
Turtles?

Recursion?

Functions!

Data!

Bourton-on-the-water

Bourton-on-the-water

Bourton-on-the-water

town of ~2000 people

Bourton-on-the-water's 1/9 model

has a level-2 model…

has a level-2 model…

and a level-3 model…

and a level-3 model…

and even a (very small!) level-4 model

Turtle graphics…

Early attempts…

Robot turtles were tried…

But a computer window was easier…
Something isn't

right here…

functional programming

>>> 'fun' in 'functional'

True

Functional programming

• functions are powerful!

• leverage self-similarity (recursive code and data)

Composition & Decomposition
— our lever to solve/investigate problems.

oh my, in for strings
finds substrings!

• functions are “things” just like numbers or strings

functional programming
>>> print(print)

<built-in function print>

>>> exclaim = print

>>> exclaim("By jove!")

By jove!

Functional programming

• functions are powerful!

• leverage self-similarity (recursive code and data)

Composition & Decomposition
— our lever to solve/investigate problems.

oh my, in for strings
finds substrings!

• functions are “things” just like numbers or strings

Data

Functions

[13,14,15]

sum()

[3,4,5,6,7,8,9]

… and their compositions

range()

sum range

def mysum(L):

 """ input: L, a list of #s

 output: L's sum

 """

 if len(L) == 0:

 return 0.0

 else:

 return L[0] + sum(L[1:])

Empty Case

Specicfic/General Case

Base Case

Recursive Case

list(range(low,hi,stride))sum(L)

def myrange(low, hi):

 """ input: ints low and hi

 output: list from low to hi

 """

 if low >= hi:

 return

 else:

 return

what's cookin' here?

excluding hi

sum range

stride?

list(range(low,hi,stride))sum(L)

def myrange(low, hi):

 """ input: low and hi, integers

 output: a list from low upto hi

 """

 if low >= hi:

 return

 else:

 return

We're on target!

but excluding hi

, stride

Recursion's range

Extra! Take a positive third input in stride

myrange(3,7)

myrange(3,7,2)

[3,4,5,6]

[3,5]

Extra Extra What if stride were negative?

Empty case: What if low is greater than or equal to hi?

Specific/General case: How could we use another call to range to help us?!

def myrange(low, hi):

 """ input: low and hi, integers

 output: a list from low upto hi

 """

 if low >= hi:

 return

 else:

 return

We're on target!

but excluding hi

Recursion's range

Empty case: What if low is greater than or equal to hi?

Specific/General case: How could we use another call to range to help us?!

[]

[low] + range(low+1,hi)

Extra! Take a positive third input in stride Extra Extra What if stride were negative?

, stride

myrange(3,7)

myrange(3,7,2)

[3,4,5,6]

[3,5]

def myrange(low, hi):

 """ input: low and hi, integers

 output: a list from low upto hi

 """

 if low >= hi:

 return

 else:

 return

We're on target!

but excluding hi

Recursion's range

[]

[low] + range(low+1,hi)

[low] + range(low+stride, hi, stride)

Extra Extra!!
What if stride
were negative?

Empty case: What if low is greater than or equal to hi?

Specific/General case: How could we use another call to range to help us?!

Extra! Take a positive third input in stride

myrange(3,7)

myrange(3,7,2)

[3,4,5,6]

[3,5]

, stride

Let's make some functions…

def double_all(L):
 """Takes a list and returns a new list
 with all the elements doubled."""
 if L == []:
 return []
 else:
 first_L = L[0]
 rest_L = L[1:]
 doubled_first = 2 * first_L
 doubled_rest = double_all(rest_L)
 return [doubled_first] + doubled_rest

Let's make some functions…

def double_all(L):
 """Takes a list and returns a new list
 with all the elements doubled."""
 if L == []:
 return []
 else:
 return [2 * L[0]] + double_all(L[1:])

Let's make some functions…

def twice(x):
 return 2 * x

def double_all(L):
 """Takes a list and returns a new list
 with all the elements doubled."""
 if L == []:
 return []
 else:
 return [twice(L[0])] + double_all(L[1:])

Let's make some functions…

def cube(x):
 return x * x * x

def cube_all(L):
 """Takes a list and returns a new list
 with all the elements cubed."""
 if L == []:
 return []
 else:
 return [cube(L[0])] + cube_all(L[1:])

Let's generalize!

def apply_to_all(f, L):
 """Takes a function f and a list L and returns
 a new list with f applied to L's elements"""
 if L == []:
 return []
 else:
 return [] + apply_to_all(f, L[1:])

What goes here?

