
CSE 120: Midterm Solution
August 23, 2007

Name: ____________________________

Student ID:_______________________

Write your test number on all pages because the pages will be separated
for grading.

No books, but calculators are allowed. Two double-sided 3x5 cards of
handwritten notes is allowed.

If you think something about the question is open to interpretation,
ask!.

Leaving a question blank will give you 25% partial credit. An answer
that we can’t read, can’t understand, or is true, but not directly relevant to
the question will receive a 0.

Be extremely concise in your answers.
Problem Score

1 /4
2 /6
3 /4
4 /4
5 /4
6 /10
7 /8
8 /14
9 /10

Total /64

1



1. 4 pts. Suppose a thread in a user program is in a critical section
of its code, having acquired all necessary locks. Can it get context-
switched? Why or why not?

Solution: Yes, it can get context-switched. The scheduler is unaware
of locks.

2 points for yes. 2 for explanation.

2. 6 pts. What are some of the hardware differences between user
mode and kernel mode. Name at least three.

Solution:

• Interrupt handlers run in kernel mode

• On reset, hardware is in kernel mode

• Kernel mode can read/write OS memory

• Kernel mode can read/write certain registers (including kernel
mode bit!)

• Kernel mode can read/write Page Table registers

• Kernel mode bit is 0 in kernel mode, 1 in user mode

• Some instructions available only in kernel mode

2 points for each of three differences.

2



3. 4 pts. What is saved and restored (and where is it saved from and
restored to) on a context switch between two threads in the same
process? Between two threads in a different process? Be explicit.

Solution: In the same process, must save register, sp, and pc into tcb
of old thread (1 point) must restore registers, sp, pc from tcb of new
thread. (1 point)

In a different process, must save and restore as above (1 point), but
must also restore the Page Table Base Register from the pcb of new
thread (1 point).

4. 4 pts. What is a monitor?

Solution: Synchronization method (often built into a language) pro-
vided to support mutual exclusion and synchronization.

It uses a lock (that provides mutual exclusion between all procedures
in the monitor) and zero or more condition variables (that are used
for synchronization).

5. 4 pts. What is the difference between Hoare-style and Mesa-style
scheduling for monitors? Be explicit, but brief.

Solution: In Mesa-style monitors, when a thread does a signal on a
condition variable, that causes one of the waiting threads to be put
on the ready queue.

In Hoare-style monitors, when a thread does a signal on a condition
variable, it loses the lock, and one of the waiting threads is run im-
mediately. When that thread is done, it gives the lock back and then
execution continues with the original thread.

2 points each

3



6. 10 pts. Joe wrote the following code to solve the Dining Philosphers
problem. Unfortunately, it has the potential for deadlock.

Note that there are five philosophers each running the same Philosopher
code, but with a different value of i.

shared Semaphore chopsticks[5]; // Each initialized to 1
Philospher(int i) {
for (;;) {

Think();
chopsticks[left(i)].P();
chopsticks[right(i)].P();
Eat();
chopsticks[left(i)].V();
chopsticks[right(i)].V();

}
}

(a) 2 points How can deadlock occur with this solution (be specific,
but brief)?

Solution: If every philosopher executes their first P before any
executes the second P.

4



(b) 4 points

For each of the four requirements of deadlock, show how it is
evidenced in the situation:

Solution:

i. Mutual exclusion: All philosophers are blocked.

ii. Hold and wait. Each philosopher is holding a fork and
waiting for another

iii. No preemption: No philosopher can be forced to give up
the chopstick s/he has.

iv. Circular wait: Each is waiting on the philosopher to his/her
right.

1 each.

(c) 4 points

Fix the code by:

• picking one of the four requirements of deadlock,

• changing the code so that it no longer meets that require-
ment, and

• explaining how the change breaks the requirement.

Solution: Easiest is to break circular wait:

if (i == 3) {
chopsticks[right(i)].P();
chopsticks[left(i)].P();
} else {
chopsticks[left(i)].P();
chopsticks[right(i)].P();
}

Now we wont have philosopher 3 waiting on 4 and 2 waiting
on 3.

