
CS 134
Operating Systems

Feb 25, 2019

 
Process, threads, and scheduling

This work is a derivative of Process, threads, and scheduling by MIT Open Courseware used under
 Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/lecture-notes-and-readings/MIT6_828F12_lec7_notes.pdf

Homework 7: xv6 locks—iderw

• What goes wrong with adding sti after
acquire and cli() after release()?
•Let’s see

• What would happen if acquire didn’t check
holding and panic?
•Let’s see

• What happens to the interrupt in the original
code?

• What if IDE interrupt had occurred on a
different core?

 2

Spin-locks and interrupts

 3

void
acquire(struct spinlock *lk)
{
 pushcli(); // To avoid deadlock.
 …
}

void
release(struct spinlock *lk)
{
 …
 popcli();
}

// Pushcli/popcli are like cli/sti except that they are matched:
// it takes two popcli to undo two pushcli. Also, if interrupts
// are off, then pushcli, popcli leaves them off.

void
pushcli(void)
{
 int eflags;

 eflags = readeflags();
 cli();
 if(mycpu()->ncli == 0)
 mycpu()->intena = eflags & FL_IF;
 mycpu()->ncli += 1;
}

void
popcli(void)
{
 if(readeflags()&FL_IF)
 panic("popcli - interruptible");
 if(--mycpu()->ncli < 0)
 panic("popcli");
 if(mycpu()->ncli == 0 && mycpu()->intena)
 sti();
}

Homework 7: xv6 locks—filealloc

• What happens if interrupts on while holding
file table lock?
•Nothing seems to happen.

•However, if set breakpoint in gdb while holding
locks and interrupts enabled, we can get a panic

 4

Process

• Abstract virtual machine with its own:
•CPU
•Memory

• Motivated by isolation

• API:
•fork
•exec
•wait
•kill
•sbrk
•getpid

 5

Challenge: more processes than processors

• E.g., your laptop has two processors and you
want to:
•run editor
•run compiler
•play music

• Must multiplex N processes among M
(possibly <N) processors

• Called time-sharing (or context switching, or
scheduling)

 6

Goals

• Transparent to user processes
•Doesn’t break virtual machine illusion

• Preemptive for user processes
•No need to call yield

• Preemptive for kernel, where convenient
•Helps keep system responsive

 7

xv6 solution

• 1 user thread and 1 kernel thread per
process

• 1 scheduler thread per CPU

• n processors

• So, 3 processes on 2 processors, how many
total threads:

 8

What is a thread

• Either:
•CPU core executing (with registers and stack)

• Or:
•Saved set of registers and stack that could

execute

 9

Overview of xv6 process switching

• User → kernel thread (how?)

• Kernel thread yields, due to preemption or
waiting for I/O

• kernel thread → scheduler thread

• scheduler thread finds a RUNNABLE kernel
thread

• scheduler thread → kernel thread

• kernel thread -> user

 10

xv6 process states

• proc->state
•RUNNING
•RUNNABLE
•SLEEPING
•ZOMBIE
•UNUSED

 11

Context switching hard to get right

• Interrupts

• Locking

• Multi-core

• Process termination

 12

Demonstrating preemptive switching

• Timer interrupt

• We’ll run QEMU with 
one CPU

• We’ll see how xv6 
context-switches 
between the two  
processes

 13

#include "types.h"
#include "user.h"

int main() {
 if (fork() == 0) {
 for (;;) {
 }
 } else {
 for (;;) {
 }
 }
 return 0;
}

hog.c

Demonstrating preemptive scheduling

• switch—to scheduler thread
•a context holds a non-executing kernel thread’s

saved registers
•xv6 contexts always live on the stack
•context pointer is effectively the saved esp
– Where are user registers?

 14

struct context {
 uint edi;
 uint esi;
 uint ebx;
 uint ebp;
 uint eip;
};

Why no need to save eax, ecx, edx?

proc.h

Demonstrating preemptive scheduling

 15

void swtch(struct context **old, struct context *new);
.globl swtch
swtch:
 movl 4(%esp), %eax
 movl 8(%esp), %edx

 # Save old callee-saved registers
 pushl %ebp
 pushl %ebx
 pushl %esi
 pushl %edi

 # Switch stacks
 movl %esp, (%eax)
 movl %edx, %esp

 # Load new callee-saved registers
 popl %edi
 popl %esi
 popl %ebx
 popl %ebp
 ret

swtch.S

Why not save %eip?

 16

void scheduler(void)
{

 struct proc *p;
 struct cpu *c = mycpu();
 c->proc = 0;
 for(;;){
 // Enable interrupts on this processor.
 sti();
 // Loop over process table looking for process to run.
 acquire(&ptable.lock);
 for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
 if(p->state != RUNNABLE)
 continue;
 // Switch to chosen process. It is the process's job
 // to release ptable.lock and then reacquire it
 // before jumping back to us.
 c->proc = p;
 switchuvm(p);
 p->state = RUNNING;
 swtch(&(c->scheduler), p->context);
 switchkvm();
 // Process is done running for now.
 // It should have changed its p->state before coming back.
 c->proc = 0;
 }
 release(&ptable.lock);
 }
}

Question

• What is the scheduling policy?
•Will the thread that called yield run immediately

again?

 17

Question

• Why does scheduler release after loop and
re-acquire immediately after?