Let's generalize!

def apply_to_all(f, L):
 """Takes a function f and a list L and returns
 a new list with f applied to L's elements"""
 if L == []:
 return []
 else:
 return [f(L[0])] + apply_to_all(f, L[1:])

Python already has
apply_to_all,
it's called map

Let's make even more functions…

def is_even(n):
 return n % 2 == 0

def only_even(L):
 """Takes a list L and returns a new list
 with only the even numbers in L."""
 if L == []:
 return []
 else:
 if is_even(L[0]):
 return [L[0]] + only_even(L[1:])
 else:
 return only_even(L[1:])

Let's make even more functions…

def is_odd(n):
 return not is_even(n)

def only_odd(L):
 """Takes a list L and returns a new list
 with only the odd numbers in L."""
 if L == []:
 return []
 else:
 if is_odd(L[0]):
 return [L[0]] + only_odd(L[1:])
 else:
 return only_odd(L[1:])

Let's generalize!

def keep_if(f, L):
 """Takes a function f and a list L and returns
 a new list with only the elements of L
 for which f is true."""
 if L == []:
 return []
 else:
 if
 return [L[0]] + keep_if(f, L[1:])
 else:
 return keep_if(f, L[1:])

Let's generalize!

def keep_if(f, L):
 """Takes a function f and a list L and returns
 a new list with only the elements of L
 for which f is true."""
 if L == []:
 return []
 else:
 if f(L[0]):
 return [L[0]] + keep_if(f, L[1:])
 else:
 return keep_if(f, L[1:])

Python already has
keep_if,
it's called filter

Powerful stuff

apply_to_all(cube, keep_if(is_odd, [1, 2, 3, 4, 5, 6]))

map(cube, filter(is_odd, [1, 2, 3, 4, 5, 6]))

a.k.a.

Math does it better!

Python won't give in
that easily!

def x2gt3(x):
 return x**2 > 3

S = map(twice, filter(x2gt3, N))

But Python can do it, too…

This notation is sometimes called a “set comprehension”.

Math does it better!

Python won't give in
that easily!

def x2gt3(x):
 return x**2 > 3

S = map(twice, filter(x2gt3, N))

But Python can do it, too…

Math does it better!

Python won't give in
that easily!

R = [twice(x) for x in N if x2gt3(x)]

Or, more directly:

R = [2*x for x in N if x**2 > 3]

But Python can do it, too…

Various approaches...

Eye, Eye, Eye!

many options for mapping a function onto a list:

List Comprehensions

What's the syntax
saying here?

In: [2*x for x in [0,1,2,3,4,5]]

List Comprehension

result[0, 2, 4, 6, 8, 10]

In: [2*x for x in [0,1,2,3,4,5]]

What's the syntax
saying here?

List Comprehenion

result[0, 2, 4, 6, 8, 10]

Expression to evaluate
for each list element

Name for each
list element The list - or string to use

List Comprehensions

In: [2*x for x in [0,1,2,3,4,5]]

[0, 2, 4, 6, 8, 10]
output

input

this "each one" variable can have any name...

x takes on each value

and 2*x is output for each one

List Comprehensions

List Comprehensions

In: [10*x for x in [0,1,2,3,4,5] if x%2==0]

result

In: [y*21 for y in range(0,3)]

result

In: [s[1] for s in ["hi", "5Cs!"]]

result

expression iteration condition

[n**2 for n in range(0,4)]
Try them out in!

[s[1::2] for s in ['aces','451!']]

A range of list comprehensions

Write Python's result for each LC:

Got it!

 But what
about that

name?

