
Randomness

and More

Recursion

CS 5 Lecture 4

CS 5

alien on

strike!

More
Eyes!

CS 5 green mascot

representing today's

terrestrial themes

Recursion's advantage: It handles arbitrary structural
depth – all at once + on its own!

As a hat, I'm recursive, too!

https://www.youtube.com/watch?v=8PhiSSnaUKk @ 1:11

https://www.youtube.com/watch?v=ybX9nVLtNi4 @ 0:08

Are surveys the
broccoli of our

digital age?

dot([3,2,4],[4,7,4])

3*4 + dot([2,4],[7,4])

2*7 + dot([4],[4])

4*4 dot([],[])

dot([3,2,4],[4,7,4])

Week 1, big-picture...

dot([3,2,4],[4,7,4])

3*4 + dot([2,4],[7,4])

dot([3,2,4],[4,7,4])

Dot product…recursively!

2*7 + dot([4],[4])

4*4 + dot([],[])

0.0

16.0

30.0

42.0

Recursion's idea:

def dot(L, K):

 if len(L) == 0 or len(K) == 0:

 return 0.0

 if len(L) != len(K):

 return 0.0

We handle BASE + FIRST cases

Recursion handles the REST

Base CasesEmpty Cases

Recursion's idea:

def dot(L, K):

 if len(L) == 0 or len(K) == 0:

 return 0.0

 if len(L) != len(K):

 return 0.0

 else:

 return L[0]*K[0] + dot(L[1:],K[1:])

handle the
REST of L

handle the
REST of K

handle the
FIRST of L

handle the
FIRST of K

combine

Recursion handles the REST

recurse w/the resthandle the first

Specific/General case(s)

Base CasesEmpty Cases

We handle BASE + FIRST cases

def dot(L, K):

 if len(L) == 0 or len(K) == 0:

 return 0.0

 if len(L) != len(K):

 return 0.0

 else:

 return L[0]*K[0] + dot(L[1:],K[1:])

dot([3,2,4],[4,7,4])

3*4 + dot([2,4],[7,4])

2*7 + dot([4],[4])

16.0

30.0

42.0

4*4 + dot([],[])

0.0

L = [3,2,4] and K = [4,7,4]

L = [2,4] and K = [7,4]

L = [4] and K = [4]

L = [] and K = []

slow and steady!

Dot product…
recursively!
With code!

pythontutor.com

Seeing the "stack" ...

There are four different values of L
and four different values of K – all
alive, simultaneously, in the stack

single-path recursion

A random aside: Libraries!

import random

random.choice(L)

choice(L) don't need to use the library name

from random import *

choice(L)

choice(['Zuko','Katara','Aang','Appa'])

chooses 1 element from the sequence L

from random import * all random functions are now available!

choice('mudd') ... or 1 character from a string

choice(['sontag','case','linde','atwood'])

A random aside: Libraries!

choice(L) chooses 1 element from the sequence L

from random import * all random functions are now available!

range(5) [0,1,2,3,4]

range(1,5) [1,2,3,4]

How would you get a random

integer from 0 to 99 inclusive?
choice(list(range(100)))

range

A random aside: Libraries!

choice(L) chooses 1 element from the sequence L

from random import * all random functions are now available!

range(5) [0,1,2,3,4]

range(1,5) [1,2,3,4]

How would you get a random

integer from 0 to 99 inclusive?
choice(list(range(100)))

range

uniform(low,hi)

a random float from low to hi floats have 16 places of precision

Aargh –
so close!

choice(range(100))

A random aside: Libraries!

Using randomness
to our advantage:

def guess(hidden):

 """ tries to guess our hidden number """

 compguess = choice(range(100))

 if compguess == hidden:

 print('I got it!')

 else:

 guess(hidden)

Randomness: Recursion-as-"the future"

print the guesses ?

return the number of guesses ?

slow down…

investigate expected # of guesses?!??

