
CS 134
Operating Systems

March 5, 2019

File System (2/2)

Paging and
Translation Lookaside Buffer (TLB)

 2

CPU checks TLB

PTE in
TLB?

CPU generates
physical address

Access page table

y
e

s

Page in
main

memory

n
o

Update TLB

Free page
frame?

no

OS instructs CPU
to read the page

from disk

CPU activates I/O
hardware

Page transferred
from disk to main

memory

OS instructs CPU
to write the page

to disk

CPU activates I/O
hardware

Page transferred
from main memory

to disk

Update page table

Update page table

yes

y

frame
dirty?

no
yes

no

return to failed instruction

Disks

• Hardware

• Time to access a block (sector)
•Seek time (time to move the head in or out to the

appropriate track)
•Rotational latency (time for the disk to spin so that the

beginning of the sector is under the head)
•Transfer time (time for the data to be read from the sector).

 3

Head

Disk

Head

Assembly

Platter

Track

Sector

Identifying a block

• Logical Block Number (LBN): 1-N

• Maps to: Cylinder/head/sector

• Who does the mapping?

 4

Blocks go bad

• Blocks written with ECC

•Soft error

•Hard error

• Fixes:
•Sector sparing

•Sector slipping

 5

Reading/Writing a block

• Seek first

• Wait for sector to rotate under head

• Read (or write)

 6

Disk Specs

 7

Western Digital
VelociRaptor
WD1500AHFD

Seagate Desktop
HDD 1.5

Capacity 1 TB 4 TB

Rotational Speed 10,000 RPM 5,900 RPM

Average rotational
latency

3 ms 4 ms

Average access
time (seek +
rotational)

6.8 ms 17 ms

Average sustained
transfer rate

164 MB/s 132 MB/s

Buffer size 64 MiB 64 MiB

Disk Scheduling

• FCFS

• Shortest-seek time first (SSTF)

• SCAN (elevator)

• C-SCAN

 8

Solid State Drives (SSD)

• Non-volatile “flash” memory

• Random access: 100 microseconds

• Sequential: 500 MB/sec

• Internally complex
•Flash must be erased before it is written
•Limit to the number of times a flash block can be written
•SSD remaps blocks as necessary

 9

Disk blocks

• Most OSes use blocks of multiple sectors
•e.g., 4 KB block = 8 sectors
• to reduce bookkeeping and seek overheads
•xv6 uses single-sector blocks for simplicity

 10

High-level choices visible in the Unix FS API

• Object: files (vs. virtual disk/DB)

• Content: byte array (vs. 80-byte records,
BTree)

• Naming: human-readable (vs. object IDs)

• Organization: name hierarchy

• Synchronization: none (vs. locking, versions)

• There are other (sometimes quite different)
file system APIs

 11

A few implications of the Unix API

• FD refers to something
• that is preserved even when the name changes
• or if file is deleted while open

• A file can have multiple (hard) links
• i.e., occur in multiple directories
• no one of those occurrences is special
• so file must be stored somewhere other than directory

• Thus:
•FS records file info in an inode on disk
•FS refers to inode with i-number (internal version of FD)
• inode must have link count (tells us when to free)
• inode must have count of open FDs.
• inode deallocation deferred until last link and FD are

gone)
 12

xv6

• FS software layers
•system calls
•name ops/FD ops
• inodes
• inode cache
• log
•buffer cache
• IDE driver

 13

On-disk layout

• xv6 file system on 2nd IDE disk drive
•First just has the kernel

• xv6 treats drive as an array of sectors
(ignores tracks)

 14

Block num Usage

0 unused (usually
boot block)