[a*(a-1) for a in range(8) if a%2==1]

[-7*b for b in range(-6,6) if abs(b)>4]

list

[0,1,2,3]

[-6, -5, 5]

[1, 3, 5, 7]

[z for z in [0,1,2]]

[42 for z in [0,1,2]]

['z' for z in [0,1,2]]

W
at

ch
 o

u
t

!!
!

Names:

[n**2 for n in range(0,4)]

[s[1::2] for s in ['aces','451!']]

Write Python's result for each LC:

Got it!

 But what
about that

name?

[a*(a-1) for a in range(8) if a%2==1]

[-7*b for b in range(-6,6) if abs(b)>4]

list

[0,1,2,3]

[-6, -5, 5]

[1, 3, 5, 7]

[z for z in [0,1,2]]

[42 for z in [0,1,2]]

['z' for z in [0,1,2]]

W
at

ch
 o

u
t

!!
!

[0,1,4,9]
Try them out in!

A range of list comprehensions

Names:

[n**2 for n in range(0,4)]
Try them out in!

[s[1::2] for s in ['aces','451!']]

A range of list comprehensionsWrite Python's result for each LC:

Got it!

 But what
about that

name?

[a*(a-1) for a in range(8) if a%2==1]

[-7*b for b in range(-6,6) if abs(b)>4]

list

[0,1,2,3]

[1, 3, 5, 7]

[z for z in [0,1,2]]

[42 for z in [0,1,2]]

['z' for z in [0,1,2]]

W
at

ch
 o

u
t

!!
!

[0,1,4,9]

['cs','5!']

[-6, -5, 5]

[1, 3, 5, 7]

[42,35,-35]

[0,6,20,42]

[0,1,2]

[42,42,42]

['z','z','z']

[n**2 for n in range(0,4)]
Try them out in!

[s[1::2] for s in ['aces','451!']]

A range of list comprehensionsWrite Python's result for each LC:

[a*(a-1) for a in range(8) if a%2==1]

[-7*b for b in range(-6,6) if abs(b)>4]

list

[0,1,2,3]

[1, 3, 5, 7]

[z for z in [0,1,2]]

[42 for z in [0,1,2]]

['z' for z in [0,1,2]]

W
at

ch
 o

u
t

!!
!

[0,1,4,9]

['cs','5!']

[-6, -5, 5]

[1, 3, 5, 7]

[42,35,-35]

[0,6,20,42]

[0,1,2]

[42,42,42]

['z','z','z']

heliotropically!

Syntax ?!

a (frustrated!) rendering of
an unfamiliar math problem

>>> [2*x for x in [0,1,2,3,4,5]]

[0, 2, 4, 6, 8, 10]

at first…

a jumble of characters
and random other stuff

Syntax ~ is CS's key resource!

a (frustrated!) rendering of
an unfamiliar math problem

which was likely
similar to these…

Where'd the change happen?

Designing with LCs, sum, and range...

LC = [1 for c in 'i get it!' if c=='i']

Key idea:

answer = sum(LC)

What question is answer answering?!

What number is answer?

What's LC here?

Designing with LCs, sum, and range...

LC = [1 for c in 'i get it!' if c=='i']

Key idea:

answer = sum(LC)

What question is answer answering?!

What number is answer?

What's LC here?

2

How many i's are in
'i get it' ?

[1,1]

LC = [1 for x in L]

return sum(LC)

fun1(L):def

[7,8,9]

Short and sweet!

Two fun:

LC = [letScore(c) for c in S]

return sum(LC)

fun2(S):def

'twelve'
from hw1pr3

letScore(c):def

What fun are these?

LC = [1 for x in L]

return sum(LC)

fun1(L):def

[7,8,9]

Two fun:

LC = [letScore(c) for c in S]

return sum(LC)

fun2(S):def

'twelve'
from hw1pr3

letScore(c):def

What fun are these?

But one-liners are
my specialty…

LC = [1 for x in L]

return sum(LC)

len(L):def

I never get more than
one line – who are the

writers around here… ?

'cs5'

"One-line" LCs

possible in 1 line, but
not recommended!

LC = [1 for x in L]

return sum(LC)

len(L):def

'cs5'

len(L):def

return sum([1 for x in L])

"One-line" LCs

possible in 1 line, but
not recommended!

