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Recursion?
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Data!



Bourton-on-the-water



Bourton-on-the-water



Bourton-on-the-water

town of ~2000 people



Bourton-on-the-water's 1/9 model



has a level-2 model…



has a level-2 model…



and a level-3 model…



and a level-3 model…



and even a    (very small!)   level-4 model



Turtle graphics…

Early attempts…

Robot turtles were tried…

But a computer window was easier…
Something isn't

right here…



functional programming

>>> 'fun' in 'functional'

True

Functional programming

• functions are powerful!

• leverage self-similarity (recursive code and data)

Composition & Decomposition 
— our lever to solve/investigate problems.

oh my, in for strings 
finds substrings!

• functions are “things” just like numbers or strings



functional programming
>>> print(print)

<built-in function print>

>>> exclaim = print

>>> exclaim("By jove!")

By jove!

Functional programming

• functions are powerful!

• leverage self-similarity (recursive code and data)

Composition & Decomposition 
— our lever to solve/investigate problems.

oh my, in for strings 
finds substrings!

• functions are “things” just like numbers or strings



Data

Functions

[13,14,15]

sum( )

[3,4,5,6,7,8,9]

… and their compositions

range( )



sum             range

def mysum(L):

    """ input: L, a list of #s

        output: L's sum

    """

    if len(L) == 0:

        return 0.0

    else:

        return L[0] + sum(L[1:])

Empty Case

Specicfic/General Case

Base Case

Recursive Case

list(range(low,hi,stride))sum(L)



def myrange(low, hi    ):

    """ input:  ints low and hi

        output: list from low to hi

    """

    if low >= hi:

        return 

    else:

        return

what's cookin' here?

excluding  hi

sum             range

stride?

list(range(low,hi,stride))sum(L)



def myrange(low, hi       ):

    """ input:  low and hi, integers

        output: a list from low upto hi

    """

    if low >= hi:

        return 

    else:

        return

We're on target!

but excluding  hi

, stride

Recursion's range

Extra!  Take a positive third input in stride 

myrange(3,7)

myrange(3,7,2)

[3,4,5,6]

[3,5]

Extra Extra   What if stride were negative?

Empty case:    What if low is greater than or equal to hi?

Specific/General case:    How could we use another call to range to help us?!



def myrange(low, hi       ):

    """ input:  low and hi, integers

        output: a list from low upto hi

    """

    if low >= hi:

        return 

    else:

        return

We're on target!

but excluding  hi

Recursion's range

Empty case:    What if low is greater than or equal to hi?

Specific/General case:    How could we use another call to range to help us?!

[]

[low] + range(low+1,hi)

Extra!  Take a positive third input in stride Extra Extra   What if stride were negative?

, stride

myrange(3,7)

myrange(3,7,2)

[3,4,5,6]

[3,5]



def myrange(low, hi       ):

    """ input:  low and hi, integers

        output: a list from low upto hi

    """

    if low >= hi:

        return 

    else:

        return

We're on target!

but excluding  hi

Recursion's range

[]

[low] + range(low+1,hi)

[low] + range(low+stride, hi, stride)

Extra Extra!!   
What if stride 
were negative?

Empty case:    What if low is greater than or equal to hi?

Specific/General case:    How could we use another call to range to help us?!

Extra!  Take a positive third input in stride 

myrange(3,7)

myrange(3,7,2)

[3,4,5,6]

[3,5]

, stride



Let's make some functions…

def double_all(L):
  """Takes a list and returns a new list
   with all the elements doubled."""
  if L == []:
    return []
  else:
    first_L = L[0]
    rest_L = L[1:]
    doubled_first = 2 * first_L
    doubled_rest = double_all(rest_L)
    return [doubled_first] + doubled_rest



Let's make some functions…

def double_all(L):
  """Takes a list and returns a new list
       with all the elements doubled."""
  if L == []:
    return []
  else:
    return [2 * L[0]] + double_all(L[1:])



Let's make some functions…

def twice(x):
  return 2 * x

def double_all(L):
  """Takes a list and returns a new list
       with all the elements doubled."""
  if L == []:
    return []
  else:
    return [twice(L[0])] + double_all(L[1:])



Let's make some functions…

def cube(x):
  return x * x * x

def cube_all(L):
  """Takes a list and returns a new list
   with all the elements cubed."""
  if L == []:
    return []
  else:
    return [cube(L[0])]  + cube_all(L[1:])



Let's generalize!

def apply_to_all(f, L):
  """Takes a function f and a list L and returns
   a new list with f applied to L's elements"""
  if L == []:
    return []
  else:
    return [         ] + apply_to_all(f, L[1:])

What goes here?