1 super block

2 log for transactions

32 array of inodes,
packed into blocks

58 Block in-use bitmap
(0=free, 1=used)

59 file/dir content
blocks

… …

Mkfs

• xv6’s mkfs program generates this layout for
an empty file system

• This layout is static for the lifetime of the file
system

 15

On-disk inode

 16

#define NDIRECT 12
// On-disk inode structure
struct dinode {
 short type; // File type
 short major; // Major device number (T_DEV only)
 short minor; // Minor device number (T_DEV only)
 short nlink; // Number of links to inode in file system
 uint size; // Size of file (bytes)
 uint addrs[NDIRECT+1];// Data block addresses
};

How to find block number containing byte 8000 of a file:

 logical block number: 8000/512 = _________

 Find actual block number: 3rd entry in the indirect block (@ addrs[12])

Each inode has an inumber

• Easy to turn inumber into inode
• inode is 64 bytes long
•can store 8 per block (IPB= /)
•block num on disk: 32 + inumber/8
•Offset in block = (inumber % 8) * 64

 17

Directory contents

• Contents is an array of dirent

• dirent is free if inum is 0

 18

#define DIRSIZ 14

struct dirent {
 ushort inum;
 char name[DIRSIZ];
};

xv6 in action

• Focus on disk writes

• Illustrate on-disk data structures via how
updated

 19

How does xv6 create a file?

• call graph:
•sys_open sysfile.c
– create sysfile.c

- ialloc fs.c
- iupdate fs.c
- dirlink fs.c

–writei fs.c
 20

rm fs.img
make qemu-nox-gdb
…
$ echo > a

blocknum func called
from

what

34 ialloc create mark
inode
allocated
on disk34 iupdate create initialize
nlink,
major,
minor59 writei dirlink write
inumber
and name

What is written

What’s in block 34?

 21

create(…) {
 …
 if((ip = ialloc(dp->dev, type)) == 0)
 panic("create: ialloc");

 ilock(ip);
 ip->major = major;
 ip->minor = minor;
 ip->nlink = 1;
 iupdate(ip);
 …
}

Why two writes to block 34?

Why 34 if inodes start at block 32?

What’s in block 59?

 22

$ ls
. 1 1 512
.. 1 1 512
README 2 2 2327
cat 2 3 15544
echo 2 4 14440
forktest 2 5 8864
grep 2 6 17552
init 2 7 15068
kill 2 8 14484
ln 2 9 14364
ls 2 10 16884
mkdir 2 11 14592
rm 2 12 14568
sh 2 13 26740
stressfs 2 14 15344
usertests 2 15 63548
wc 2 16 16152
zombie 2 17 14176
console 3 18 0
a 2 19 0

1 .

1 ..

⋮ ⋮
18 console

19 a

What if there are concurrent calls to ialloc?

 23

void ialloc(uint dev, short type)
{
 int inum;
 struct buf *bp;
 struct dinode *dip;

 for(inum = 1; inum < sb.ninodes; inum++){
 bp = bread(dev, IBLOCK(inum, sb));
 dip = (struct dinode*)bp->data + inum%IPB;
 if(dip->type == 0){ // a free inode
 memset(dip, 0, sizeof(*dip));
 dip->type = type;
 log_write(bp); // mark it allocated on the disk
 brelse(bp);
 return iget(dev, inum);
 }
 brelse(bp);
 }
 panic("ialloc: no inodes");
}

How does xv6 write data to a file?

• call graph:
• sys_write sysfile.c
– filewrite file.c

- writei fs.c
– bmap fs.c

– balloc fs.c
– bzero fs.c

– iupdate fs.c
 24

$ echo foo > a
blocknum func called from what
58 balloc bmap mark block allocated

640 bzero balloc empty data block

640 writei filewrite write “a”

34 iupdate writei update size to 1 and
addrs

640 writei filewrite write “a\n”

34 iupdate write update size to 2

What is written

What’s in block 58?