That's no one-liner!

vwl(s):

LC = [1 for c in s]

return sum(LC)

of vowels

def

'sequoia'

count(e,L):

of times e is in L

LC = [1 for x in L]

return sum(LC)

def

[3,42,5,7,42]42

if

if

vwl(s):

LC = [1 for c in s]

return sum(LC)

def

'sequoia'

count(e,L):
LC = [1 for x in L]

return sum(LC)

def

[3,42,5,7,42]42

if

if

if x == e

if c in 'aeiou'

of vowels

of times e is in L

Write each of these functions using list comprehensions…

def nodds(L):

def lotto(Y,W):

input: L, any list of #s
output: the # of odd #s in L
example: nodds([3,4,5,7,42]) == 3

inputs: Y and W, two lists of "lottery" numbers (ints)

output: the # of matches between Y & W
example: lotto([5,7,42,47] , [3,5,7,44,47]) == 3

Y are your #s W are the winning #s

def primesUpTo(P):

input: P, an int >= 2
output: the list of prime #s up to + incl. P
example: primesUpTo(12) == [2,3,5,7,11] Whoa!

return sum(LC)

return sum(LC)

return LC

return sum(LC)

LC = [1 for x in L if __________]

LC = [1 for ___________________________

LC = [1 for ___________________________

LC = [_________________________________

def ndivs(x):

input: x, an int >= 2
output: the # of positive divisors of x
example: numdivs(12) == 6 (1,2,3,4,6,12)

Write each of these functions using list comprehensions…

def nodds(L):

def lotto(Y,W):

input: L, any list of #s
output: the # of odd #s in L
example: nodds([3,4,5,7,42]) == 3

inputs: Y and W, two lists of "lottery" numbers (ints)

output: the # of matches between Y & W
example: lotto([5,7,42,47] , [3,5,7,44,47]) == 3

Y are your #s W are the winning #s

def ndivs(N):

input: N, an int >= 2
output: the # of positive divisors of N
example: numdivs(12) == 6 (1,2,3,4,6,12)

def primesUpTo(P):

return sum(LC)

return sum(LC)

return LC

return sum(LC)

LC = [1 for x in L if x%2 == 1]

LC = [1 for x in Y if x in W]

LC = [1 for x in range(1,N+1) if N%x == 0]

LC = [x for x in range(2,P+1) if ndivs(x)==2]

input: P, an int >= 2
output: the list of prime #s up to + incl. P
example: primesUpTo(12) == [2,3,5,7,11] Whoa!

y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Areas of 4 rectangles

y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Areas of 8 rectangles

hw2pr3: areas from rectangles

y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Area of N rectangles in the limit

hw2pr3: areas from rectangles

(0,0)

(2.5,5)

y = 2x

(5,10)

(7.5,15)

(10,20)

(0,0)

(2.5,5)

"two-by-four landscape"

Maya Lin, Artist and Computer Scientist…

hw2pr3: Maya Lin, Architect…

"two-by-four landscape"

Maya Lin, Artist and Computer Scientist…

y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Areas of 8 rectangles

CS ~ Building Blocks!

scaledfracs(low,hi,N)

f_of_fracs(f,low,hi,N)

integrate(f,low,hi,N)

They're all LCs!

only a few lines...

y = 2x

(0,0)

(2.5,5)

(5,10)

(7.5,15)

Areas of 8 rectangles

CS ~ Building Blocks!

scaledfracs(low,hi,N)

f_of_fracs(f,low,hi,N)

integrate(f,low,hi,N)

They're all LCs!

only a few lines...

Next? Coffee! ;-)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Let's make some functions…
	Slide 21: Let's make some functions…
	Slide 22: Let's make some functions…
	Slide 23: Let's make some functions…
	Slide 24: Let's generalize!
	Slide 25: Let's generalize!
	Slide 26: Let's make even more functions…
	Slide 27: Let's make even more functions…
	Slide 28: Let's generalize!
	Slide 29: Let's generalize!
	Slide 30: Powerful stuff
	Slide 31: Math does it better!
	Slide 32: Math does it better!
	Slide 33: Math does it better!
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

