
CS 134
Operating Systems

March 4, 2019

File System

What is a file?

• Named collection of related information
stored in secondary storage
•Smallest allotment of logical secondary storage

(Long-term storage)
•Must survive process termination (and system

reboot!)

 2

Typical filesystem

• Unix/Windows model:
•Hierarchical namespace
•create/open/close/read/write/seek
•File is a single collection of bytes

 3

Other possibilities

• File as a database
•Records with named keys, types, and values
– Example: Apple Newton, Be OS
• Indexing provided by filesystem
– For example, “Find all records where age > 19”

• File as array of data chunks
•Palm OS, for example
– Records have attributes:

- Modified (Dirty)
- Unique ID
- Category
- Deleted

 4

Other possibilities (cont.)

• Files with structure beyond sequence of
bytes
•Vax VMS
– text files: sequence of lines of text
– binary files: sequence of bytes

• Files with more than one stream (fork) of
data
•Mac OS with resource fork and data fork
•NTFS/HFS+: multiple streams of data in a given

file

 5

File metadata

• Not the data in the file, but data about the file
• Owner
• Group
• Permissions
• Name
• Creation date
• Modification date
• Last access date
• Type
• Application creator
• Icon
• Size
• Maximum Size
• Locked
• Hidden
• Etc. 6

File types

• File extension
•Example: .c, .h, .doc, .pdf
•Enforced by OS (uses extension to determine

what program to execute for that file)
•Or, used as convention (Unix)

• Magic number
•Various files have different magic numbers

toward the beginning
– for example, ELF_MAGIC ("\x7FELF" at offset 0)
•On Linux, see man magic for pointer to long list

of magic numbers for various file types

• Stored file type
•Classic Mac OS, for example. File type and creator

 7

Links: two possibilities

• Symbolic link
•A file foo has a reference to a file bar. If bar is

deleted, using foo gives an error.

• Hard link
•foo and bar both refer to the same file. If one is

deleted, the other still refers to the file.

 8

File namespace

• One-level

• Two-levels
•Often, one per user

• Hierarchical
•Tree

 9

File operations

• Common
•Create
•Delete
•Open
•Close
•Read
•Write
•Seek
•Get attributes
•Set attributes

• Less common
•Append
•Rename

 10

Directory operations

• Common
•Create
•Delete
•OpenDir
•CloseDir
•ReadDir

• Less common
•Rename
•Link
•Unlink

 11

Abstraction of the disk

• Sequence of equal-sized blocks: 0..n-1

• Operations
•Read block i
•Write block i

 12

block 0

block 1

block 2

block 3

…

block n-3

block n-2

block n-1

Filesystem metadata

• Everything except the contents of the files
themselves
•What blocks are free
•What blocks are in use
•Which blocks are used (in what order!) for which

files
•Directory structure
•Names, attributes, etc.

 13

Information kept about open files

• System-wide open-file table
•Contains entry for each opened file (attributes,

disk block locations, current location within file,
access mode, reference count)

– Same file may be present more than once with
different:
- Current location within file
- Access mode

• Per-process open-file table
•Each entry contains:
– Reference to system-wide open-file table

 14

Finding the blocks of a file

•Contiguous: all blocks are adjacent
Pros: extremely fast to read
Cons: must specify max size when creating the
file. External fragmentation
Example: CD-ROM

•Linked List
Pros: no external fragmentation
Cons:

– slow to get to block n
– Uses data in block (no longer a power of two)

 15

File
block 0

File
block 1

File
block 2

Phys block 4 Phys block 0 Phys block 3

Finding the blocks of a file (cont.)

•External linked list
Pros: All data in blocks available to user/program
Cons: Linked list table must be in memory

– 20GB disk 1KB block size→20,000,000 blocks→ 
table of size 60-80MB

•Extents
Allocate groups of contiguous blocks

– For each one, keep start and number

 16

3

-1

0

Finding the blocks of a file (cont.)

• Contiguous: all blocks are adjacent
•Pros: extremely fast to read
•Cons: must specify max size when creating a file.

External fragmentation.
•Example: CD-ROM

• Linked list
•Pros: no external fragmentation
•Cons:
– Slow to get to block n
– Uses data in block (no longer a power of two)

 17

Finding the blocks of a file (cont.)

• index-node (i-node)
Keep data structure for each file, stored in disk block(s).

– Pointers to disk blocks. If too big, use 1 pointer as single-indirect, 1 as double, 1
as triple.

– inode table contains location of each inode (stored on disk, but cached in mem).
Pros: only in memory while the file is open

 18

Attributes

i-node
block size: 1024 bytes. Max file size: 1024*(10+256+2562+2563) > 16GB

Keeping track of free space

•Linked list of disk blocks
Rather than storing one free block number per
disk, store as many as will fit

– Pros: little memory usage
– Cons: disk access to allocate

•Bitmap
1-bit per disk block.
Pros:

– Quick to access
– Easy to allocate contiguous blocks

Cons:
– Fair amount of memory usage

- 16GB disk, 1KB blocks→224 bits→221 bytes→2MB
– Slow to find a free block if there aren’t many free 19

Implementing directories

•Keep name, attributes and inode # in fixed-size
structure

•/usr/include/stdio.h

 20

name attributes contents

a.out attributes inode #

main.c attributes inode #

usr attributes inode #

. 2

.. 2

usr 36

dev 65

. 36

.. 2

bin 52

include 33

local 78

attributes

83

block 83

inode 36

attributes

77

root inode 2

block 77

attributes

56

inode 33

. 33

.. 36

stdio.h 52

limits.h 33

block 56

Implementing links

•Soft link (symbolic link)
Contents of data block is name of file linked to

•Hard link (multiple directory entries point at
same inode)

Count of links in inode
When removing an entry from a directory,
decrement the inode link count

– If zero, free inode and blocks associated with inode

 21

