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Final project

• Choose project 6 (JOS networking) or JOS-
related final project of your choice 

• Some project ideas are in the Lab 7 writeup 
•Piazza Discussion Due, March 28, 2019 
– Find partners (team of up to 3), share ideas 
•Proposals Due, April 4, 2019  
– Will say yes or no (level of difficulty, relevance to 
OS) 

•Code repository (including brief writeup). Due, 
May 2, 2019  
•In-person Check-off, May 3 or 6, 2019
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Crash recovery

• Problem: crash can lead to inconsistent file 
system 

• Solution 1: file system check on boot 

• Solution 2: logging
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What is crash recovery?

• You’re writing to the file system 

• Then, the power fails 

• You reboot 

• Is your file system still usable?
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The problem

• Crash during multi-step operation 

• May leave FS invariants violated 

• After reboot: 
•bad: crash again due to corrupt FS 
•worse: no crash, but reads/writes incorrect data
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Examples

• create 
•new dirent 
•allocate file inode 
•crash: dirent points to free inode—disaster 
– crash again, or worse if inode is allocated for 
something else 

•crash: inode not free but not used—not so bad
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Examples

• write 
•inode addr[] and len 
•indirect block 
•block content 
•block free bitmap 
•crash: inode refers to free block—disaster 
•crash: block not free but not used—not so bad
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Examples

• unlink 
•block free bitmaps 
•free inode 
•erase dirent 
•crash: inode refers to free block—disaster 
•crash: dirent refers to free inode—disaster
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What can we hope for?

• After rebooting and running recovery code: 
1.FS internal invariants maintained 
•For example, no block is in both the free list and in 

a file 
2.All but the last few operations are preserved on 
disk 
•For example, data I wrote yesterday is preserved, 

but not necessarily data I was writing at the time of 
the crash 
•User might have to check the last few operations 
3.No order anomalies 
•echo 99 > result; echo done > status
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Correctness and performance often conflict

• Disk writes are slow! 

• Safety→write to disk ASAP 

• Speed→don’t write to disk 
•Batch 
•Write-back cache 
•Sort by track 
•etc.
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Crash recovery is a recurring problem

• Arises in all storage systems (e.g., 
databases) 

• A lot of work has gone into solutions over the 
years 

• Many clever performance/correctness 
tradeoffs
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Logging

• Most popular solution 

• aka journaling 

• Goal: atomic system calls w.r.t. crashes 

• Goal: fast recovery (no hour-long fsck)
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We’ll look at logging in two steps

1.In xv6, which only provides safety and fast 
recovery 

2.Then, in Linux’s EXT3, which is also fast in 
normal operation
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Basic idea behind logging

• You want atomicity: all of a system call’s 
writes, or none 
•Let’s call an atomic operation a transaction 

• Record all writes a system call will do in the 
log on a disk (log) 

• Then, record “done” in the log (commit) 

• Then, do the FS disk writes (install) 

• On crash+recovery: 
•If “done” is in the log, replay all the writes in the 

log. 
•Else, ignore log 

• This is a write-ahead log
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Write-ahead log rule

• Write none of a transaction’s writes to the FS 
•Until all writes are in the log 
•And, the logged writes are committed
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Why the rule?

• Once we’ve installed one write to the on-disk 
FS 
•We have to do all the other writes in the 

transaction (so the transaction is atomic) 
•To be prepared for a crash after the first 

installation write 
– The other writes must be available for replay 

- In the log
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Logging is magic

• Crash recovery of complex mutable data 
structures is generally hard 

• Logging can often be layered on top of 
existing storage systems 

• And, it’s compatible with high performance
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Challenge: prevent writeback from cache

• A system call can safely update a cached 
block 
•But, the block cannot be written to the FS until the 

transaction completes 

• Tricky, because, for example, cache may run 
out of space and may be tempted to evict 
some entries in order to read and cache 
other data
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Challenge: prevent writeback from cache

• create example 
•Write dirty inode to log 
•Write dir block to log 
•Evict dirty inode 
•Commit 