 18

void scheduler(void)
{
 struct proc *p;
 struct cpu *c = mycpu();
 c->proc = 0;
 for(;;){
 // Enable interrupts on this processor.
 sti();
 // Loop over process table looking for process to run.
 acquire(&ptable.lock);
 for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
 …
 }
 release(&ptable.lock);
 }
}

Question

• Why does scheduler briefly enable interrupts
at beginning of loop?

 19

void scheduler(void)
{
 struct proc *p;
 struct cpu *c = mycpu();
 c->proc = 0;
 for(;;){
 // Enable interrupts on this processor.
 sti();
 // Loop over process table looking for process to run.
 acquire(&ptable.lock);
 for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
 …
 }
 release(&ptable.lock);
 }
}

Question

• Why does the yield in one thread acquire the
ptable.lock, but another thread releases it?

 20

void scheduler(void)
{
 …
 for(;;){
 …
 acquire(&ptable.lock);
 for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
 // Switch to chosen process. It is the process's job
 // to release ptable.lock and then reacquire it
 // before jumping back to us.
 c->proc = p;
 switchuvm(p);
 p->state = RUNNING;
 swtch(&(c->scheduler), p->context);
 switchkvm();
 // Process is done running for now.
 // It should have changed its p->state before  
 // coming back.
 c->proc = 0;
 }
 release(&ptable.lock);
 }
}

void
yield(void)
{
 acquire(&ptable.lock);
 myproc()->state = RUNNABLE;
 sched();
 release(&ptable.lock);
}

Coroutines

• sched and scheduler are coroutines
•Flow control is passed between the two functions

without returning
•When either one calls swtch, the other continues

executing where it last left off

•Each one knows who it is swtching to, and who
it was swtched from

•Thus, they can cooperate on locking and
unlocking ptable.lock

 21

Process invariants

• If a process is RUNNING
•CPU registers hold process’s register values
– Including %esp and %cr3

• If process is RUNNABLE
•an idle CPU’s scheduler must be able to run it
– p->context must hold process’s kernel thread
variables

– No CPU is executing on the process’s kernel stack
– No CPUs %cr3 holds the process’s page table
– No CPUs proc refers to the process

 22

Question

• Is there preemptive scheduling of kernel
threads?
•What if timer interrupt while executing in the

kernel?
•What does the kernel thread stack look like?

 23

Question

• Why no locks (other than ptable.lock) can be
held when yielding the CPU?
•acquire may waste a lot 

of time spinning, waiting for 
a lock held by a non-running 
thread

•Worse: deadlock can occur 
since acquire waits with 
interrupts off

 24

void
sched(void)
{
 int intena;
 struct proc *p = myproc();

 if(!holding(&ptable.lock))
 panic("sched ptable.lock");
 if(mycpu()->ncli != 1)
 panic("sched locks");
 …
}

Thread cleanup

 25

// Kill the process with the given pid.
// Process won't exit until it returns
// to user space (see trap in trap.c).
int
kill(int pid)
{
 struct proc *p;

 acquire(&ptable.lock);
 for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
 if(p->pid == pid){
 p->killed = 1;
 // Wake process from sleep if necessary.
 if(p->state == SLEEPING)
 p->state = RUNNABLE;
 release(&ptable.lock);
 return 0;
 }
 }
 release(&ptable.lock);
 return -1;
}

Kill doesn’t free resources (close open fds, release memory, etc.). Process must kill itself

Thread cleanup

 26

void trap(struct trapframe *tf) {
 if(tf->trapno == T_SYSCALL){
 if(myproc()->killed)
 exit();
 myproc()->tf = tf;
 syscall();
 if(myproc()->killed)
 exit();
 return;
 }
 …
 if(myproc() &&  
 myproc()->killed &&  
 (tf->cs&3) == DPL_USER)
 exit();
 …
}

void exit(void)
{
 struct proc *curproc = myproc();
 struct proc *p;
 int fd;

 if(curproc == initproc)
 panic("init exiting");
 // clean up open file descriptors
 // Parent might be sleeping in wait().
 wakeup1(curproc->parent);

 // Pass abandoned children to init.
 for(p = ptable.proc; p < &ptable.proc[NPROC];  
 p++){
 if(p->parent == curproc){
 p->parent = initproc;
 if(p->state == ZOMBIE)
 wakeup1(initproc);
 }
 }

 // Jump into the scheduler, never to return.
 curproc->state = ZOMBIE;
 sched();
 panic("zombie exit");
}

Thread cleanup, part 2

 27

int wait(void)
{
 …
 acquire(&ptable.lock);
 for(;;){
 // Scan through table looking for exited children.
 havekids = 0;
 for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
 if(p->parent != curproc)
 continue;
 if(p->state == ZOMBIE){
 pid = p->pid;
 kfree(p->kstack);
 p->kstack = 0;
 freevm(p->pgdir);
 p->pid = 0;
 p->parent = 0;
 p->name[0] = 0;
 p->killed = 0;
 p->state = UNUSED;
 release(&ptable.lock);
 return pid;
 }
 }
 …
 }
}

What if parent never waits?

 28

void exit(void)
{
 struct proc *curproc = myproc();
 struct proc *p;

 if(curproc == initproc)
 panic("init exiting");
 …
 // Pass abandoned children to init.
 for(p = ptable.proc; p < &ptable.proc[NPROC];  
 p++){
 if(p->parent == curproc){
 p->parent = initproc;
 if(p->state == ZOMBIE)
 wakeup1(initproc);
 }
 }
 …
}

int main(void)
{
 …
 while((wpid=wait()) >= 0 && wpid != pid)
 printf(1, "zombie!\n");
}

init.c

