CS 134
Operating Systems

Feb 25, 2019

Process, threads, and scheduling

is work is a derivative of Process, threads, and scheduling by MIT Open Courseware used under
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/lecture-notes-and-readings/MIT6_828F12_lec7_notes.pdf

Homework 7: xvo locks—iderw

What goes wrong with adding sti after
acquire and cli() after release()?

e et's see

What would happen if acquire didn't check
holding and panic?

e et's see

What happens to the interrupt in the original
code?

What if IDE interrupt had occurred on a
different core?

Spin-locks and interrupts

void
acquire(struct spinlock *1k)

{

pushcli(); // To avoid deadlock.

void
release(struct spinlock *1k)

{

popcli();

}

// Pushcli/popcli are like cli/sti except that they are matched:
// it takes two popcli to undo two pushcli.
// are off, then pushcli, popcli leaves them off.

void
pushcli(void)

{

int eflags;

eflags = readeflags();
cli();
if (mycpu()->ncli == 0)

mycpu()->intena = eflags & FL IF;

mycpu()->ncli += 1;

Also, if interrupts

void
popcli(void)

{

1f (readeflags()&FL_IF)
panic("popcli - interruptible');

1f(--mycpu()->ncli < 0)
panic("popcli");

if (mycpu()->ncli ==
sti();

0 && mycpu()->intena)

Homework 7: xv6 locks—filealloc

e \What happens if interrupts on while holding
file table lock™

* Nothing seems to happen.

e However, if set breakpoint in gdb while holding
locks and interrupts enabled, we can get a panic

Process

e Abstract virtual machine with its own:

e CPU
e Memory

e Motivated by isolation
o API:

e fork
°* exec
ewalt
ekill
* sbrk
e getpid

Challenge: more processes than processors

e E.g., yourlaptop has two processors and you
want to:

e run editor
e run compiler
e play music
e Must multiplex N processes among M
(possibly <N) processors
e (Called time-sharing (or context switching, or
scheduling)

Goals

e J[ransparent to user processes

e Doesn’t break virtual machine illusion
e Preemptive for user processes

e No need to call yield
e Preemptive for kernel, where convenient
e Helps keep system responsive

XVO solution

1 user thread and 1 kernel thread per
process

1 scheduler thread per CPU
N Processors

S0, 3 processes on 2 processors, how many
total threads:

What I1s a thread

e FEither:
e CPU core executing (with registers and stack)

o Or:

e Saved set of registers and stack that could
execute

Overview of xv6 process switching

User — kernel thread (how?)

Kernel thread yields, due to preemption or
waiting for |/O

kernel thread — scheduler thread

scheduler thread finds a RUNNABLE kernel
thread

scheduler thread — kernel thread
kernel thread -> user

XVO process states

e proc->state

* RUNNING

* RUNNABLE
e SLEEPING
e ZOMB1I]
e UNUSED

L]

L4

L4

Context switching hard to get right

Interrupts

Locking

Multi-core

Process termination

Demonstrating preemptive switching

e T[imer interrupt

e We'll run QEMU with
one CPU

o \We'll see how xv6
. #include "types.h"
context-switches #include "user.h”
between the tWO int main() {

if (fork() == 0) {

F)f()()EBSﬁSEBES for (;;) {

}
} else {

for (;;) {
}
}

return 0;

hog.c

Demonstrating preemptive scheduling

e switch—to scheduler thread

e a context holds a non-executing kernel thread’s
saved registers

e XVO contexts always live on the stack

e context pointer is effectively the saved esp
-Where are user registers?

struct context {
uint edi; Why no need to save eax, ecx, edx!
uint esi;
uint ebx;
uint ebp;
uint eip;

proc.h

Demonstrating preemptive scheduling

void swtch(struct context **old, struct context *new);
.globl swtch
swtch:

movl 4 (%esp), %eax

movl 8(%esp), %edx

Save old callee-saved registers
pushl 3%ebp
pushl 3%ebx
pushl %esi
pushl %edi

Why not save %eip!?

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-saved registers
popl %$edi

popl %$esi

popl %ebx

popl %ebp

ret

swtch.S

15

volid scheduler (void)
{
struct proc *p;

struct cpu *c = mycpu();

c->proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if (p->state != RUNNABLE)
continue;
// Switch to chosen process. It is the process's job

// to release ptable.lock and then reacquire it
// before jumping back to us.

c->proc = p;

switchuvm(p);

p->state = RUNNING;

swtch (& (c->scheduler), p->context);
switchkvm();

// Process is done running for now.

// It should have changed its p->state before coming back.

c->proc = 0;
}
release(&ptable.lock);

}
}

16

Question

e \What is the scheduling policy?

e Will the thread that called yield run immediately
again?

