
CS 134 Midterm Solution March 11, 2019

Name:

Answer the questions in the spaces provided on the question sheets. If you
run out of room for an answer, continue on the back of the page.

You may use any books or notes you wish. You may also use a computer
to access the class website (any of the pages hosted at https://www.cs.
hmc.edu/˜rhodes/cs134, plus any reachable in one click from any of
those pages) and your github Jos repository. No other use of the computer
is allowed. (For example, no browsing source code locally, no use of calcu-
lators, no playing music or checking email, no browsing of any other web-
sites.)
You may bring a laptop to the in-class midterm, or you may choose to take
the midterm in the B105 lab and use the computers there. If the latter, arrive
to class at 1PM to receive the exam. Begin the exam at 1:15, Finish at 2:30,
and then return the exam to the classroom.

If you think something about a question is open to interpretation, ask. If
necessary, write any assumptions you’ve made as part of answering the
question.

Be concise in your answers; you need not try to fill in all or even most of the
lines provided for an answer.

Question: 1 2 3 4 5 6 7 8 9 Total

Points: 12 12 15 6 6 6 6 6 6 75

Score:



CS 134 Midterm Solution March 11, 2019

1. Assume an xv6 file system with the following layout (note the following sizes—
blocks: 512 bytes, inodes: 64 bytes, directory entries: 16 bytes , inode numbers: 2
bytes, and block numbers: 4 bytes):

block num usage
0 unused (usually boot block)
1 super block

2...31 log for transactions
32...57 array of inodes, packed into blocks

58 block in-use bitmap (0=free, 1=used)
59... file or directory content blocks

Assume only a single directory (the root).

(a)3 points What is the maximum size a file can be?

Solution: There are 12 block references in an inode, and one single-indirect
block that refers to another 512/4 = 128 blocks. So there are a total of 140
blocks. With 512 bytes per block, the maximum file size is 140 × 512 = 7168
bytes.

(b)3 points How many such maximum-size files can there be (and what is the limiting fac-
tor?)

Solution: Each file takes 141 blocks (140 data blocks + one indirect block).
There are a maximum of 512 × 8 = 4096 blocks addressable by the block in-
use bitmap. One block is used by the root directory. So, we could support
b4096/141c = 29 maximum-size files (whose directory entries could fit in the
single root directory disk block).
The limiting factor is the block in-use bitmap.

(c)3 points What is the minimum size a file can be?

Solution: A file can by 0 bytes long

(d)3 points How many such minimum-size files can there be (and what is the limiting fac-
tor?)

Solution: There would be no file content blocks, and only a single directory
content block. There are a maximum of 512× 8 = 2048 blocks addressable by
the block in-use bitmap. Each such block could support 512/16 = 32 directory
entries. So, an upper-bound on the number of directory entries is 2048 × 32.
We’d have to subtract the two directory entries for . and ...

Page 2



Question 1 continues. . . CS 134 Midterm Solution March 11, 2019

However, a file/directory can’t be 2048 blocks big. From part (a) we know
the directory can contain at most 140 blocks. With 32 directory entries per
block, we’d have a total of 140x32− 2 = 4478 files (−2 for . and .. entries).
A third limitation is the inodes. Each file would consume a single inode.
There are 512/64 = 8 inodes per block and 26 inode blocks for a total of
26 × 8 = 208 inodes. One of the inodes is used by the directory, so there are
207 left for files. Thus, we could support 207 minimum-length files and the
number of inodes would be the limiting factor.
However, if we did a hard-link so that every file had the same inode (possible
since they all have the same contents), the number of inodes would no longer
be a limiting factor. Instead, the size of the root directory would, leading to a
final answer of 4478.

Page 3



CS 134 Midterm Solution March 11, 2019

2. Imagine a simplified x86 architecture with a single-level page table, 4-bit page num-
ber, and 4-bit offset. There are still the standard segments: code, data, stack, and
other. We have 256 bytes of physical memory

An 8-bit virtual address consists of: 4-bit page # 4-bit offset

Each page table entry (PTE) consists of: 4-bit frame # 2-bits unused PTE W PTE P

Here are the relevant tables for a specific process:

Segment Table:

Segment Base address Length
code (CS) 0x10 0x8
data (DS) 0xF0 0x10
stack (SS) 0x30 0x40

Page Table:

Page #: Frame # PTE W PTE P
0 0xA 1 1
1 0x3 1 1
2 0x8 1 1
3 0x2 1 1
4 0x1 1 1
5 0x0 0 0
6 0x6 1 1

7...14 0x0 0 0
15 0xB 1 1

For the following, find the physical address (or INVALID):

(a)3 points If the instruction pointer (IP) were 0x06, what physical address would it refer to?

