CSE 120: Midterm
July 13, 2005—Day 5

Name :

Student ID:

Write your name on all pages because the pages will be separated for
grading.

No books, no notes, but calculators are allowed. If you need to make
an assumption to solve a problem, state the assumption.

Problem Score
1 /5

2 /2

3 /2

4 /2

5 /4

6 /5

7 /5

8 /10

9 /10

10 /15

11 /15
Total /75

Name:

1. 5 pts. For each of the following, specify whether it results in an Inter-
rupt (I), Exception (trap) (E), or Neither (N):
(a) Test and Set instruction
(b) Disk read completed
(c) Attempt to write to read-only memory
(d) System call (fork, for example)
(e) Call to library routine (strcpy, for example)

(@): N, (B): L, (C):E, (D) E, (E): N
2. 2 pts. Which of the following is the best definition for thrashing?
(a) State where the CPU utilization is low because each process

spends little CPU time before making an I/0O call.

(b) State where the system spends much more time paging than
actually executing processes.

(c) State where the high degree of multiprogramming causes the
turnaround time of processes to be high due to the limited amount
of CPU time available to each process.

(B); more time paging than actually executing processes.

3. 2 pts. Once the system detects thrashing, what can it do to eliminate
the problem?
(a) Decrease the degree of multiprogramming
(b) Increase the priority of CPU-bound jobs
(c) Increase the degree of multiprogramming
(d) Decrease the priority of CPU-bound jobs

(e) none of the above

(A) (B) will only change which processes are thrashing. (C) will make
it worse. (D) will only change which processes are thrashing.

4. 2 pts. The Banker’s algorithm deals with deadlock via:

2

(a) Deadlock Avoidance
(b) Deadlock Prevention
(c) Deadlock Detection and Recovery
(A): Stay safe. The wrong answers: (B) works by getting rid of one
y & y8 &

of the four conditions necessary for deadlock (C) will wait until it
occurs.

5. 3 pts. If there are n separate process, each with its own address space
and a page frame size of p bytes, what is the expected amount of
space lost due to internal fragmentation?

n*p/2. Each process wastes half a page, on average, at the end of its
address space.

6. 5 pts. What is the difference between a race condition and deadlock?

A race condition causes different results from accessing shared mem-
ory depending on the interleaving of the instructions of multiple
processes/threads. Deadlock consists of a cycle of processes each
holding a resource, and waiting for a resource the next process has.

7. 5 pts. If the cost of accessing the TLB is 20 ns. and of accessing main
memory is 200 ns., what is the minimum TLB hit rate (percentage of

3

time a lookup is found in the TLB) necessary in order to achieve an
effective memory access time of 260 ns? Assume a single-level page
table.

Let x be the TLB hit rate. = (20 +220) + (1 — x)(20 4200 +200) = 260.
Thus, 200z = 160 or z = .8. The 20 + 200 + 200 is composed of 20ns
for the missed TLB lookup, 200 ms to lookup the PTE, and 200 ms to
access the physical memory.

. 10 pts. Using the reference string <21032142103 4>, fill in the
two tables below (representing three and four page frames respec-
tively) using the FIFO page replacement policy. How many page
faults occur in each case?

2% 2 2 | 3 3 3 | 4 | 4| 4 4 4 | 4

1% 1 1 2% 2 2 | 2] 2 0* 0 0

0* 0 0 1* 1 1 1 1 3* | 3

Total of 9 page faults

2% 2 2 2 2 2 | 4 4 4 4 | 3* 3

1% 1 1 1 1 1 2% 2 2 2 | 4F

0* 0]01]0 0 0 1* 1 1 1

3* | 3 | 3 3 3 3 | 0F 0 0

Total of 10 page faults

9. 10 pts. Using the same reference string as in the previous question
(<21032142103 4>, fill in the two tables below (represent-
ing three and four page frames respectively) using the LRU page
replacement policy. How many page faults occur in each case?

