
CS 134
Operating Systems

March 25, 2019

Crash Recovery & Logging

This work is a derivative of Crash Recovery, Logging by MIT Open Courseware used under
 Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/lecture-notes-and-readings/MIT6_828F12_lec10_notes.pdf

Final project

• Choose project 6 (JOS networking) or JOS-
related final project of your choice

• Some project ideas are in the Lab 7 writeup
•Piazza Discussion Due, March 28, 2019
– Find partners (team of up to 3), share ideas
•Proposals Due, April 4, 2019
– Will say yes or no (level of difficulty, relevance to
OS)

•Code repository (including brief writeup). Due,
May 2, 2019
•In-person Check-off, May 3 or 6, 2019

 2

Crash recovery

• Problem: crash can lead to inconsistent file
system

• Solution 1: file system check on boot

• Solution 2: logging

 3

What is crash recovery?

• You’re writing to the file system

• Then, the power fails

• You reboot

• Is your file system still usable?

 4

The problem

• Crash during multi-step operation

• May leave FS invariants violated

• After reboot:
•bad: crash again due to corrupt FS
•worse: no crash, but reads/writes incorrect data

 5

Examples

• create
•new dirent
•allocate file inode
•crash: dirent points to free inode—disaster
– crash again, or worse if inode is allocated for
something else

•crash: inode not free but not used—not so bad

 6

Examples

• write
•inode addr[] and len
•indirect block
•block content
•block free bitmap
•crash: inode refers to free block—disaster
•crash: block not free but not used—not so bad

 7

Examples

• unlink
•block free bitmaps
•free inode
•erase dirent
•crash: inode refers to free block—disaster
•crash: dirent refers to free inode—disaster

 8

What can we hope for?

• After rebooting and running recovery code:
1.FS internal invariants maintained
•For example, no block is in both the free list and in

a file
2.All but the last few operations are preserved on
disk
•For example, data I wrote yesterday is preserved,

but not necessarily data I was writing at the time of
the crash
•User might have to check the last few operations
3.No order anomalies
•echo 99 > result; echo done > status

 9

Correctness and performance often conflict

• Disk writes are slow!

• Safety→write to disk ASAP

• Speed→don’t write to disk
•Batch
•Write-back cache
•Sort by track
•etc.

 10

Crash recovery is a recurring problem

• Arises in all storage systems (e.g.,
databases)

• A lot of work has gone into solutions over the
years

• Many clever performance/correctness
tradeoffs

 11

Logging

• Most popular solution

• aka journaling

• Goal: atomic system calls w.r.t. crashes

• Goal: fast recovery (no hour-long fsck)

 12

We’ll look at logging in two steps

1.In xv6, which only provides safety and fast
recovery

2.Then, in Linux’s EXT3, which is also fast in
normal operation

 13

Basic idea behind logging

• You want atomicity: all of a system call’s
writes, or none
•Let’s call an atomic operation a transaction

• Record all writes a system call will do in the
log on a disk (log)

• Then, record “done” in the log (commit)

• Then, do the FS disk writes (install)

• On crash+recovery:
•If “done” is in the log, replay all the writes in the

log.
•Else, ignore log

• This is a write-ahead log
 14

Write-ahead log rule

• Write none of a transaction’s writes to the FS
•Until all writes are in the log
•And, the logged writes are committed

 15

Why the rule?

• Once we’ve installed one write to the on-disk
FS
•We have to do all the other writes in the

transaction (so the transaction is atomic)
•To be prepared for a crash after the first

installation write
– The other writes must be available for replay

- In the log

 16

Logging is magic

• Crash recovery of complex mutable data
structures is generally hard

• Logging can often be layered on top of
existing storage systems

• And, it’s compatible with high performance

 17

Challenge: prevent writeback from cache

• A system call can safely update a cached
block
•But, the block cannot be written to the FS until the

transaction completes

• Tricky, because, for example, cache may run
out of space and may be tempted to evict
some entries in order to read and cache
other data

