
Welcome back to CS 5 ! Wally

Homework 0

Alien

Problem 1: Four-fours program: Can be done for lab...

Problem 2: Rock-paper-scissors + Adventure

Problems 3-4: Picobot! empty room (3) maze (4)

Our Week 0
CS5 gallery

Problem 0: Reading + response…

Picobot

Picobot ~ problems... ?

Grammarly agrees !

My Grammarly is in
valid-Picobot-only

mode

Wally

Alien

Looking forward to Week 1...

Homework 1

due next Tuesday

Problems 1+2: Slicing and indexing: These are lab ...

Problem 3: Functions! In lab or beyond... due next Tuesday

hw2pr4 PythonBat functions (not due this week - but they can be addictive!)

Problem 0: Reading + response…
due next Tuesday

due next next Tuesday!

The challenge of programming…

syntax semantics intent
How it looks What it does What it should do

human-
typed
input

machine-
produced

output

human-
desired
output

?

learning a language ~ syntax

… but learning CS ~ semantics

unavoidable, but not the point

guiding how machines think!

Inside the machine…

name: x

type: int

LOC: 312

41

variables ~ boxes

memory location 312

Computation Data Storage

name: y

type: int

LOC: 324

42

memory location 324

id, del

What's behind the scenes: Processing + Memory:

Memory!

name: x

type: int

LOC: 312

41

Random Access Memory

name: z

type: int

LOC: 336

83

name: y

type: int

LOC: 324

42

a big line of boxes, each with a name, type, location, and value

name:

type: int

LOC: 348

83

Join me,

in the

machine!

Memory!

name: x

type: int

LOC: 312

41

Random Access Memory

name: z

type: int

LOC: 336

83

name: y

type: int

LOC: 324

42

a big line of boxes, each with a name, type, location, and value

512 MB of memory

name:

type: int

LOC: 348

83

Deeper?

Memory!

byte = 8 bits

bit = smallest amt. of info.: 0 or 1

name: x

type: int

LOC: 312

on or off

41

Random Access Memory

name: z

type: int

LOC: 336

83

name: y

type: int

LOC: 324

42

a big line of boxes, each with a name, type, location, and value

512 MB of memory

name:

type: int

LOC: 348

83

word = 64 bits

TrueFalse

Now, that's a

bit, unboxed!

Hey! Someone
can't spelle !

All languages use types

bool

int

float

Type Example What is it?

numeric values with a
fractional part, even if
the fractional part is .0

integers – Python has
“infinite” precision ints!

George Boole

the T/F results from a
test or comparison:

==, !=, <, >, <=, >=

10**10042 or

3.14 3.0or

True Falseor

"Boolean values"
"Boolean operators"

type(x)

()

**

-

* / % //

+ -

> == <

=

Operate! higher precedence

()

**

-

* / % //

+ -

> == <

=

Operate! higher precedence

Python operators
()

**

-

+ -

> == <

=

parens

power

negate

times, mod, divide

add, subtract

compare

assign

It's not worth remembering all these %+/* things!

I’d recommend parentheses over precedence.

higher precedence

* / % //

the "equals" operators

= != ==

This is true – but what is it saying!?

= != ==
SET

(make equal to)

isn't equal to TEST equals

the "equals" operators

x = 41

y = x+1

x == 42

y == 42

I want === !===

= != ==
isn't equal to TEST equals

the "equals" operators

x = 41

y = x+1

x == 42

y == 42

I want === !===

SET
(make equal to)

= != ==
isn't equal to TEST equals

the "equals" operators

x = 41

y = x+1

x != 42

y != 42

I want === !===

SET
(make equal to)

= != ==
isn't equal to TEST equals

the "equals" operators

x = 41

y = x+1

x != 42

y != 42

I want === !===

SET
(make equal to)

7 % 3

% the mod operator

8 % 3

9 % 3

30 % 7

x%4 == 0

x%2 == 0

For what values of x

are these True?

What happens on these
years, football-wise!?

x%y is the remainder when x is divided by y

x%2 == 1

x%4 == 3

If x is a year, what happens
on these years!?

What values x make
this test True?

What values x make
this test True?

7 % 3

% the mod operator

8 % 3

9 % 3

30 % 7

x%4 == 0

x%2 == 0

For what values of x

are these True?

What happens on these
years, football-wise!?

x%y is the remainder when x is divided by y

x%2 == 1

x%4 == 3

If x is a year, what happens
on these years!?

What values x make
this test True?

What values x make
this test True?