2% 2 2 | 3 3 3 | 4 | 44| 0 0

1% 1 1 2% 2 2 | 2] 2 2 3*

0* 0 0 1* 1 1 1 1 1

Total of 10 page faults

2% 2 2 2 |1 2|2 2 |1 2| 2 2 2

1* 1 1 1 1 1 1 1 1 1

0* 0] 0|0] 4 | 4|4 4 | 3*

3* 1 3 | 3 313 |3]| 0* 0

Total of 8 page faults

10. 15 pts. The following table lists the arrival time, execution time, and
priority (higher number means greater priority) of 5 jobs.

Job | Arrival time | Execution time | Priority
A 0 30 3
B 20 40 5
C 30 30 4
D 60 20 1
E 100 60 2

Give the start time (the time the job is first scheduled; note that a job
may have to wait when it arrives) and end time of each of the jobs
using each of the following scheduling algorithms.

(a) Shortest Job First

A start: 0, end: 30

C start: 30, end: 60
D start: 60, end: 80
B start: 80, end: 120
E start: 120, end: 180

(b)

Priority

A start: 0, end: 30

B start: 30, end: 70

C start: 70, end: 100
E start: 100, end: 160
D start: 160, end: 180

(c) Round-Robin with a quantum of 20

Three possibilities got full credit:

1) When a running job’s quantum expires at the same time another
job enters an empty queue: the entering job runs.

2) When a running job’s quantum expires at the same time another
job enters an empty queue: the running job runs again.

a) Newly entered job enter at the beginning of the queue

6

b) Newly entered jobs enter at the end of the queue,
Here’s 1a:
A(20)-B(20)-C(20)-D(20)-A(10)-B(20)-C(10)-E(20)-E(20)-E(20)

A start: 0, end: 90

B start: 20, end: 110
C start: 40, end: 120
D start: 60, end: 80
E start: 120, end: 180

Here’s 1b:
A(20)-B(20)-A(10)-C(20)-B(20)-D(20)-C(10)-E(20)-E(20)-E(20)
A start: 0, end: 50

B start: 20, end: 90

C start: 50, end: 120

D start: 90, end: 110
E start: 120, end: 180

Here’s 2a:
A(20)-A(10)-B(20)-C(20)-D(20)-B(20)-C(10)-E(20)-E(20)-E(20)
A start: 0, end: 30

B start: 30, end: 110

C start: 50, end: 120

D start: 70, end: 90
E start: 120, end: 180

Here’s 2b:
A(20)-A(10)-B(20)-C(20)-B(20)-D(20)-C(10)-E(20)-E(20)-E(20)

A start: 0, end: 30

B start: 30, end: 90
C start: 50, end: 120
D start: 90, end: 110
E start: 120, end: 180

. 15 pts. We have two processes which each repeatedly execute two
sections of code, and then increment a shared variable :

shared Integer numIterations = 0;

7

shared Semaphore mutex (1), alDone(0), blDone (0);

Process A Process B
loop begin loop begin

Al; B1;

alDone.up () ;blDone.down () blDone.up(); alDone.dowr
A2; B2;
mutex.down () ; mutex.down () ;
numIterations++; numlIterations++;
mutex.up () ; mutex.up () ;

loop end; loop end;

We want to satisfy the following constraints:

(a) Statement A2 in the ith iteration of A’s loop cannot execute until
statement B1 executes in the 7th iteration of B’s loop

(b) Statement B2 in the ith iteration of B’s loop cannot execute until
statement A1 executes in the ith iteration of A’s loop

(c) numlterations must always maintain the number of loops pro-
cess A has completed plus the number of loops process B has
completed

Add to the existing code to satisfy the given constraints, but with-
out adding additional constraints (for example, it shouldn’t matter
whether A1 or Bl executes first).

You may declare additional shared or local variables of type Integer,
Boolean, or Semaphore, but make sure to give them initial values.