 18

Challenge: prevent writeback from cache

• create example
•Write dirty inode to log
•Write dir block to log
•Evict dirty inode
•Commit

• Solution:
•Ensure buffer cache is big enough
•Pin dirty blocks in the buffer cache
•Afer commit, unpin blocks

 19

xv6 log representation

• On write, add blockno to in-memory array
•Keep the data itself in buffer cache (pinned)

• On commit:
•Write buffers to the log on disk
•WAIT for disk to complete the writes

(synchronous)
•Write the log header to the disk
– block numbers
– non-zero “n”
•After commit:
– Install (write) the blocks in the log to their home
location in the FS

– Write zero to “n” in the log header
 20

The “n” value in the log header on disk 
indicates commit

• zero == not committed—may not be
complete: recovery should ignore log

• non-zero == committed—log content is valid
and is a complete transaction

• The write of the non-zero “n” is the commit
point

 21

Challenge: system-call’s writes must fit in log

• Compute an upper bound on the number of
blocks each system call writes
•set log size ≥ upper bound

• Break up some system calls into several
transactions
•Large write()s
•Thus, large write()s are not atomic
– But, a crash will leave a valid prefix of the large
write

 22

Challenge: allowing concurrent system calls

• Must allow writes from several system calls
to be in the log

• On commit, must write them all

• But, cannot write data from calls still in a
transaction

 23

xv6 solution

• Allow no new system calls to start if their
data might not fit into the log
•Must wait for current calls to complete and

commit

• When number of in-progress calls falls to
zero
•Commit
•Free up log space
•Wake up waiting calls

 24

Challenge: a block may be written multiple 
times in a transaction

• Writes affect only cached block in memory

• So, a cached block may reflect multiple
uncommitted transactions

• But install only happens when there are no
in-progress transactions
•So, installed blocks reflect only committed

transactions

• Good for performance: write absorption

 25

xv6 disk layout with block numbers

 26

Block num Usage

0 unused (usually
boot block)

1 super block

2 log for transactions

32 array of inodes,
packed into blocks

58 Block in-use bitmap
(0=free, 1=used)

59 file/dir content
blocks

… …

An example: echo a > x

 27

Block num written Explanation
3 inode: 35

4 directory content: 63

2 commit (block #s and n)

35 install inode

63 Install directory content

2 mark log “empty

Create x

Block num written Explanation
3 bitmap: 58
4 file content: 533
5 inode: 35
2 commit (block #s and n)
58 bitmap
533 “a”
35 inode (file size)
2 mark log “empty

Write ‘a’

Block num written Explanation

3 file content: 533

4 inode: 35

2 commit (block #s and n)

533 “a\n”

35 inode (file size)

2 mark log “empty

Write ‘\n’

Deep dive into second transaction

 28

filewrite(struct file *f, char *addr, int n)
{
 …
 if(f->type == FD_INODE){
 // write a few blocks at a time to avoid exceeding
 // the maximum log transaction size, including
 // i-node, indirect block, allocation blocks,
 // and 2 blocks of slop for non-aligned writes.
 // this really belongs lower down, since writei()
 // might be writing a device like the console.
 int max = ((MAXOPBLOCKS-1-1-2) / 2) * 512;
 int i = 0;
 while(i < n){
 int n1 = n - i;
 if(n1 > max)
 n1 = max;

 begin_op();
 ilock(f->ip);
 if ((r = writei(f->ip, addr + i, f->off, n1)) > 0)
 f->off += r;
 iunlock(f->ip);
 end_op();
 …
}

Block num written Explanation

3 bitmap: 58

4 file content: 533

5 inode: 35

2 commit (block #s and n)

58 bitmap

533 “a”

35 inode (file size)

2 mark log “empty

Write ‘a’