Remember, this is [0,1,…,98,99]

from random import *

import time

def guess(hidden):

 """ keep-guessing game """

 compguess = choice(range(100))

 print('I choose', compguess)

 time.sleep(0.05)

 if compguess == hidden: # at last!

 return 1

 else:

 return 1 + guess(hidden)

Recursive guess-counting

Syntax corner…

Name:

choice(list(range(5))+[4,2,4])

uniform(-20.5, 0.5) What are the chances of this being > 0?

choice('1,2,3,4')

choice(['1,2,3,4'])

choice('[1,2,3,4]')

choice([1,2,3,2])

What's the most likely return value here?

What's the most likely return value here?

What's the most likely return value here?

W
at

ch
 o

u
t!

how likely?

choice(0,1,2,3,4)

choice([list(range(5))])

choice[list(range(5))]

Which 2 of these 3 are syntax errors?

And what does the third one – the one that's
syntactically correct – actually do?

[0,1,2,3,4]

2/41/1 3/84/7 3/7 3/9

What's most likely?

What's the most likely return value here?

choice(list(range(7))) More likely even or odd? (0 is even)

[0,1,2,3,4,5,6]

[0,1,2,3,4,4,2,4]

odd or
even?

most likely value:

Syntax corner…

Name:

choice(list(range(5))+[4,2,4])

uniform(-20.5, 0.5) What are the chances of this being > 0?

choice('1,2,3,4')

choice(['1,2,3,4'])

choice('[1,2,3,4]')

choice([1,2,3,2])

What's the most likely return value here?

What's the most likely return value here?

What's the most likely return value here?

W
at

ch
 o

u
t!

how likely?

choice(0,1,2,3,4)

choice([list(range(5))])

choice[list(range(5))]

Which 2 of these 3 are syntax errors?

And what does the third one – the one that's
syntactically correct – actually do?

[0,1,2,3,4]

2/41/1 3/84/7 3/7 3/9

What's most likely?

What's the most likely return value here?

choice(list(range(7))) More likely even or odd? (0 is even)

[0,1,2,3,4,5,6]

[0,1,2,3,4,4,2,4]

odd or
even?

most likely value:

Syntax corner…

choice(list(range(5))+[4,2,4])

choice('1,2,3,4')

choice(['1,2,3,4'])

choice('[1,2,3,4]')

choice([1,2,3,2])

What's the most likely return value here?

What's the most likely return value here?

What's the most likely return value here?

W
at

ch
 o

u
t!

how likely?

choice(0,1,2,3,4)

choice([list(range(5))])

choice[list(range(5))]

Which 2 of these 3 are syntax errors?

And what does the third one – the one that's
syntactically correct – actually do?

2/41/1 3/84/7 3/7 3/9

What's most likely?

What's the most likely return value here?

choice(list(range(7))) More likely even or odd? (0 is even) odd or
even?

most likely value:

syntax error: needs list [...] or str '...'

correct: always returns [0,1,2,3,4]

syntax error: needs parens: choice(...)

1/1 chance

[0,1,2,3,4]

[0,1,2,3,4,5,6]

[0,1,2,3,4,4,2,4]

uniform(-20.5, 0.5) What are the chances of this being > 0? 1/42

The two Monte Carlos

Monte Carlo Casino, Monaco

Insights via
random trials

Monte Carlo
Methods, Math/CS

Insights via
random trials

Monte Carlo casino, Monaco

Monte Carlo
methods, Math/CS

Stanislaw Ulam
(Los Alamos badge)

Bond, James Bond

The two Monte Carlos

Ulam, Stan Ulam

A "Monte Carlo" function…

from random import *

def guess(hidden):

 """ tries to guess our hidden number

 """

 compguess = choice(list(range(100)))

 if compguess == hidden:

 return 1

 else:

 return 1 + guess(hidden)

Remember, this is the list [0,1,…,98,99]

one guess here -- plus -- all "future" guesses!