• Solution: 
•Ensure buffer cache is big enough 
•Pin dirty blocks in the buffer cache 
•Afer commit, unpin blocks
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xv6 log representation

• On write, add blockno to in-memory array 
•Keep the data itself in buffer cache (pinned) 

• On commit: 
•Write buffers to the log on disk 
•WAIT for disk to complete the writes 

(synchronous) 
•Write the log header to the disk 
– block numbers 
– non-zero “n” 
•After commit: 
– Install (write) the blocks in the log to their home 
location in the FS 

– Write zero to “n” in the log header
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The “n” value in the log header on disk 
indicates commit

• zero == not committed—may not be 
complete: recovery should ignore log 

• non-zero == committed—log content is valid 
and is a complete transaction 

• The write of the non-zero “n” is the commit 
point
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Challenge: system-call’s writes must fit in log

• Compute an upper bound on the number of 
blocks each system call writes 
•set log size ≥ upper bound 

• Break up some system calls into several 
transactions 
•Large write()s 
•Thus, large write()s are not atomic 
– But, a crash will leave a valid prefix of the large 
write
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Challenge: allowing concurrent system calls

• Must allow writes from several system calls 
to be in the log 

• On commit, must write them all 

• But, cannot write data from calls still in a 
transaction
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xv6 solution

• Allow no new system calls to start if their 
data might not fit into the log 
•Must wait for current calls to complete and 

commit 

• When number of in-progress calls falls to 
zero 
•Commit 
•Free up log space 
•Wake up waiting calls
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Challenge: a block may be written multiple 
times in a transaction

• Writes affect only cached block in memory 

• So, a cached block may reflect multiple 
uncommitted transactions 

• But install only happens when there are no 
in-progress transactions 
•So, installed blocks reflect only committed 

transactions 

• Good for performance: write absorption
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xv6 disk layout with block numbers
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Block num Usage

0 unused (usually 
boot block)

1 super block

2 log for transactions

32 array of inodes, 
packed into blocks

58 Block in-use bitmap 
(0=free, 1=used)

59 file/dir content 
blocks

… …



An example: echo a > x
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Block num written Explanation
3 inode: 35

4 directory content: 63

2 commit (block #s and n)

35 install inode

63 Install directory content

2 mark log “empty

Create x

Block num written Explanation
3 bitmap: 58
4 file content: 533
5 inode: 35
2 commit (block #s and n)
58 bitmap
533 “a”
35 inode (file size)
2 mark log “empty

Write ‘a’

Block num written Explanation

3 file content: 533

4 inode: 35

2 commit (block #s and n)

533 “a\n”

35 inode (file size)

2 mark log “empty

Write ‘\n’



Deep dive into second transaction
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filewrite(struct file *f, char *addr, int n)
{
  …
  if(f->type == FD_INODE){
    // write a few blocks at a time to avoid exceeding
    // the maximum log transaction size, including
    // i-node, indirect block, allocation blocks,
    // and 2 blocks of slop for non-aligned writes.
    // this really belongs lower down, since writei()
    // might be writing a device like the console.
    int max = ((MAXOPBLOCKS-1-1-2) / 2) * 512;
    int i = 0;
    while(i < n){
      int n1 = n - i;
      if(n1 > max)
        n1 = max;

      begin_op();
      ilock(f->ip);
      if ((r = writei(f->ip, addr + i, f->off, n1)) > 0)
        f->off += r;
      iunlock(f->ip);
      end_op();
   …
}

Block num written Explanation

3 bitmap: 58

4 file content: 533

5 inode: 35

2 commit (block #s and n)

58 bitmap

533 “a”

35 inode (file size)

2 mark log “empty

Write ‘a’