Deep dive into second transaction

 29

writei(struct inode *ip, char *src, uint off, uint n)
{
 …
 for(tot=0; tot<n; tot+=m, off+=m, src+=m){
 bp = bread(ip->dev, bmap(ip, off/BSIZE));
 m = min(n - tot, BSIZE - off%BSIZE);
 memmove(bp->data + off%BSIZE, src, m);
 log_write(bp);
 brelse(bp);
 }

 if(n > 0 && off > ip->size){
 ip->size = off;
 iupdate(ip);
 }
 return n;
}

Can write bitmap, indirect block

Can write bitmap, indirect block

Deep dive into second transaction

• Need to indicate which groups of writes must
be atomic

• Need to check if log is being committed

• Need to check if our writes will fit in
remainder of log

 30

void begin_op(void)
{
 acquire(&log.lock);
 while(1){
 if(log.committing){
 sleep(&log, &log.lock);
 } else if(log.lh.n + (log.outstanding+1)*MAXOPBLOCKS > LOGSIZE){
 // this op might exhaust log space; wait for commit.
 sleep(&log, &log.lock);
 } else {
 log.outstanding += 1;
 release(&log.lock);
 break;
 }
 }
}

Deep dive into second transaction

 31

void log_write(struct buf *b)
{
 int i;

 if (log.lh.n >= LOGSIZE || log.lh.n >= log.size - 1)
 panic("too big a transaction");
 if (log.outstanding < 1)
 panic("log_write outside of trans");

 acquire(&log.lock);
 for (i = 0; i < log.lh.n; i++) {
 if (log.lh.block[i] == b->blockno) // log absorbtion
 break;
 }
 log.lh.block[i] = b->blockno;
 if (i == log.lh.n)
 log.lh.n++;
 b->flags |= B_DIRTY; // prevent eviction
 release(&log.lock);
}

Deep dive into second transaction

• If no outstanding transactions, commit

 32

void end_op(void)
{
 acquire(&log.lock);
 log.outstanding -= 1;
 if(log.outstanding == 0){
 do_commit = 1;
 log.committing = 1;
 } else {
 // begin_op() may be waiting for log space,
 // and decrementing log.outstanding has decreased
 // the amount of reserved space.
 wakeup(&log);
 }
 release(&log.lock);
 if(do_commit){
 …
 commit();
 acquire(&log.lock);
 log.committing = 0;
 wakeup(&log);
 release(&log.lock);
 }
}

Deep dive into second transaction

• Copy updated blocks from cache to disk log

• Record sector #s and “done” to disk

• Install writes—copy from on-disk log to on-
disk FS
•ide.c will clear B_DIRTY for block written—now it

can be evicted

• Erase “done” from log

 33

static void
commit()
{
 if (log.lh.n > 0) {
 write_log(); // Write modified blocks from cache to log
 write_head(); // Write header to disk -- the real commit
 install_trans(); // Now install writes to home locations
 log.lh.n = 0;
 write_head(); // Erase the transaction from the log
 }
}

What would happen if we crash 
 during a transaction?

• Memory is lost—only disk at time of crash

• Kernel calls recover_from_log() during
boot (before using FS)
•If log headers say “done”:
– copy blocks from log to real location on disk

• What is in the on-disk log:
•crash before commit
•crash during commit: commit point
•crash during install_trans
•crash just after reboot while in
recover_from_log()

• Replaying the log is idempotent
•as long as no other FS activity intervenes

 34

xv6 assumes disk is fail-safe

• Atomic: Either the write occurs correctly, or
the write doesn’t occur
•No partial writes

• No wild writes

• No decay of sectors (no read errors)

• No read of the wrong sector

 35

What is good about xv6’s log design?

• Correctness: due to write-ahead log

• Good disk throughput: log naturally batches
writes
•But, disk blocks are written twice

• Concurrency

 36

What is bad about xv6’s log design?

• Not very efficient
•Every block is written twice
•Logs whole blocks even if only a few bytes are

modified
•Writes each log block synchronously
– Could write them as a batch and only write head
synchronously

•Trouble with operations that don’t fit in the log
– unlink might dirty many blocks while truncating file

 37