Let's generalize!

def apply_to_all(f, L):
  """Takes a function f and a list L and returns
   a new list with f applied to L's elements"""
  if L == []:
    return []
  else:
    return [ f(L[0]) ] + apply_to_all(f, L[1:])

Python already has 
apply_to_all, 
it's called map



Let's make even more functions…

def is_even(n):
  return n % 2 == 0

def only_even(L):
  """Takes a list L and returns a new list
   with only the even numbers in L."""
  if L == []:
    return []
  else:
    if is_even(L[0]):
      return [L[0]] + only_even(L[1:])
    else:
      return only_even(L[1:])



Let's make even more functions…

def is_odd(n):
  return not is_even(n)

def only_odd(L):
  """Takes a list L and returns a new list
   with only the odd numbers in L."""
  if L == []:
    return []
  else:
    if is_odd(L[0]):
      return [L[0]] + only_odd(L[1:])
    else:
      return only_odd(L[1:])



Let's generalize!

def keep_if(f, L):
  """Takes a function f and a list L and returns
   a new list with only the elements of L
   for which f is true."""
  if L == []:
    return []
  else:
    if
      return [L[0]] + keep_if(f, L[1:])
    else:
      return keep_if(f, L[1:])



Let's generalize!

def keep_if(f, L):
  """Takes a function f and a list L and returns
   a new list with only the elements of L
   for which f is true."""
  if L == []:
    return []
  else:
    if f(L[0]):
      return [L[0]] + keep_if(f, L[1:])
    else:
      return keep_if(f, L[1:])

Python already has 
keep_if, 
it's called filter



Powerful stuff

apply_to_all(cube, keep_if(is_odd, [1, 2, 3, 4, 5, 6]))

map(cube, filter(is_odd, [1, 2, 3, 4, 5, 6]))

a.k.a.



Math does it better!

Python won't give in 
that easily!

def x2gt3(x):
  return x**2 > 3

S = map(twice, filter(x2gt3, N))

But Python can do it, too…

This notation is sometimes called a “set comprehension”.



Math does it better!

Python won't give in 
that easily!

def x2gt3(x):
  return x**2 > 3

S = map(twice, filter(x2gt3, N))

But Python can do it, too…



Math does it better!

Python won't give in 
that easily!

R = [twice(x) for x in N if x2gt3(x)]

# Or, more directly:

R = [2*x for x in N if x**2 > 3]

But Python can do it, too…



Various approaches...

Eye, Eye, Eye!

many options for mapping a function onto a list:



List Comprehensions

What's the syntax 
saying here?

In: [ 2*x for x in [0,1,2,3,4,5] ]

List Comprehension

result[0, 2, 4, 6, 8, 10]



In: [ 2*x for x in [0,1,2,3,4,5] ]

What's the syntax 
saying here?

List Comprehenion

result[0, 2, 4, 6, 8, 10]

Expression to evaluate 
for each list element

Name for each 
list element The list - or string  to use

List Comprehensions



In: [ 2*x for x in [0,1,2,3,4,5] ]

[0, 2, 4, 6, 8, 10]
output

input

this "each one" variable can have any name... 

x takes on each value

and 2*x is output for each one

List Comprehensions



List Comprehensions

In: [ 10*x for x in [0,1,2,3,4,5] if x%2==0]

result

In: [ y*21 for y in range(0,3) ]

result

In: [ s[1] for s in ["hi", "5Cs!"] ]

result

expression iteration condition



[ n**2 for n in range(0,4) ]  
Try them out in!

[ s[1::2] for s in ['aces','451!'] ]

A range of list comprehensions

Write Python's result for each LC:

Got it! 

 But what 
about that 

name?