Monte Carlo dice

def countDoubles(N):

 """ input: the # of dice rolls to make

 output: the # of doubles seen """

 if N == 0:

 return 0 # zero rolls, zero doubles…

 else:

 d1 = choice([1,2,3,4,5,6])

 d2 = choice(list(range(1,7)))

 if d1 != d2:

 return 0+countDoubles(N-1) # not doubles

 else:

 return 1+countDoubles(N-1) # DOUBLES! Add 1

How are these
the two dice?

doubles check?

N is the total number of rolls

How many doubles will you
get in N rolls of 2 dice?

one doubles here, plus all the "future" rolls!

'63-'86

inspiring the Monty Hall paradox

Monty Hall
What's behind these three curtains?!

Monte Carlo Curtains

Monte Carlo Monty Hall

Suppose you always switch to the other door...
What are the chances that you will win the prize ?

Monte Carlo Monty Hall

Let's play!

1 2 3

Monte Carlo Monty Hall

Suppose you always switch to the other door...
What are the chances that you will win the prize ?

Monte Carlo Monty Hall

def MCMH(init, sors, N):

 """ plays the "Let's make a deal" game N times

 returns the number of times you win the *Spam!*

 """

 if N == 0: return 0 # don't play, can't win

 przDoor = choice([1,2,3]) # where the spam (prize) is…

 if init == przDoor and sors == 'stay': result = 'Win!'

 elif init == przDoor and sors == 'switch': result = 'lose'

 elif init != przDoor and sors == 'switch': result = 'Win!'

 else: result = 'lose'

 print('Time', N, ':', result)

 if result == 'lose': return 0 + MCMH(init, sors, N-1)

 else: return 1 + MCMH(init, sors, N-1)

Your initial choice!

'switch' or 'stay'

number of times to play

A

B

C

D

E

F

G

H

0 1 2 3 4 5 6 7 8 9

A

B

C

D

E

F

G

H

0 1 2 3 4 5 6 7 8 9

An example closer to home

......

25 26 27 28 502423220

class Dorm
(E)(W)

start

Write a program to model and analyze! this scenario...

hw2pr2

rwpos(st,nsteps) rwsteps(st,low,hi)

take nsteps random
steps starting at st

take random steps starting at st
until you reach either low or hi

S

Our very-tired student (S) leaves H/S after a
"late-night" breakfast. Each step, they randomly

go toward class (West) or the dorms (East)
Once the student arrives at the dorm or classroom, the trip is complete.

The program should then return the total number of steps taken.

radius = 25, in this case

An example closer to home

......

25 26 27 28 502423220

class Dorm
(E)(W)

start

Write a program to model and analyze! this scenario...

hw2pr2

rwpos(st,nsteps) rwsteps(st,low,hi)

take nsteps random
steps starting at st

take random steps starting at st
until you reach either low or hi

S

Our very-tired student (S) leaves H/S after a
"late-night" breakfast. Each step, they randomly

go toward class (West) or the dorms (East)
Once the student arrives at the dorm or classroom, the trip is complete.

The program should then return the total number of steps taken.

radius = 25, in this case

Lab 2 ~ Python's Etch-a-Sketch

Lab 2 ~ Python's Etch-a-Sketch

www.gvartwork.com

Incredibly, this is hand-drawn!

more typical etch-a-sketch result

No way this is real… but it is !

In-browser
Python...

Colab!

In-browser
alternatives...