Solution: The segment register used for the IP is the code segment (CS). The
max length is 0x8 bytes, and the IP doesn’t exceed that. The base address is
0x10, so we construct the linear address by adding together the base address
with the VA: 0x10 + 0x06=0x16.
We convert a linear address to a physical address using the page table. The
high nibble (half-byte) of the linear address is 1, so we use the entry at loca-
tion 1 of the page table and find that the entry is present. The frame number
from that entry is 3, so we concatenate the frame number of 3 with the offset
of 6 to obtain a PA of 0x36.

(b)3 points If the instruction pointer (IP) were 0x16, what physical address would it refer to?

Solution: The segment register used for the IP is the code segment (CS). The
max length is 0x8 bytes, but the IP is greater than that. So, this is an INVALID
address.

Page 4



Question 2 continues. . . CS 134 Midterm Solution March 11, 2019

(c)3 points If the stack pointer (SP) were 0x18, what physical address would it refer to?

Solution: The segment register used for the SP is the stack segment (SS). The
max length of SS is 0x40 bytes, and the SP doesn’t exceed that. The base
address is 0x30, so we construct the linear address by adding together the
base address with the VA: 0x30 + 0x18=0x48.
We convert a linear address to a physical address using the page table. The
high nibble of the linear address is 4, so we use the entry at location 4 of the
page table and find that the entry is present. The frame number from that
entry is 1, so we concatenate the frame number of 1 with the offset of 8 to
obtain a PA of 0x18.

(d)3 points If the stack pointer (SP) were 0x28, what physical address would it refer to?

Solution: The segment register used for the SP is the stack segment (SS). The
max length of SS is 0x40 bytes, and the SP doesn’t exceed that. The base
address is 0x30, so we construct the linear address by adding together the
base address with the VA: 0x30 + 0x28=0x58.
We convert a linear address to a physical address using the page table. The
high nibble of the linear address is 5, so we use the entry at location 5 of the
page table and find that PTE P is not set. Thus, the address is INVALID

Page 5



CS 134 Midterm Solution March 11, 2019

3. This question looks at different processes running on xv6, and what happens to those
processes after a specified event occurs.

Here is the code for process X running on xv6:

main()
{

while(1) {
}
printf(1, here);
exit();

}

As you can see, process X is in an infinite loop. The event is that another process Y
calls (and completes) the kill() system call to terminate process X.

Is it possible for process X to execute any more user-space instructions after the event
completes? Explain. If yes, what will finally cause X to stop executing user-space
instructions, and will X print anything?

(a)3 points If the xv6 system has 1 CPU?

Solution:
No. If process Y is running, process X cannot be running.
The only way process X can not be running is if it had been:

• interrupted by a timer interrupt, causing trap() to call yield() at
line 3475, or

• sleeping as a result of some system call.

In the first case, when the scheduler tries to run X, X’s kernel thread will re-
sume in the yield, and trap() will then check in line 3478 whether the
process has been killed, Since it has, line 479 will exit the process, never re-
turning.
In the second case, when kill() marks the sleeping process X RUNNABLE, X
will wakeup from sleep and return the the caller of sleep. Some callers may
exit the sleep loop; others (like iderw) may not immediately return, but only
return once the needed I/O is done. Eventually, though the system call that
was underway will be finished. At that point, line 3407 will return, and trap
will find that the process has been killed and will exit, never returning.

(b)3 points If the xv6 system has 2 CPUs?

Page 6



Question 3 continues. . . CS 134 Midterm Solution March 11, 2019

Solution: Yes. If Process X is running in user space on a different CPU than
Y, it will continue to execute until the next hardware interrupt (like the timer
interrupt) on its CPU. At that point,trap() will see that Xs p->killable
flag is set and call exit() at 3469.
Process X will not print anything because it’ll never leave the infinite loop.

Page 7



Question 3 continues. . . CS 134 Midterm Solution March 11, 2019

Here is the code for process U running on xv6:
main()
{

kill(getpid()); // The completion of the kill
// call is the event

printf(1, "here");
exit();

}

(c)3 points Is it possible for process U to execute any more user-space instructions after the
event completes? Explain. If yes: what will finally cause U to stop executing
user-space instructions, and will U print anything?

Solution: No. After process U calls kill on its own PID, exit will never
return. Line 2663 sets the state of the process to ZOMBIE, and then calls the
scheduler, which’ll never run a ZOMBIE process.

Here is the code for process V running on xv6:
main()
{

* (char *) 0xf0000000 = 'a'; // The assignment is the event
printf(1, "here");
exit();

}

(d)3 points Is it possible for process V to execute any more user-space instructions after the
event completes? Explain. If yes: what will finally cause V to stop executing
user-space instructions, and will V print anything?

Solution: No. The assignment wil cause a page fault (because V is running
in user-mode, and the given address doesn’t have PTE U set). Line 3458 of
trap will set the process to killed. Lines 3468 and 3469 will then exit the
newly-killed process.