7 // 3

// integer division

8 // 3

9 // 3

30 // 7

x//y is x/y,

rounded-down

to an integer

7 // 3

8 // 3

9 // 3

30 // 7

x//y is x/y,

rounded-down

to an integer

x == (x//y)*y + (x%y)

Why?

of full y's in x remainder after "taking" all of the full y's in x

30 == (4)*7 + (2)

Decomposition of 30 into 7's:

Decomposition of x into y's:

// integer division

how = works

x = 41

y = x + 1

z = x + y

x = x + y

"Quiz"

What are x, y, and
z at this time?

a = 11//2

b = a%3

c = b** a+b *a

Try it!

x y z

x y z

Run
these
lines

Then run
this line

What are the values of a, b, and c

after the 3 lines, at left, run?

What are x, y, and
z at this time?

a b c

Name(s) ______________________________

Inside the machine…

name: x

type: int

LOC: 312

What's happening in python:

id, del

Computation Memory (Data Storage)

name: y

type: int

LOC: 324

x = 41

y = x + 1

z = x + y

x = x + y

What's happening behind the scenes (in memory):

name: z

type: int

LOC: 312

Inside the machine…

name: x

type: int

LOC: 312

41

What's happening in python:

id, del

Computation Memory (Data Storage)

name: y

type: int

LOC: 324

42

x = 41

y = x + 1

z = x + y

x = x + y

What's happening behind the scenes (in memory):

name: z

type: int

LOC: 312

83

[Thank you, Lucas!]

CS ~ names are "current data"
(really, current state)

Math ~ names are concepts

they're changing all the time – intentionally –
and their behavior is their purpose

they're consistent – intentionally – and their
inherent relationships are their purpose

how = works

x = 41

y = x + 1

z = x + y

x = x + y

"Quiz"

What are x, y, and
z at this time?

a = 11//2

b = a%3

c = b** a+b *a

x y z

x y z

Run
these
lines

Then run
this line

What are the values of a, b, and c

after the 3 lines, at left, run?

What are x, y, and
z at this time?

a b c

41 42 83

83 42 83

5 2 ??

Try it!

among many 42 references...
mostly in cs5...!

Are numbers enough for everything?

Yes and no…

You need lists of numbers, as well!

and strings - lists of characters - too.

Both of these are Python sequences…

strings: textual data

add!

s = 'scripps'

c = 'college'

type...

multiply!!

len

type(s)

len(s)

s + c

2*s + 3*c

strings

What did you say!?!

s1 = 'ha'

s2 = 't'
Given

s1 + s2

2*s1 + s2 + 2*(s1+s2)

What are

strings: textual data

s1 = 'ha'

s2 = 't'
Given

s1 + s2

2*s1 + s2 + 2*(s1+s2)

What are

strings: textual data

hat

ha ha that hatWhat did you say!?!

Data, data everywhere…

Big Data?

2015

1 Zettabyte

1 Exabyte

1 Petabyte

(brain) 14 PB: http://www.quora.com/Neuroscience-1/How-much-data-can-the-human-brain-store

(2002) 5 EB: http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm
(2023) https://explodingtopics.com/blog/data-generated-per-day (estimate of 181zb in 2025)

1 Petabyte, PB == 1000 Terabytes, TB

2009

(2025) 16-175ZB: https://seedscientific.com/how-much-data-is-created-every-day/
(2020) 44ZB: http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
(2015) 8 ZB: http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
(2011) 1.8 ZB: http://www.emc.com/leadership/programs/digital-universe.htm
(2009) 800 EB: http://www.emc.com/collateral/analyst-reports/idc-digital-universe-are-you-ready.pdf
(2006) 161 EB: http://www.emc.com/collateral/analyst-reports/expanding-digital-idc-white-paper.pdf

2006

2011

(life in video) 60 PB: in 4320p resolution, extrapolated from 16MB for 1:21 of 640x480 video
(w/sound) – almost certainly a gross overestimate, as sleep can be compressed significantly!

161 EB

800 EB

1.8 ZB 8.0 ZB

14 PB

60 PB

Data produced each year, in total

100-years of HD video + audio

Human brain's capacity

Data, data everywhere…

References

lo
ga

ri
th

m
ic

sc

al
e

1 Terabyte, TB == 1000 Gigabytes, GB

2020

44 ZB

1 Yottabyte

181 ZB

2025

alotta-bytes?

20025 EB

Big Data?

data

information

knowledge

wisdom

Google

Google's users

Lewis, et al.

Data's elevation?