Single-path recursion

a triangle

as a _script_

forward(100)

left(120)

forward(100)

left(120)

forward(100)

left(120)

And a starter function:

I don't know about tri, but
there's no return … !

def tri(n):

 """ draws a triangle """

 if n == 0:

 return

 else:

 forward(100) # one side

 left(120) # turn 360/3

 tri(n-1) # draw rest

tri(3)

a script is code that runs on
the "left margin" of a Python
file (aka, the "west coast")

A starter script:

Turtle's ability?
It varies...

it can vary widely

def chai(dist):
 """ mystery fn! """
 if dist < 20:
 return
 else:

 forward(dist)
 left(90)
 forward(dist/2.0)
 right(90)
 # line (a)
 right(90)
 forward(dist)
 left(90)
 # line (b)
 left(90)
 forward(dist/2.0)
 right(90)
 backward(dist)

What does chai(100) draw?(1) Be the turtle !
(2a)

(2b)

Imagine replacing
 # line (a)
with the line
 chai(dist/2)

What would
chai(100) then

draw?

then, ALSO replace
 # line (b)
with the same line:
 chai(dist/2)

What would
chai(100) then

draw?!

100

def chai(dist):
 """ mystery fn! """
 if dist < 20:
 return
 else:

 forward(dist)
 left(90)
 forward(dist/2.0)
 right(90)
 # line (a)
 right(90)
 forward(dist)
 left(90)
 # line (b)
 left(90)
 forward(dist/2.0)
 right(90)
 backward(dist)

What does chai(100) draw?(1) Be the turtle !
(2a)

(2b)

Imagine replacing
 # line (a)
with the line
 chai(dist/2)

What would
chai(100) then

draw?

then, ALSO replace
 # line (b)
with the same line:
 chai(dist/2)

What would
chai(100) then

draw?!

100

50

50

50

100

25

Dragon's-blood Tree

Do only plants get
to be recursive?

A brief word from our sponsor, Nature...

Branching seems to be plants-only?

Branching recursion is Strange!

Branching recursion is Strange!

def chai(dist):
 """ mystery fn! """
 if dist < 20:
 return
 else:

 forward(dist)
 left(90)
 forward(dist/2.0)
 right(90)
 # line (a)
 right(90)
 forward(dist)
 left(90)
 # line (b)
 left(90)
 forward(dist/2.0)
 right(90)
 backward(dist)

What does chai(100) draw?(1) Be the turtle !
(2a)

(2b)

Imagine replacing
 # line (a)
with the line
 chai(dist/2)

What would
chai(100) then

draw?

then, ALSO replace
 # line (b)
with the same line:
 chai(dist/2)

What would
chai(100) then

draw?!

100

50

50

50

100

25

50

100

25

50

25

25

25

lab ~ hw2pr1

100

64

spiral(initLength, angle, multiplier)

80

fractal art

Single-path or Branching recursion here?

spiral(100,90,0.8)

svtree(trunkLength, levels)

svtree(100, 5)

levels == 5

levels == 2

levels == 0
(no drawing)levels == 1

levels == 3

levels == 4

Single-path or Branching recursion here?

svtree(trunkLength, levels)

svtree(100, 5)

levels == 5

levels == 2

levels == 0
(no drawing)levels == 1

svtree(75, 4)

What steps does the
turtle need to take
before recursing?

levels == 3

levels == 4

Branching recursion!

svtree(trunkLength, levels)

levels == 5

levels == 4

levels == 3

levels == 2

levels == 0
(no drawing)

Be sure the turtle
always returns to its

starting position!
levels == 1

svtree(100, 5)

step #1: go forward…

step #2: turn a bit…

step #3: draw a
smaller svtree!

step #5: draw another
smaller svtree!

step #6: get back
to the start by

turning and
moving! step #4: turn to

another heading

Branching recursion!

svtree(trunkLength, levels)

svtree(100, 5)

levels == 5

levels == 2

levels == 0
(no drawing)levels == 1

svtree(75, 4)

Be sure the turtle
always returns to its

starting position!

that means it will
finish the recursive

call right here!

levels == 3

levels == 4

so that it can
change heading and
draw another one…

Branching recursion!

The Koch curve

snowflake(100, 0) snowflake(100, 1) snowflake(100, 2)

snowflake(100, 3) snowflake(100, 4) snowflake(100, 5)

Single-path or Branching recursion here?

	Slide 1: Randomness and More Recursion
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