[ a*(a-1) for a in range(8) if a%2==1 ]

[ -7*b for b in range(-6,6) if abs(b)>4 ]

list

[0,1,2,3]

[ -6, -5, 5 ]

[ 1, 3, 5, 7 ]

[ z for z in [0,1,2] ]

[ 42 for z in [0,1,2] ]

[ 'z' for z in [0,1,2] ]

W
at

ch
 o

u
t 

!!
!

Names:   



[ n**2 for n in range(0,4) ]  

[ s[1::2] for s in ['aces','451!'] ]

Write Python's result for each LC:

Got it! 

 But what 
about that 

name?

[ a*(a-1) for a in range(8) if a%2==1 ]

[ -7*b for b in range(-6,6) if abs(b)>4 ]

list

[0,1,2,3]

[ -6, -5, 5 ]

[ 1, 3, 5, 7 ]

[ z for z in [0,1,2] ]

[ 42 for z in [0,1,2] ]

[ 'z' for z in [0,1,2] ]

W
at

ch
 o

u
t 

!!
!

[0,1,4,9]
Try them out in!

A range of list comprehensions

Names:   



[ n**2 for n in range(0,4) ]  
Try them out in!

[ s[1::2] for s in ['aces','451!'] ]

A range of list comprehensionsWrite Python's result for each LC:

Got it! 

 But what 
about that 

name?

[ a*(a-1) for a in range(8) if a%2==1 ]

[ -7*b for b in range(-6,6) if abs(b)>4 ]

list

[0,1,2,3]

[ 1, 3, 5, 7 ]

[ z for z in [0,1,2] ]

[ 42 for z in [0,1,2] ]

[ 'z' for z in [0,1,2] ]

W
at

ch
 o

u
t 

!!
!

[0,1,4,9]

['cs','5!']

[ -6, -5, 5 ]

[ 1, 3, 5, 7 ]

[42,35,-35]

[0,6,20,42]

[ 0,1,2 ]

[42,42,42]

['z','z','z']



[ n**2 for n in range(0,4) ]  
Try them out in!

[ s[1::2] for s in ['aces','451!'] ]

A range of list comprehensionsWrite Python's result for each LC:

[ a*(a-1) for a in range(8) if a%2==1 ]

[ -7*b for b in range(-6,6) if abs(b)>4 ]

list

[0,1,2,3]

[ 1, 3, 5, 7 ]

[ z for z in [0,1,2] ]

[ 42 for z in [0,1,2] ]

[ 'z' for z in [0,1,2] ]

W
at

ch
 o

u
t 

!!
!

[0,1,4,9]

['cs','5!']

[ -6, -5, 5 ]

[ 1, 3, 5, 7 ]

[42,35,-35]

[0,6,20,42]

[ 0,1,2 ]

[42,42,42]

['z','z','z']

heliotropically!



Syntax ?!

a (frustrated!) rendering of 
an unfamiliar math problem

>>> [ 2*x for x in [0,1,2,3,4,5] ]

[0, 2, 4, 6, 8, 10]

at first…

a jumble of characters 
and random other stuff



Syntax ~ is CS's key resource!

a (frustrated!) rendering of 
an unfamiliar math problem

which was likely 
similar to these…

Where'd the change happen?



Designing with LCs, sum, and range...

LC = [ 1 for c in 'i get it!' if c=='i' ]

Key idea:

answer = sum(LC)

What question is answer answering?!

What number is answer?

What's LC here?



Designing with LCs, sum, and range...

LC = [ 1 for c in 'i get it!' if c=='i' ]

Key idea:

answer = sum(LC)

What question is answer answering?!

What number is answer?

What's LC here?

2

How many  i's  are in 
'i get it' ?

[1,1]



LC = [1 for x in L]

return sum( LC )

fun1(L):def

[7,8,9]

Short and sweet!

Two fun:

LC = [letScore(c) for c in S]

return sum( LC )

fun2(S):def

'twelve'
from hw1pr3

letScore(c):def

What fun are these?



LC = [1 for x in L]

return sum( LC )

fun1(L):def

[7,8,9]

Two fun:

LC = [letScore(c) for c in S]

return sum( LC )

fun2(S):def

'twelve'
from hw1pr3

letScore(c):def

What fun are these?