C.S. Lewis

Lists ~ collections of any data

M = [4, 7, 100, 42, 5, 47]

Lists ~ collections of any data

M = [4, 7, 100, 42, 5, 47]

Square brackets tell
python you want a list.

Commas separate
elements.

len(M) M[0] M[0:3]

0 index

elements

1 2 3 4 5

slicing indexing top-level length

Lists ~ collections of any data

M = [4, 7, 100, 42, 5, 47]

Square brackets tell
python you want a list.

Commas separate
elements.

len(M) M[0] M[0:3]

slicing indexing top-level length

0 index

elements

1 2 3 4 5

6 4 [4,7,100]

[]

Lists ~ collections of any data

L = [3.14, [2,40], 'third', 42]

len(L) L[0] L[0:1]

always returns a

substructure!

always returns

an element

slicing! indexing top-level length

only counts top-level elements

string

index0 1 2 3

L[3]

always returns

an element

indexing

L[1]

always returns

an element

indexing

Lists ~ collections of any data

L = [3.14, [2,40], 'third', 42]

len(L) L[2]

always returns

an element

indexing top-level length

only counts top-level elements

string

'hi'

L[][:]

indexing + slicing

index0 1 2 3

Composition

Science!

4

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

Feeling positive? Python!
Feeling negative? Python!Indexing and Slicing!

s[0] == 'h'

s[17] == 'g'

s[8] == 'u'

s[1] == 'a'

s[-1] == 'e'

s[-2] == 'g'

s[-11] == 'u'

s[19] error! s[-20] error!

s[-6] == 'o'

s[-0] == ____ s[6] == ____

Indexing
single-location in a sequence

Can go out of bounds!
Let's see that...

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

Feeling positive? Python!
Feeling negative? Python!Indexing and Slicing!

Indexing
single-location in a sequence

Can go out of bounds!
Let's see that...

s[0] == 'h'

s[17] == 'g'

s[8] == 'u'

s[1] == 'a'

s[-1] == 'e'

s[-2] == 'g'

s[-11] == 'u'

s[19] error! s[-20] error!

s[-6] == 'o'

s[-0] == 'h' s[6] == ' '

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

Feeling positive? Python!
Feeling negative? Python!Indexing and Slicing!

s[0:2] == 'ha'

s[15:18] == 'leg'

s[-2:] == 'ge'

s[10:17:3] == _____

s[:3] == 'har'

s[5:3] == ''

s[5:3:-1] == 'ye'

Slicing
two-index-subsequence

Optional third value is the "stride"

Omit an index to say "the end"

s[1::6] == _____I love
that last
Latin one. - C.S. Lewis

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

Feeling positive? Python!
Feeling negative? Python!Indexing and Slicing!

s[0:2] == 'ha'

s[15:18] == 'leg'

s[-2:] == 'ge'

s[10:17:3] == 'doe'

s[:3] == 'har'

s[5:3] == ''

s[5:3:-1] == 'ye'

Slicing
two-index-subsequence

Optional third value is the "stride"

Omit an index to say "the end"

s[1::6] == 'amo'I love
that last
Latin one. - C.S. Lewis

L[0] ==

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

s[1:] ==

L[1:] ==

L = [5,4,2]

s[0] ==

0 1 2

-3 -2 -1

First + Rest

L[0] ==

s = 'harvey mudd college'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

-17

-18

-19

s[1:] == 'arvey mudd college'

L[1:] ==

5

L = [5,4,2]

s[0] ==

[4,2]

'h'

0 1 2

-3 -2 -1

"first"

"rest"

First + Rest

What is pi[0]

What slice of pi is [3,4,5]

What are pi[0]*(pi[1]+pi[2]) and pi[0]*(pi[1:2]+pi[2:3]) ?

What slice of pi is [3,1,4]

What is pi[1:]

What are len(pi), len(L), len(L[1])?

What is pi[2:4]

What is L[0]

What is L[0][1]

What is L[0:1]

What slice of M is 'try'

These two are different!

Extra! Mind Muddlers

Part 2Part 1

These three

are all

different

pi = [3,1,4,1,5,9]

L = ['pi', "isn't", [4,2]]

M = 'You need parentheses for chemistry !'
0 4 8 12 16 20 24 28 32

What is M[::5]

What is M[9:15]

What slice of M is 'shoe'

_

0

2 6 10 14 18 22 26 30

1 2 3 4 5

-6 -5 -4 -3 -2 -1

34

_

[1,4,1,5,9]

"first of pi"

"rest of pi"

Try it...
We <3 ()

What is pi[0]

What slice of pi is [3,4,5]

What are pi[0]*(pi[1]+pi[2]) and pi[0]*(pi[1:2]+pi[2:3]) ?

