
CSE 120: Final Solution
September 7, 2007

Name: ____________________________

Student ID:_______________________

Write your test number on all pages because the pages may be sepa-
rated for grading.

No books are allowed. Two double-sided 3x5 cards of handwritten
notes are allowed, as is a calculator

If you think something about the question is open to interpretation,
ask!.

Leaving a question blank will give you 25% partial credit. An answer
that we can’t read, can’t understand, or is true, but not directly relevant to
the question will receive a 0.

Problem Score

1 /8

2 /4

3 /8

4 /6

5 /8

6 /4

7 /4

8 /8

9 /8

10 /12

11 /12

12 /10

13 /10

14 /10

Extra Credit /5

Extra Credit /8

Total /112

1



1. 8 pts. In Nachos project 3, there is a method, Processor.writeTLBEntry
that will write an entry to the TLB. Fill in the missing class name in
the declaration of that method:

public void writeTLBEntry(int number, ______________________________ entry);

Solution: TranslationEntry 2 points

In Nachos, what are the fields that are stored in a TLB entry?

Solution:

• vpn

• ppn

• valid

• used

• dirty

• readOnly

1 point each

2. 4 pts. Which of the following best describes the difference between
global and local page replacement algorithms?

(a) If a process p page faults, a local page replacement algorithm
will page out a page belonging to p, while a global replacement
algorithm can page out any page.

(b) If a process p page faults, a local page replacement algorithm
will consider only the recent history of page references (local),
while a global page replacement algorithm will consider the en-
tire history of all page references (global).

(c) Global page replacement algorithms can’t exhibit Belady’s anomaly,
while local page replacement algorithms can.

(d) Global and local page replacement algorithms both try to re-
duce the frequency of page faults, but global algorithms are eas-
ier to implement

Solution: a) is correct

2



3. 8 pts. What is saved and restored (and where is it saved from and
restored to) on a context switch between two threads in the same
process? Between two threads in a different process? Be explicit.

Solution: In the same process, must save register, sp, and pc into tcb
of old thread (2 points) must restore registers, sp, pc from tcb of new
thread. (2 points)

In a different process, must save and restore as above (2 points), but
must also restore the Page Table Base Register from the pcb of new
thread (2 points).

4. 6 pts. The Bankers algorithm is said to keep the system in a safe state.
Describe what a safe state is and explain how the Bankers algorithm
keeps the system in a safe state.

Keep your answer short.

Solution: A safe state is one where there some ordering of resource
requests exists (up to a process’s predefined maximum) that the sys-
tem can satisfy without deadlock.

3



5. 8 pts. Assume that it requires reading D disk blocks to read the first
block of a file. Give a formula for the average time it takes to read
the first block of the file in terms of D and the following constants:

Cy CPU cycle time (in nanoseconds)

Sk Average disk seek time (in seconds)

La Average rotational latency in seconds

Ov CPU overhead to initialize a one-block disk read (in seconds)

Bw Disk transfer time (in bytes/second)

Bs Disk block size (in bytes)

Fs Size of the file (in bytes)

Fg Percentage of files on the disk that are fragmented (non-contiguous)

If the formula is wrong, but with an explanation you may receive
partial credit.

Solution: There are D disk blocks, so if we figure the time to read
one block, we can multiply that by D. To read a block, the following
occur (in order):

(a) Initiate the read (Ov)

(b) Seek to appropriate track (Sk)

(c) Wait for the correct sector to rotate under the disk head (La)

(d) Transfer one block worth of data (Bs/Bw)

The units of each of those is (correctly) in seconds. Final answer:

D(Ov+Sk +La+
Bs
Bw

)

6. 4 pts. A non-maskable interrupt (NMI):

(a) Can be generated on some machines by pushing a halt button.

(b) Causes the hardware to immediately jump to the interrupt ser-
vice routine assigned to that NMI.

(c) Can’t be disabled by disabling interrupts.

(d) All of the above

(e) None of the above

Solution: d) is correct. They’re all examples of NMIs

4



7. 4 pts. A working set is best described as:

(a) The set of pages that that CPU will reference in the near future.

(b) The set of pages that the CPU has referenced in the recent his-
tory

(c) The set of pages that a process will reference in its near future.

(d) The set of pages that a process has referenced in its recent his-
tory

Solution: d) is correct. The working set is based on looking back in
time for a given process

8. 8 pts. Consider the parameter ∆ used to define the working-set
window in the working-set model. What is the effect of setting ∆ to
a small value on the page fault frequency and the number of active
(non-suspended) processes currently executing in the system? What
is the effect when ∆ is set to a very high value?