Page 8



Question 3 continues. . . CS 134 Midterm Solution March 11, 2019

Here is the code for process W running on xv6 (assume foo is a file of length 10):
main()
{

int fd = open("foo", O_RDONLY);
read(fd, (char *) 0xf0000000, 5); // The completion of the

// read call is the event
printf(1, "here");
exit();

}

(e)3 points Is it possible for process W to execute any more user-space instructions after the
event completes? Explain. If yes: what will finally cause W to stop executing
user-space instructions, and will W print anything?

Solution: Yes. Passing an invalid address to the read system call will cause
read to return an error (lines 6138-6139); it won’t exit the process. W will
print here.
W will stop executing user-space instructions after its call to exit().

Page 9



CS 134 Midterm Solution March 11, 2019

4.6 points What would go wrong if you replaced pushcli()’s implementation (xv6 line 1667)
with just cli(), and popcli()’s implementation (xv6 line 1679) with just sti()?

Solution: If a kernel thread acquires two locks and then releases one, release()
would cause interrupts to be turned on. Then an interrupt could occur, and if the
interrupt handling code tried to acquire the one lock that is still held, acquire()
would panic.

5.6 points Given a user-provided pointer to a buffer in user memory (such as the argument of a
system call), explain what checks and translations the JOS kernel must do to ensure
that it can safely read or write the buffer memory. Do not assume or rely on the
existence of a function in the kernel that does these checks and translations for you.

Solution: The JOS kernel does not need to translate the address, since the en-
vironment’s memory is mapped into the kernel at the same addresses that the
environment itself uses. JOS needs to make three safety checks before it can deref-
erence a pointer supplied by the environment without fear of incurring a page
fault or reading or writing outside the environment’s memory.

1. The PTE U flag must be set in the corresponding PTE (equivalently, the ad-
dress must be less than UTOP).

2. The PTE P bit must be set in the PTE.

3. If JOS needs to write through the pointer, the PTE W bit must be set.

The above three conditions need to hold for each page of the environment’s buffer.

6.6 points Does the JOS kernel have a mechanism equivalent to xv6’s swtch (xv6 line 3058)? If
yes, what? If not, explain why xv6 needs it but JOS does not.

Solution: Answer: No. xv6 must switch between the stacks of kernel threads,
while JOS has only one kernel stack.

Page 10



CS 134 Midterm Solution March 11, 2019

7.6 points xv6 enables interrupts in the kernel during system calls and device interrupts, which
adds some complexity since xv6 has to carefully disable and enable interrupts when
locking. In contrast, JOS (as you will find in Lab 4 Part C) only enables interrupts in
user space, and arranges for the hardware to automatically disable interrupts when
entering the kernel. Would anything go wrong if xv6 also disabled interrupts in the
kernel? Support your claim.

Solution: Answer: Yes. Suppose we have a single-CPU system, there is only one
running or runnable process and it performs a disk read. The kernel will issue the
IDE request and that kernel thread will go to sleep to wait for the IDE interrupt.
Since that was the only runnable process, the kernel will enter the idle loop and
never wake up because it will never receive the IDE interrupt.

(It is not true that blocking system calls simply stop working. A blocking system
call will still go to sleep, which will schedule another runnable user process and
return to user space, where interrupts will be delivered. The danger is if there are
no runnable user processes, in which case you stay in the kernel’s idle loop with
interrupts disabled.)

8.6 points Suppose you wanted to modify xv6 so that a user process can address more than 2GB
of virtual memory. KERNBASE is mapped at 2GB, and you could increase it. How-
ever, the macros V2P() and P2V() wouldn’t work correctly anymore, because they
assume that the kernel has all of physical memory mapped at KERNBASE. Assuming
you can’t port xv6 to a 64-bit architecture, how could you modify xv6 to support user
processes with more than 2GB of memory while still allowing the kernel to to address
all of physical memory? What’s the least amount of address space in the kernel that
would be needed to address all of physical memory?

Solution: xv6 could temporarily map each physical address at the time the kernel
needs to access it. This could be done in a dynamically managed region of kernel
virtual memory that is smaller than KERNBASE. At a minimum, the kernel would
need a single page (4Kb) of virtual address that could be remapped to the desired
physical page. Two pages might be easier (so that copying could be done between
the two physical pages without having to use an intermediate buffer).

Page 11



CS 134 Midterm Solution March 11, 2019

9. This question is a survey for which I pay midterm points:)

(a)2 points Describe the most memorable error you have made so far in one of the labs.
(Provide enough detail so I can understand your answer.)

Solution:

I would like to hear your opinions of CS 134 so far. Please answer the following
two questions (any answer except no answer at all will receive full credit).

(b)2 points What is the best part of CS 134?

Solution:

(c)2 points What is the worst part of CS 134?

Solution:

Page 12