 25

balloc(uint dev)
{
 int b, bi, m;
 struct buf *bp;

 bp = 0;
 for(b = 0; b < sb.size; b += BPB){
 bp = bread(dev, BBLOCK(b, sb));
 for(bi = 0; bi < BPB && b + bi < sb.size; bi++){
 m = 1 << (bi % 8);
 if((bp->data[bi/8] & m) == 0){ // Is block free?
 bp->data[bi/8] |= m; // Mark block in use.
 log_write(bp);
 brelse(bp);
 bzero(dev, b + bi);
 return b + bi;
 }
 }
 brelse(bp);
 }
 panic("balloc: out of blocks");
}

bmap(struct inode *ip, uint bn)
{
 …

 if(bn < NDIRECT){
 if((addr = ip->addrs[bn]) == 0)
 ip->addrs[bn] = addr = balloc(ip->dev);
 return addr;
 }

What’s in block 640?

 26

a\n\0\0\0…\0

Why two calls to writei?

Why two calls to updatei?

How does xv6 delete a file?

• call graph:
• sys_unlink sysfile.c
– writei sysfile.c

- iupdate fs.c
- iunlockput fs.c

– iput fs.c
– itrunc fs.c

– bfree fs.c
– iupdate fs.c

– iupdate fs.c
 27

$ rm a

blocknum func called from what
59 writei sys_unlink clear dirent

34 iupdate sys_unlink nlink—

58 bfree itrunc mark block
free

34 iupdate itrunc Size→ 0,
addrs→0

34 iupdate iput mark not
valid

What is written

Block cache (bio.c)

• Block cache holds a few recently-used
blocks

 28

struct {
 struct spinlock lock;
 struct buf buf[NBUF];

 // Linked list of all buffers, through prev/next.
 // head.next is most recently used.
 struct buf head;
} bcache;

Block cache

• FS calls bread, which calls bget
•bget looks to see if block is already cached
• If present, acquire lock and then return it
•b->refcnt++ prevents buf from being recycled while

we’re waiting

 29

static struct buf*
bget(uint dev, uint blockno)
{
 struct buf *b;

 acquire(&bcache.lock);

 // Is the block already cached?
 for(b = bcache.head.next; b != &bcache.head; b = b->next){
 if(b->dev == dev && b->blockno == blockno){
 b->refcnt++;
 release(&bcache.lock);
 acquiresleep(&b->lock);
 return b;
 }
 }
 …
}

Block cache

• FS calls bread, which calls bget
• If block not already cached, reuse an existing buffer
•b->refcnt=1 prevents buf from being recycled while

we’re waiting

 30

static struct buf* bget(uint dev, uint blockno)
{
 …
 // Not cached; recycle an unused buffer.
 // Even if refcnt==0, B_DIRTY indicates a buffer is in use
 // because log.c has modified it but not yet committed it.
 for(b = bcache.head.prev; b != &bcache.head; b = b->prev){
 if(b->refcnt == 0 && (b->flags & B_DIRTY) == 0) {
 b->dev = dev;
 b->blockno = blockno;
 b->flags = 0;
 b->refcnt = 1;
 release(&bcache.lock);
 acquiresleep(&b->lock);
 return b;
 }
 }
 panic("bget: no buffers");
}

Two levels of locking

• bcache.lock protects the description of
what’s in the cache

• buf->lock protects just the one buffer

 31

What is the block cache replacement policy?

• LRU (Least Recently Used)

• bget reuses the tail  
(bcache.head.prev)

• brelse moves block to  
bcache.head.next

 32

// Release a locked buffer.
// Move to the head of the MRU list.
void
brelse(struct buf *b)
{
 …

 acquire(&bcache.lock);
 b->refcnt--;
 if (b->refcnt == 0) {
 // no one is waiting for it.
 b->next->prev = b->prev;
 b->prev->next = b->next;
 b->next = bcache.head.next;
 b->prev = &bcache.head;
 bcache.head.next->prev = b;
 bcache.head.next = b;
 }

 release(&bcache.lock);
}

What if lots of processes need to read the disk?

• Who goes first?
•iderw appends to idequeue list
•ideintr calls idestart on head of ideqeuue list

•So, FIFO

 33