Question

e \Why does scheduler release after loop and
re-acquire immediately after?

void scheduler(void)

{

struct proc *p;
struct cpu *c = mycpu();

c->proc = 0;

for(;:){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++) {

}
release(&ptable.lock);

18

Question

e \Why does scheduler briefly enable interrupts

at beginning of loop?

void scheduler(void)

{

struct proc *p;
struct cpu *c = mycpu();

c->proc = 0;

for(;:){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++) {

}
release(&ptable.lock);

19

Question

e \Why does the yield in one thread acquire the
ptable.lock, but another thread releases it?

void scheduler(void)

{

Eor(;;){

acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

}

release(&ptable.lock); }

}
1

// Switch to chosen process. It is the process's job

// to release ptable.lock and then reacquire it

// before jumping back to us.

c->proc = p;

switchuvm(p);

p->state = RUNNING;

swtch (& (c->scheduler), p->context); void
switchkvm(); yield(void)

// Process is done running for now. {
// It should have changed its p->state before
// coming back.

c->proc = 0;

acquire(&ptable.lock);
myproc()->state = RUNNABLE;
sched();
release(&ptable.lock);

20

Coroutines

e sched and scheduler are coroutines
* Flow control is passed between the two functions
without returning

e \When either one calls swtch, the other continues
executing where it last left off

e Each one knows who it is swtching to, and who
it was swtched from

e Thus, they can cooperate on locking and
unlocking ptable.lock

Process invariants

e |[fa processis RUNNING

e CPU registers hold process’s reqister values
- Including %esp and %cr3

o |f processis RUNNABLE

e an idle CPU’s scheduler must be able to run it

- p->context must hold process’s kernel thread
variables

-No CP
-No CP

-No CP

s

-

-

IS executing on the process’s kernel stack
s %cr3 holds the process’s page table

s proc refers to the process

Question

e |[s there preemptive scheduling of kernel
threads?

e \What if timer interrupt while executing in the
kernel?

e \What does the kernel thread stack look like?

Question

e \Why no locks (other than ptable.lock) can be
held when yielding the CPU?

. void
e acquire may waste a lot sched (void)
of time spinning, waiting for |* ;.. intena;
a lock held by a non-running | struct proe *p = myproc();

thread if (1holding(sptable.lock))
panic("sched ptable.lock");

if (mycpu()->ncli != 1)
panic("sched locks");

e \Worse: deadlock can occur

since acquire waits with
interrupts off

24

Thread cleanup

// Kill the process with the given pid.
// Process won't exit until it returns
// to user space (see trap in trap.c).
int

kill(int pid)

{

struct proc *p;

acquire (&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->pid == pid){
p->killed = 1;
// Wake process from sleep if necessary.
if (p->state == SLEEPING)
p->state = RUNNABLE;
release(&ptable.lock);
return 0;

}

}
release(&ptable.lock);

return -1;

}

Kill doesn’t free resources (close open fds, release memory, etc.). Process must kill itself

25

Thread cleanup

volid exit(void)

{

volid trap(struct trapframe *tf) {

1 -> ==
LE(tE->trapno == T SYSCALL){ struct proc *curproc = myproc();
1f(myproc()->killed) struct proc *p;
ex1t() H int fd: ,
myproc()->tf = tf; ’
ll ° . . .
sysca ()7 1f (curproc == 1nitproc)

if (myproc()->killed)
exit();
return;

panic("init exiting");
// clean up open file descriptors
// Parent might be sleeping in wait().
wakeupl (curproc->parent);

}

if (myproc() &&

myproc ()->killed &s // Pass abandoned children to init.

for(p = ptable.proc; p < &ptable.proc[NPROC];

- ——
(Ff Csé&3) DPL_USER) p++) {
exit(); :
1f (p->parent == curproc){
\ - p->parent = initproc;
if (p->state == ZOMBIE)

wakeupl (initproc);

}

// Jump into the scheduler, never to return.
curproc->state = ZOMBIE;

sched();

panic("zombie exit");

26

Thread cleanup, part 2

int wait(void)

{

acquire(&ptable.lock);
for(;;){
// Scan through table looking for exited children.
havekids = 0;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if (p->parent != curproc)
continue;
if (p->state == ZOMBIE) {

pid = p->pid;
kfree(p->kstack);
p->kstack = 0;
freevm(p->pgdir);

p->pid = 0;
p->parent = 0;
p->name[0] = O0;

p—>killed = 0;
p->state = UNUSED;
release(&ptable.lock);
return pid;

27

What if parent never waits?

void exit(void)

{

struct proc *curproc = myproc();
struct proc *p;

if (curproc == initproc)
panic("init exiting");

// Pass abandoned children to init.
for(p = ptable.proc; p < &ptable.proc[NPROC];

pt+){

if (p->parent == curproc) {
p->parent = initproc;
if (p->state == ZOMBIE)

wakeupl (initproc);

int main(void)

{

while((wpid=wait()) >= 0 && wpid != pid)
printf(1l, "zombie!\n");

init.c

28

