:

id, del

Computation Memory (Data Storage)

name: y

type: int

LOC:  324

42

x = 41

y = x + 1

z = x + y

x = x + y

What's happening behind the scenes (in memory):

name: z

type: int

LOC:  312

83



[Thank you, Lucas!]

CS ~ names are "current data"  
(really, current state)

Math ~ names are concepts 

they're changing all the time – intentionally – 
and their behavior is their purpose 

they're consistent – intentionally – and their 
inherent relationships are their purpose 



how  =  works

x = 41

y = x + 1

z = x + y

x = x + y

"Quiz"

What are x, y, and 
z at this time?

a = 11//2

b = a%3

c = b** a+b *a

x y z

x y z

Run
these 
lines

Then run 
this line

What are the values of a, b, and c 

after the 3 lines, at left, run?

What are x, y, and 
z at this time?

a b c

41 42 83

83 42 83

5 2 ??

Try it!



among many 42 references...
mostly in cs5...!



Are numbers enough for everything?

Yes and no…

You need lists of numbers, as well!

and strings - lists of characters - too.

Both of these are Python sequences…



strings:  textual data

add!

s = 'scripps'

c = 'college'

type...

multiply!!

len

type(s)

len(s)

s + c

2*s + 3*c

strings



What did you say!?!

s1 = 'ha'

s2 = 't'
Given

s1 + s2

2*s1 + s2 + 2*(s1+s2)

What are 

strings:  textual data



s1 = 'ha'

s2 = 't'
Given

s1 + s2

2*s1 + s2 + 2*(s1+s2)

What are 

strings:  textual data

hat

ha ha that hatWhat did you say!?!



Data, data everywhere… 

Big Data?



2015

1 Zettabyte

1 Exabyte

1 Petabyte

(brain) 14 PB:  http://www.quora.com/Neuroscience-1/How-much-data-can-the-human-brain-store

(2002) 5 EB: http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm
(2023) https://explodingtopics.com/blog/data-generated-per-day  (estimate of 181zb in 2025)

1 Petabyte, PB  ==  1000 Terabytes, TB

2009

(2025) 16-175ZB:  https://seedscientific.com/how-much-data-is-created-every-day/
(2020) 44ZB:  http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm 
(2015) 8 ZB: http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
(2011) 1.8 ZB: http://www.emc.com/leadership/programs/digital-universe.htm
(2009) 800 EB: http://www.emc.com/collateral/analyst-reports/idc-digital-universe-are-you-ready.pdf
(2006) 161 EB: http://www.emc.com/collateral/analyst-reports/expanding-digital-idc-white-paper.pdf

2006

2011

(life in video) 60 PB:  in 4320p resolution, extrapolated from 16MB for 1:21 of 640x480 video 
(w/sound) – almost certainly a gross overestimate, as sleep can be compressed significantly!

161 EB

800 EB

1.8 ZB 8.0 ZB

14 PB

60 PB

Data produced each year, in total

100-years of HD video + audio

Human brain's capacity

Data, data everywhere… 

References

lo
ga

ri
th

m
ic

   
sc

al
e

1 Terabyte, TB  ==  1000 Gigabytes, GB

2020

44 ZB

1 Yottabyte

181 ZB

2025

alotta-bytes? 

20025 EB



Big Data?



data

information

knowledge

wisdom

Google

Google's users

Lewis, et al.

Data's elevation?

C.S. Lewis



Lists ~ collections of any data

M = [ 4, 7, 100, 42, 5, 47 ] 



Lists ~ collections of any data

M = [ 4, 7, 100, 42, 5, 47 ] 

Square brackets tell 
python you want a list.

Commas  separate 
elements.

len(M) M[0] M[0:3]

0 index

elements

1 2 3 4 5

slicing indexing top-level length



Lists ~ collections of any data

M = [ 4, 7, 100, 42, 5, 47 ] 

Square brackets tell 
python you want a list.

Commas  separate 
elements.

len(M) M[0] M[0:3]

slicing indexing top-level length

0 index

elements

1 2 3 4 5

6 4 [4,7,100]



[ ]

Lists ~ collections of  any  data

L = [ 3.14, [2,40], 'third', 42 ] 

len(L) L[0] L[0:1]

always returns a 

substructure! 

always returns 

an element

slicing! indexing top-level length

only counts top-level elements

string

index0 1 2 3

L[3]

always returns 

an element

indexing 

L[1]

always returns 

an element

indexing 



Lists ~ collections of  any  data

L = [ 3.14, [2,40], 'third', 42 ] 

len(L) L[2]

always returns 

an element

indexing top-level length

only counts top-level elements

string

'hi'

L[ ][ : ]

indexing + slicing 

index0 1 2 3

Composition 

Science!