But one-liners are 
my specialty…



LC = [1 for x in L]

return sum( LC )

len(L):def

I never get more than 
one line – who are the 

writers around here… ?

'cs5'

"One-line" LCs

possible in 1 line, but 
not recommended!



LC = [1 for x in L]

return sum( LC )

len(L):def

'cs5'

len(L):def

return sum([1 for x in L]) 

"One-line" LCs

possible in 1 line, but 
not recommended!

That's no one-liner!



vwl(s):

LC = [1 for c in s          ]        

return sum( LC )

# of vowels

def

'sequoia'

count(e,L):

# of times e is in L

LC = [1 for x in L          ] 

return sum( LC )

def

[3,42,5,7,42]42

if

if



vwl(s):

LC = [1 for c in s          ]        

return sum( LC )

def

'sequoia'

count(e,L):
LC = [1 for x in L          ] 

return sum( LC )

def

[3,42,5,7,42]42

if

if

if x == e 

if c in 'aeiou' 

# of vowels

# of times e is in L



Write each of these functions using list comprehensions…

def nodds(L): 

def lotto(Y,W): 

input:   L, any list of #s
output:  the # of  odd #s in L 
example:   nodds( [3,4,5,7,42] ) == 3

inputs:  Y and W, two lists of "lottery" numbers (ints)

output:  the # of matches between Y & W 
example:   lotto( [5,7,42,47] , [3,5,7,44,47] ) == 3

Y are your #s W are the winning #s

def primesUpTo(P): 

input: P, an int >= 2
output:  the list of prime #s up to + incl. P
example:    primesUpTo(12) == [2,3,5,7,11] Whoa!

return sum(LC)

return sum(LC)

return LC

return sum(LC)

LC = [ 1 for x in L if __________   ]         

LC = [ 1 for ___________________________          

LC = [ 1 for ___________________________         

LC = [ _________________________________         

def ndivs(x): 

input:  x, an int >= 2
output:  the # of positive divisors of x
example:    numdivs(12) == 6   (1,2,3,4,6,12)



Write each of these functions using list comprehensions…

def nodds(L): 

def lotto(Y,W): 

input:   L, any list of #s
output:  the # of  odd #s in L 
example:   nodds( [3,4,5,7,42] ) == 3

inputs:  Y and W, two lists of "lottery" numbers (ints)

output:  the # of matches between Y & W 
example:   lotto( [5,7,42,47] , [3,5,7,44,47] ) == 3

Y are your #s W are the winning #s

def ndivs(N): 

input:  N, an int >= 2
output:  the # of positive divisors of N
example:    numdivs(12) == 6   (1,2,3,4,6,12)

def primesUpTo(P): 

return sum(LC)

return sum(LC)

return LC

return sum(LC)

LC = [ 1 for x in L if x%2 == 1   ]         

LC = [ 1 for x in Y if x in W ]         

LC = [ 1 for x in range(1,N+1) if N%x == 0   ]         

LC = [ x for x in range(2,P+1) if ndivs(x)==2 ]         

input: P, an int >= 2
output:  the list of prime #s up to + incl. P
example:    primesUpTo(12) == [2,3,5,7,11] Whoa!



y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Areas of 4 rectangles

y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Areas of 8 rectangles

hw2pr3:   areas from rectangles



y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Area of N rectangles in the limit

hw2pr3:   areas from rectangles

(0,0)

(2.5,5)

y = 2x

(5,10) 

(7.5,15)

(10,20)

(0,0)

(2.5,5)



"two-by-four landscape"

Maya Lin, Artist and Computer Scientist…



hw2pr3:   Maya Lin, Architect…



"two-by-four landscape"

Maya Lin, Artist and Computer Scientist…



y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Areas of 8 rectangles

CS ~ Building Blocks!

scaledfracs(low,hi,N)

f_of_fracs(f,low,hi,N)

integrate(f,low,hi,N)

They're all LCs!

only a few lines...



y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Areas of 8 rectangles

CS ~ Building Blocks!

scaledfracs(low,hi,N)

f_of_fracs(f,low,hi,N)

integrate(f,low,hi,N)

They're all LCs!

only a few lines...

Next?  Coffee! ;-)
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