Deep dive into second transaction
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writei(struct inode *ip, char *src, uint off, uint n)
{
  …
  for(tot=0; tot<n; tot+=m, off+=m, src+=m){
    bp = bread(ip->dev, bmap(ip, off/BSIZE));
    m = min(n - tot, BSIZE - off%BSIZE);
    memmove(bp->data + off%BSIZE, src, m);
    log_write(bp);
    brelse(bp);
  }

  if(n > 0 && off > ip->size){
    ip->size = off;
    iupdate(ip);
  }
  return n;
}

Can write bitmap, indirect block

Can write bitmap, indirect block



Deep dive into second transaction

• Need to indicate which groups of writes must 
be atomic 

• Need to check if log is being committed 

• Need to check if our writes will fit in 
remainder of log
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void begin_op(void)
{
  acquire(&log.lock);
  while(1){
    if(log.committing){
      sleep(&log, &log.lock);
    } else if(log.lh.n + (log.outstanding+1)*MAXOPBLOCKS > LOGSIZE){
      // this op might exhaust log space; wait for commit.
      sleep(&log, &log.lock);
    } else {
      log.outstanding += 1;
      release(&log.lock);
      break;
    }
  }
}



Deep dive into second transaction
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void log_write(struct buf *b)
{
  int i;

  if (log.lh.n >= LOGSIZE || log.lh.n >= log.size - 1)
    panic("too big a transaction");
  if (log.outstanding < 1)
    panic("log_write outside of trans");

  acquire(&log.lock);
  for (i = 0; i < log.lh.n; i++) {
    if (log.lh.block[i] == b->blockno)   // log absorbtion
      break;
  }
  log.lh.block[i] = b->blockno;
  if (i == log.lh.n)
    log.lh.n++;
  b->flags |= B_DIRTY; // prevent eviction
  release(&log.lock);
}



Deep dive into second transaction

• If no outstanding transactions, commit
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void end_op(void)
{
  acquire(&log.lock);
  log.outstanding -= 1;
  if(log.outstanding == 0){
    do_commit = 1;
    log.committing = 1;
  } else {
    // begin_op() may be waiting for log space,
    // and decrementing log.outstanding has decreased
    // the amount of reserved space.
    wakeup(&log);
  }
  release(&log.lock);
  if(do_commit){
    …
    commit();
    acquire(&log.lock);
    log.committing = 0;
    wakeup(&log);
    release(&log.lock);
  }
}



Deep dive into second transaction

• Copy updated blocks from cache to disk log 

• Record sector #s and “done” to disk 

• Install writes—copy from on-disk log to on-
disk FS 
•ide.c will clear B_DIRTY for block written—now it 

can be evicted 

• Erase “done” from log
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static void
commit()
{
  if (log.lh.n > 0) {
    write_log();     // Write modified blocks from cache to log
    write_head();    // Write header to disk -- the real commit
    install_trans(); // Now install writes to home locations
    log.lh.n = 0;
    write_head();    // Erase the transaction from the log
  }
}



What would happen if we crash 
 during a transaction?

• Memory is lost—only disk at time of crash 

• Kernel calls recover_from_log() during 
boot (before using FS) 
•If log headers say “done”: 
– copy blocks from log to real location on disk 

• What is in the on-disk log: 
•crash before commit 
•crash during commit: commit point 
•crash during install_trans 
•crash just after reboot while in 
recover_from_log()

• Replaying the log is idempotent 
•as long as no other FS activity intervenes
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xv6 assumes disk is fail-safe

• Atomic: Either the write occurs correctly, or 
the write doesn’t occur 
•No partial writes 

• No wild writes 

• No decay of sectors (no read errors) 

• No read of the wrong sector
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What is good about xv6’s log design?

• Correctness: due to write-ahead log 

• Good disk throughput: log naturally batches 
writes 
•But, disk blocks are written twice 

• Concurrency
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What is bad about xv6’s log design?

• Not very efficient 
•Every block is written twice 
•Logs whole blocks even if only a few bytes are 

modified 
•Writes each log block synchronously 
– Could write them as a batch and only write head 
synchronously 

•Trouble with operations that don’t fit in the log 
– unlink might dirty many blocks while truncating file
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