4



s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

Feeling positive? Python!
Feeling negative? Python!Indexing and Slicing!

s[0] == 'h'

s[17] == 'g'

s[8] == 'u'

s[1] == 'a'

s[-1] == 'e'

s[-2] == 'g'

s[-11] == 'u'

s[19]  error! s[-20]  error!

s[-6] == 'o'

s[-0] == ____  s[6] == ____

Indexing
single-location in a sequence

Can go out of bounds! 
Let's see that...



s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

Feeling positive? Python!
Feeling negative? Python!Indexing and Slicing!

Indexing
single-location in a sequence

Can go out of bounds! 
Let's see that...

s[0] == 'h'

s[17] == 'g'

s[8] == 'u'

s[1] == 'a'

s[-1] == 'e'

s[-2] == 'g'

s[-11] == 'u'

s[19]  error! s[-20]  error!

s[-6] == 'o'

s[-0] == 'h'  s[6] == ' '



s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

Feeling positive? Python!
Feeling negative? Python!Indexing and Slicing!

s[0:2] == 'ha'

s[15:18] == 'leg'

s[-2:] == 'ge'

s[10:17:3] == _____

s[:3] == 'har'

s[5:3] == ''

s[5:3:-1] == 'ye'

Slicing
two-index-subsequence

Optional third value is the "stride"

Omit an index to say "the end"

s[1::6] == _____I love 
that last 
Latin one. - C.S. Lewis



s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

Feeling positive? Python!
Feeling negative? Python!Indexing and Slicing!

s[0:2] == 'ha'

s[15:18] == 'leg'

s[-2:] == 'ge'

s[10:17:3] == 'doe'

s[:3] == 'har'

s[5:3] == ''

s[5:3:-1] == 'ye'

Slicing
two-index-subsequence

Optional third value is the "stride"

Omit an index to say "the end"

s[1::6] == 'amo'I love 
that last 
Latin one. - C.S. Lewis



L[0] == 

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

s[1:] == 

L[1:] == 

L = [5,4,2]

s[0] == 

0 1 2

-3 -2 -1

First + Rest



L[0] == 

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

s[1:] == 'arvey mudd college'

L[1:] == 

5 

L = [5,4,2]

s[0] == 

[4,2] 

'h'

0 1 2

-3 -2 -1

"first" 

"rest" 

First + Rest



What is  pi[0]

What slice of  pi is [3,4,5]

What are pi[0]*(pi[1]+pi[2])    and       pi[0]*(pi[1:2]+pi[2:3]) ?

What slice of  pi is [3,1,4]

What is  pi[1:]

What are  len(pi),   len(L),   len(L[1])?

What is  pi[2:4]

What is  L[0]

What is  L[0][1]

What is  L[0:1]

What slice of   M is 'try'         

These two are different!

Extra! Mind Muddlers

Part 2Part 1

These three 

are all  

different

pi = [3,1,4,1,5,9]

L = [ 'pi', "isn't", [4,2] ] 

M = 'You need parentheses for chemistry !' 
0 4 8 12 16 20 24 28 32

What is   M[::5]

What is  M[9:15]

What slice of   M is 'shoe'         

_

0

2 6 10 14 18 22 26 30

1 2 3 4 5

-6 -5 -4 -3 -2 -1

34

_

[ 1,4,1,5,9 ]

"first of pi"

"rest of pi"

Try it...
We <3 () 



What is  pi[0]

What slice of  pi is [3,4,5]

What are pi[0]*(pi[1]+pi[2])    and       pi[0]*(pi[1:2]+pi[2:3]) ?

What slice of  pi is [3,1,4]

What is  pi[1:]

What are  len(pi),   len(L),   len(L[1])?

What is  pi[2:4]

What is  L[0]

What is  L[0][1]

What is  L[0:1]

What slice of   M is 'try'         

These two are different!

