CS 134
Operating Systems

March 4, 2019

File System



What is a file?

¢ Named collection of related information
stored in secondary storage

e Smallest allotment of logical secondary storage
(Long-term storage)

e Must survive process termination (and system
reboot!)



Typical filesystem

e Unix/Windows model:

e Hierarchical namespace
e create/open/close/read/write/seek
e File is a single collection of bytes



Other possibilities

e File as a database

e Records with named keys, types, and values
- Example: Apple Newton, Be OS

e Indexing provided by filesystem

- For example, “Find all records where age > 19"

e File as array of data chunks

e Palm OS, for example

- Records have attributes:
- Modified (Dirty)
- Unique ID
- Category
- Deleted



Other possibilities (cont.)

e Files with structure beyond sequence of
bytes
e Vax VMS
- text files: sequence of lines of text
- binary files: sequence of bytes

e Files with more than one stream (fork) of
data
e Mac OS with resource fork and data fork

e NTFS/HFS+: multiple streams of data in a given
file



File metadata

e Not the data in the file, but data about the file

e Owner

e Group

e Permissions

e Name

e Creation date

e Modification date

e | ast access date

e Type

e Application creator
e lcon

e Size

e Maximum Size

e | ocked

e Hidden

e Etc. .



File types

e File extension
e Example: .c, .h, .doc, .pdf

e Enforced by OS (uses extension to determine
what program to execute for that file)

e Or, used as convention (Unix)
e Magic number

e Various files have different magic numbers
toward the beginning

-for example, ELF MAGIC ("\x7FELF" at offset 0)

e On Linux, see man magic for pointer to long list
of magic numbers for various file types

o Stored file type
e Classic Mac OS, for example. File type and creator



Links: two possibilities

e Symbolic link

e A file foo has a reference to a file bar. If bar is
deleted, using foo gives an error.

e Hard link

e foo and bar both refer to the same file. If one is
deleted, the other still refers to the file.



File namespace

e One-level

e [wo-levels
e Often, one per user

e Hierarchical
e [ree



File operations

e Common

e Create

e Delete

e Open

e Close

e Read

e \Write

e Seek

e Get attributes
e Set attributes

e |Less common
e Append
e Rename



Directory operations

e Common

e Create
e Delete
e OpenDir
e CloseDir
e ReadDir
e | ess common

e Rename
o | ink
e Unlink



Abstraction of the disk

e Sequence of equal-sized blocks: 0..n-1

e Operations

e Read block /
o \Write block /

block O

block 1

block 2

block 3

block n-3

block n-2

block n-1




Filesystem metadata

e Everything except the contents of the files
themselves
 What blocks are free
e \What blocks are in use

e \Which blocks are used (in what order!) for which
files

e Directory structure
e Names, attributes, etc.



Information kept about open files

e System-wide open-file table

e Contains entry for each opened file (attributes,
disk block locations, current location within file,
access mode, reference count)

- Same file may be present more than once with
different:

- Current location within file
- Access mode

e Per-process open-file table

e Each entry contains:
- Reference to system-wide open-file table



Finding the blocks of a file

- Contiguous: all blocks are adjacent

® Pros: extremely fast to read

® Cons: must specify max size when creating the
file. External fragmentation

® Example: CD-ROM
Linked List

® Pros: no external fragmentation

® Cons:
- slow to get to block n
- Uses data in block (no longer a power of two)

File File File
block O block 1 block 2

Phys block 4 Phys block O Phys block 3



Finding the blocks of a file (cont.)

- External linked list

® Pros: All data in blocks available to user/program

® Cons: Linked list table must be in memory

- 20GB disk 1KB block size—20,000,000 blocks—
table of size 60-80MB

- Extents

® Allocate groups of contiguous blocks
- For each one, keep start and number




Finding the blocks of a file (cont.)

e (Contiguous: all blocks are adjacent

e Pros: extremely fast to read

e Cons: must specify max size when creating a file.
External fragmentation.

e Example: CD-ROM

e Linked list
e Pros: no external fragmentation
e Cons:

- Slow to get to block n
- Uses data in block (no longer a power of two)



Finding the blocks of a file (cont.)

* Index-node (/-node)
® Keep data structure for each file, stored in disk block(s).

- Pointers to disk blocks. If too big, use 1 pointer as single-indirect, 1 as double, 1
as triple.
- inode table contains location of each inode (stored on disk, but cached in mem).
® Pros: only in memory while the file is open

Attributes

i-node
block size: 1024 bytes. Max file size: 1024*(10+256+2562+2563) > 16GB



Keeping track of free space

 Linked list of disk blocks

® Rather than storing one free block number per
disk, store as many as will fit

- Pros: little memory usage

- Cons: disk access to allocate
Bitmap

® 1-bit per disk block.

® Pros:

- Quick to access
- Easy to allocate contiguous blocks

® Cons:

- Fair amount of memory usage
- 16GB disk, 1KB blocks—224 bits—221 bytes—2MB

- Slow to find a free block if there aren’t many free



Implementing directories

- Keep name, attributes and inode
structure

 /usr/include/stdio.h

attributes

77

/

/

AN

attributes

83

Ll

In fixed-size

name

attributes

contents

a.out

attributes

inode #

main.c

attributes

inode #

usr

attributes

inode #

/ root inode Zﬂ

/ .

2 | / \\Qé
AN
2 / 2
- % / bin 52 //
include 33
dev 65 local 78
block 77 block 83

attributes

56

K

inode 33

33

3

stdio.h

52

limits.h

33

block 56

20




Implementing links

« Soft link (symbolic link)
® Contents of data block is name of file linked to

«Hard link (multiple directory entries point at
same inode)
® Count of links in inode

® \When removing an entry from a directory,
decrement the inode link count

- If zero, free inode and blocks associated with inode