Other solutions might be possible.

Points:

2 points for code, 2 points for explanation

5



7. 8 pts. Assume a single-level page table with the following parame-
ters: 2

32 bytes of addressable physical memory; page size of 2
11 bytes;

2
28 bytes of logical address space, each page table entry includes a

valid bit, a read-only bit, and an execute-allowed bit.

(a) How many bytes in each Page Table Entry?

Solution: 3 (21 + 1 + 1 + 1) / 8. 4 is OK *only* if state PTEs are
word-aligned).

(b) How many bytes in a frame?

Solution: 2
11: same as the page size

(c) How many bits in the physical address specify the frame?

Solution: 21: 32 (entire address) - 11 (offset)

(d) How many bytes in the page table?

Solution: 3 · 217 bytes.

6



8. 14 pts. The following table lists the arrival time and execution time
of 5 threads.

Thread Arrival time Execution time
A 0 6
B 2 3
C 4 2
D 7 7

Fill in which thread is running at each time using the following schedul-
ing algorithms: non-preemptive Shortest-Job-First (SJF), Round-robin
(quantum=2) (RR), First-come, first-served (FCFS). Assume for the
latter two that when a job arrives, it’s put at the end of the queue

Fill in the following table showing what thread is running at any
given time. Assume that context-switch time is negligible.

Time slot SJF RR FCFS
0 A A A
1 A A A
2 A B A
3 A B A
4 A A A
5 A A A
6 C C B
7 C C B
8 B B B
9 B A C

10 B A C
11 D D D
12 D D D
13 D D D
14 D D D
15 D D D
16 D D D
17 D D D
18
19
20

Solution: 2 points for each correct column (-1/2 for each error in each
column).

7



What are the wait and turnaround times for each thread?

Time SJF RR FCFS
Thread A wait time 0 5 0

Thread A turnaround time 6 11 6
Thread B wait time 6 0 4

Thread B turnaround time 9 3 7
Thread C wait time 2 2 5

Thread C turnaround time 4 4 7
Thread D wait time 4 4 4

Thread D turnaround time 11 11 11

Solution: 1 point for every correct row (based on your table in part
1).

8



9. 10 pts. An operating system has 3 types of resources with the fol-
lowing quantities of each type:

Resource Type R1 R2 R3
Quantity of that type 12 9 12

There are 5 threads. Each has declared the maximum number of re-
sources of each type it will need, and each has allocated some quan-
tity so far:

R1 R2 R3
Thread 1 Max 4 3 4

Thread 1 Allocated 2 1 3
Thread 2 Max 5 3 3

Thread 2 Allocated 1 2 3
Thread 3 Max 6 4 3

Thread 3 Allocated 5 4 3
Thread 4 Max 4 1 2

Thread 4 Allocated 2 1 2

Show all of the calculations (including any intermediate matrices) to
determine whether or not this system is in a safe state.

Solution:

available matrix:

R1 R2 R3
2 1 1

needs matrix:

R1 R2 R3
Thread 1 2 2 1
Thread 2 4 1 0
Thread 3 1 0 0
Thread 4 2 0 0

Here’s the order of threads we can first give their entire need, and
then wait for them to return their entire allocation:

Thread avail=avail-need avail=avail+allocated
Thread 3 (2 1 1) - (1 0 0) = (1 1 1) (1 1 1) + (6 4 3)= (7 5 4)
Thread 4 (7 5 4) - (2 0 0) = (5 5 4) (5 5 4) + (4 1 2)= (9 6 6)
Thread 1 (9 6 6) - (2 2 1) = (7 4 5) (7 4 5) + (4 3 4)= (11 7 9)
Thread 2 (11 7 9) - (4 1 0) = (7 6 9) ) (7 6 9) + (5 3 3)= (12 9 12)

Since there’s an order of satisfying all possible requests, we’re in a
safe state.

Points:
3 for calculating needs. 3 for calculating available

2 for saying ”yes” 4 points for explanation

9