Extra! Mind Muddlers

Part 2Part 1

These three 

are all  

different

pi = [3,1,4,1,5,9]

L = [ 'pi', "isn't", [4,2] ] 

M = 'You need parentheses for chemistry !' 
0 4 8 12 16 20 24 28 32

What is   M[::5]

What is  M[9:15]

What slice of   M is 'shoe'         

6

0

2 6 10 14 18 22 26 30

1 2 3 4 5

-6 -5 -4 -3 -2 -1

34

3

[ 1,4,1,5,9 ]

3 5

[ 4, 1 ]

pi[0:3]

pi[0:5:2]    or  pi[0::2]

'parent'

M[31:34]   or   M[-5:-2]   or ... 

'pi'

'i'

['pi']

M[30:17:-4]

'Yeah cs!'

Try it...
We <3 () 



What is  pi[0]

What slice of  pi is [3,4,5]

What are pi[0]*(pi[1]+pi[2])    and       pi[0]*(pi[1:2]+pi[2:3]) ?

What slice of  pi is [3,1,4]

What is  pi[1:]

What are  len(pi),   len(L),   len(L[1])?

What is  pi[2:4]

What is  L[0]

What is  L[0][1]

What is  L[0:1]

What slice of   M is 'try'         

These two are different!

Extra! Mind Muddlers

Part 2Part 1

These three 

are all  

different

pi = [3,1,4,1,5,9]

L = [ 'pi', "isn't", [4,2] ] 

M = 'You need parentheses for chemistry !' 
0 4 8 12 16 20 24 28 32

What is   M[::5]

What is  M[9:15]

What slice of   M is 'shoe'         

6

0

2 6 10 14 18 22 26 30

1 2 3 4 5

-6 -5 -4 -3 -2 -1

34

3

[ 1,4,1,5,9 ]

3 5

[ 4, 1 ]

pi[0:3]

pi[0:5:2]    or  pi[0::2]

3*(1+4) == 15 3*( [1]+[4] ) ==  3*[1,4] == [1,4,1,4,1,4]

'parent'

M[31:34]   or   M[-5:-2]   or ... 

'pi'

'i'

['pi']

M[30:17:-4]

'Yeah cs!'

We <3 () 

Tried!



What is  pi[0]

What slice of  pi is [3,4,5]

What are pi[0]*(pi[1]+pi[2])    and       pi[0]*(pi[1:2]+pi[2:3]) ?

What slice of  pi is [3,1,4]

What is  pi[1:]

What are  len(pi),   len(L),   len(L[1])?

What is  pi[2:4]

What is  L[0]

What is  L[0][1]

What is  L[0:1]

What slice of   M is 'try'         

These two are different!

Extra! Mind Muddlers

Part 2Part 1

These three 

are all  

different

pi = [3,1,4,1,5,9]

L = [ 'pi', "isn't", [4,2] ] 

M = 'You need parentheses for chemistry !' 
0 4 8 12 16 20 24 28 32

What is   M[::5]

What is  M[9:15]

What slice of   M is 'shoe'         

6

0

2 6 10 14 18 22 26 30

1 2 3 4 5

-6 -5 -4 -3 -2 -1

34

3

[ 1,4,1,5,9 ]

3 5

[ 4, 1 ]

pi[0:3]

pi[0:5:2]    or  pi[0::2]

3*(1+4) == 15 3*( [1]+[4] ) ==  3*[1,4] == [1,4,1,4,1,4]

'parent'

M[31:34]   or   M[-5:-2]   or ... 

'pi'

'i'

['pi']

M[30:17:-4]

'Yeah cs!'

M[-6:-19:-4]

Tried!
We <3 () 



Python slices - it dices... 

… but wait,  there's more!

( data, at least  )



Python slices - it dices... 

… but wait,  there's more!

( data, at least  )



# my own function!

def dbl( x ):

    """ returns double its input, x """

    return 2x

This doesn't look quite right…

Functioning in Python



More visibly broken… !

Functioning in Python



Functioning in Python

Some of Python's baggage…

# my own function!

def dbl( x ):

    """ returns double its input, x """

    return 2*x

comment for 
other coders

documentation string 
for all users

Python's 
keywords



Function Fun ! 

In[1] adjectify('cs5')

def adjectify(s):

    """ makes its input an adjective """

    return s + '-tastic'

strings, lists, numbers … 
all data are fair game

'cs5-tastic



This week's lab ~             
first two hw problems

and Semester, too
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