Solution: A small value of ∆ means that there will be fewer pages
in the working set. This will lead to a higher page-fault frequency.
Since there are fewer pages in the working set of each process, more
processes can be actively executing.

The effect of a large ∆ is the opposite: lower page-fault frequency
and fewer processes actively executing.

One way to look at it is to imagine the extremes: A ∆ of one instruc-
tion would mean only the last-accessed page is in memory. An infi-
nite ∆ would mean that no page ever accessed by a process would be
evicted.

9. 8 pts. Using the reference string <1 2 1 3 4 2 1 5 3 5 2>, fill in the
table below (representing three page frames) using the LRU page
replacement policy. How many page faults occur?

Solution:
1* 1 1 1 1 2* 2 2 3* 3 3

2* 2 1 4* 4 4 5* 5 5 5
3* 3 3 1* 1 1 1* 2*

There are 10 total page faults.

5



10. 12 pts. Assume we have a demand-paging system with the follow-
ing characteristics

• There is a single-level page table.

• It takes 3 milliseconds to service a page fault if there is a free
frame available or if the frame to be evicted is not modified.
Fifty percent of page faults fall into this category.

• It takes 7 milliseconds to service a page fault if the frame to be
evicted is modified. Fifty percent of page faults fall into this
category.

• Main-memory access time is 80 nanoseconds.

• The page-fault frequency is 1 fault/1,000,000 virtual memory
accesses.

• The TLB caches page table entries. If a page table entry is in the
TLB, the associated frame number is returned with an overhead
of 10 ns. The TLB-hit rate is 99.9%.

• The TLB lookup is parallel (starting a lookup of the page table
while looking in the TLB).

What is the effective memory access time? Is it more or less than 100
nanoseconds?

Solution: The effective memory access time is the weighted average.

• The page table entry is in the TLB .999 of the time. The cost is
80+10 nanoseconds for a memory access in this case.

• The frame is not in memory 10−6 of the time. The cost is 3 mil-
lisecond (3,000,000 nanoseconds) thirty percent of that time, and
7 milliseconds (7,000,000 nanoseconds) seventy percent of that
time.

• The PTE is not in TLB, but the frame is in memory the remainder
of the time (.001 - 10−6). The cost is two memory accesses, or 160
nanoseconds.

Total weighed time:

.999× (80+10)+10−6(0.5×3×106 +0.5×7×106)+(.001−10−6)×160 =

.999×90+(1.5+3.5)+ .16−1.6×10−4
≈

95.07nanoseconds

This is, of course, slightly less than 100 nanoseconds.

6



11. 12 pts. A disk services a request for cylinder 20, and then while it
is servicing another request for cylinder 40 (with an empty queue),
the requests for the following cylinders appear in its queue in this
order: 15 65 83 37 22 53. Assume no new requests come in. In what
order are the requests in the queue satisfied using the following disk
scheduling algorithms?

(a) Shortest Seek First

Solution: 37, 22, 15, 53, 65, 83. Always to the closest of the re-
maining cylinders.

(b) Look (Scan or elevator but doesn’t move all the way to the outer
or inner cylinder if not necessary)

Solution: The head is moving up (since it went from 20 to 40),
so will continue increasing: 53, 65, 83. At this point, it reverses,
moving down: 37, 22, 15.

(c) C-Look (no servicing requests as the disk head moves from higher
cylinders to lower cylinders).

Solution: The head is moving up (since it went from 20 to 40),
so will continue increasing: 53, 65, 83. At this point, it reverses
direction , moving down until it gets to the lowest-numbered
request. Then it reverses direction, servicing: 15, 22, 37.

7



12. 10 pts. In this problem, all addresses and offsets are given in hex-
adecimal. We have an architecture that uses both segmentation and
paging. An 18-bit virtual address consists of:

2-bit segment number 4-bit page number 12-bit offset

The frame number is an 8-bit value.

Here are the relevant tables for a specific process:

Segment Table

Segment # Page Table
0 Page Table A
1 Page Table B

... (Remainder invalid)

Page Table A (length: 6 PTEs)

Page # Frame number
0 AA
1 FA
2 12
3 66
4 INVALID
5 33

Page Table B (length: 5 PTEs)

Page # Frame number
0 31
1 62
2 15
3 INVALID
4 13

Find the physical address corresponding to each of these virtual ad-
dresses (write ”INVALID” if the virtual address is invalid):

13456 00000

23456 06FED

12122

Solution:

8



(a) 13456

Solution: We can break this into 1 (section number) 3 (page num-
ber) and 456 (offset) The section number of 1 leads us to page
table B. The page number of 3 leads us to INVALID. Thus the
physical address is INVALID.