What slice of pi is [3,1,4]

What is pi[1:]

What are len(pi), len(L), len(L[1])?

What is pi[2:4]

What is L[0]

What is L[0][1]

What is L[0:1]

What slice of M is 'try'

These two are different!

Extra! Mind Muddlers

Part 2Part 1

These three

are all

different

pi = [3,1,4,1,5,9]

L = ['pi', "isn't", [4,2]]

M = 'You need parentheses for chemistry !'
0 4 8 12 16 20 24 28 32

What is M[::5]

What is M[9:15]

What slice of M is 'shoe'

6

0

2 6 10 14 18 22 26 30

1 2 3 4 5

-6 -5 -4 -3 -2 -1

34

3

[1,4,1,5,9]

3 5

[4, 1]

pi[0:3]

pi[0:5:2] or pi[0::2]

'parent'

M[31:34] or M[-5:-2] or ...

'pi'

'i'

['pi']

M[30:17:-4]

'Yeah cs!'

Try it...
We <3 ()

What is pi[0]

What slice of pi is [3,4,5]

What are pi[0]*(pi[1]+pi[2]) and pi[0]*(pi[1:2]+pi[2:3]) ?

What slice of pi is [3,1,4]

What is pi[1:]

What are len(pi), len(L), len(L[1])?

What is pi[2:4]

What is L[0]

What is L[0][1]

What is L[0:1]

What slice of M is 'try'

These two are different!

Extra! Mind Muddlers

Part 2Part 1

These three

are all

different

pi = [3,1,4,1,5,9]

L = ['pi', "isn't", [4,2]]

M = 'You need parentheses for chemistry !'
0 4 8 12 16 20 24 28 32

What is M[::5]

What is M[9:15]

What slice of M is 'shoe'

6

0

2 6 10 14 18 22 26 30

1 2 3 4 5

-6 -5 -4 -3 -2 -1

34

3

[1,4,1,5,9]

3 5

[4, 1]

pi[0:3]

pi[0:5:2] or pi[0::2]

3*(1+4) == 15 3*([1]+[4]) == 3*[1,4] == [1,4,1,4,1,4]

'parent'

M[31:34] or M[-5:-2] or ...

'pi'

'i'

['pi']

M[30:17:-4]

'Yeah cs!'

We <3 ()

Tried!

What is pi[0]

What slice of pi is [3,4,5]

What are pi[0]*(pi[1]+pi[2]) and pi[0]*(pi[1:2]+pi[2:3]) ?

What slice of pi is [3,1,4]

What is pi[1:]

What are len(pi), len(L), len(L[1])?

What is pi[2:4]

What is L[0]

What is L[0][1]

What is L[0:1]

What slice of M is 'try'

These two are different!

Extra! Mind Muddlers

Part 2Part 1

These three

are all

different

pi = [3,1,4,1,5,9]

L = ['pi', "isn't", [4,2]]

M = 'You need parentheses for chemistry !'
0 4 8 12 16 20 24 28 32

What is M[::5]

What is M[9:15]

What slice of M is 'shoe'

6

0

2 6 10 14 18 22 26 30

1 2 3 4 5

-6 -5 -4 -3 -2 -1

34

3

[1,4,1,5,9]

3 5

[4, 1]

pi[0:3]

pi[0:5:2] or pi[0::2]

3*(1+4) == 15 3*([1]+[4]) == 3*[1,4] == [1,4,1,4,1,4]

'parent'

M[31:34] or M[-5:-2] or ...

'pi'

'i'

['pi']

M[30:17:-4]

'Yeah cs!'

M[-6:-19:-4]

Tried!
We <3 ()

Python slices - it dices...

… but wait, there's more!

(data, at least)

Python slices - it dices...

… but wait, there's more!

(data, at least)

my own function!

def dbl(x):

 """ returns double its input, x """

 return 2x

This doesn't look quite right…

Functioning in Python

More visibly broken… !

Functioning in Python

Functioning in Python

Some of Python's baggage…

my own function!

def dbl(x):

 """ returns double its input, x """

 return 2*x

comment for
other coders

documentation string
for all users

Python's
keywords

Function Fun !

In[1] adjectify('cs5')

def adjectify(s):

 """ makes its input an adjective """

 return s + '-tastic'

strings, lists, numbers …
all data are fair game

'cs5-tastic

This week's lab ~
first two hw problems

and Semester, too

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 66
	Slide 67
	Slide 68