(b) 000000

Solution: We can break this into 0 (section number) 0 (page num-
ber) and 0000 (offset) The section number of 0 leads us to page
table A. The page number of 0 leads us to frame number AA.
Thus the physical address is AA000.

(c) 23456

Solution: We can break this into 2 (section number) 3 (page num-
ber) and 456 (offset) The section number of 2 is invalid. Thus the
physical address is INVALID.

(d) 06FED

Solution: We can break this into 0 (section number) 6 (page num-
ber) and FED (offset) The section number of 0 leads us to page
table A. The page number of 6 is larger than the page table size.
Thus the physical address is INVALID.

(e) 12122

Solution: We can break this into 1 (section number) 2 (page num-
ber) and 122 (offset) The section number of 1 leads us to page
table B. The page number of 2 leads us to frame number 15.
Thus the physical address is 15122.

9



13. 10 pts. Consider a file system with blocks of size 2048. Block num-
bers are represented as 32-bit values. Each file has an inode struc-
ture containing 16 direct pointers, one singly-indirect pointer, one
double-indirect pointer, and one triply-indirect pointer.

(a) How big a disk (in bytes) can this file system support? (Give
your final answer in standard terms of Kibibytes, Mebibytes,
...)

Solution: A 32-bit block number can reference 232 different
blocks. Each block stores 211 bytes. We can support a disk with
at most 243, or 8 Tebibytes.

(b) How big a file(in bytes) can this file system support? (Give your
final answer in standard terms of Kibibytes, Mebibytes, ...)

Solution: The file can contain 16 blocks via the direct pointers. A
block number takes 4 bytes to store. Thus, each singly, doubly,
or triply-indirect block has enough room for 2048/4 or 512 block
pointers.

The singly-indirect pointer can reference 512 blocks, the doubly:
5122, and the triply: 5123. The maximum number of bytes in the
file, then, is:

2048(16+512+5122 +5123) =

211(16+29 +218 +227) =

215 +220 +229 +238

This is 256Gibibytes + 513 Mebibytes + 32 Kibibytes.

10



14. 8 pts. We have two threads which loop, modifying a shared variable:

shared Integer total = 0;

Process A Process B

for i = 1 to 3 do for j = 1 to 3 do
A1: register=total B1: register=total
A2: register=register+1 B2: register=register+1
A3: total=register B3: total = register

Come up with a sequence of instruction interleavings such that the
final value ends up at 2, rather than the desired 6.

Solution: A1, A2, B1, B2, B3, B1, B2, B3, A3, B1 (B’s register now
holds 1), A1, A2, A3, A1, A2, A3, B2, B3 (Total is now 2).

Sho

How, exactly, could you fix the problem?

Solution: Acquire and release a lock before A1 and after A3 and
before B1 and after B3:

shared Lock lock

lock.acquire; A1, A2, A3, lock.release

lock.acquire: B1, B2, B3, lock.release

11



15. 5 pts. Extra credit.

(a) What are three things you liked most about this class?

(b) What are three things you liked least about this class?

(c) What would you like to see changed?

12



16. 8 pts. Extra credit. Suppose that we have a memory system with
32-bit virtual addresses, 4KB pages, and a 20-level page table.

(a) If the page table is full (with 220 pages), show that a 20-level
page table consumes approximately twice the space of a single
level page table. Hint: try drawing it out and summing a series.

Solution: The top-level page table will have two entries , point-
ing to two level-two page tables, each with two entries, for a
total of 4 entries at level 2. We’ll double at each level, so there
will be 23 level-three page table entries, all the way to 220 level-
20 page tables entries. Thus, the total number of entries will be

∑20
i=1 2i = (221

−1) page table entries.

In the single-level page table, there are 220 total page table en-
tries. Thus, there are approximately twice as many in the 20-
level page table case.

(b) Show that for sparse tables (ones in which not all entries are in
use), a 20-level page table can consume less space that a single-
level page table.

Solution: The most extreme example would be to compare a
single-level page table with two pages in it: the first addressable
page, and the last addressable page. This would consume 220

page table entries, of which all but two would be invalid

In the 20-level page table case, we’d have 2 page entries at the
top level, and then 4 at each succeeding level, for a total of 19*4
+ 2 = 78 page table entries, many orders of magnitude fewer
entries than the single-level case.

13


