CS 134
Operating Systems

March 27, 2019

Linux ext3 crash recovery

This work is a derivative of Linux ext3 crash recovery by MIT Open Courseware used under
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/lecture-notes-and-readings/MIT6_828F12_lec11_notes.pdf

Outline

e | ogging for crash recovery

e Xv0 log: slow and immediately durable
e ext3: fast but not immediately durable

e Trade-off: speed vs. safety

Example problem

Appending to a file

Two writes

e Mark block non-free in block bitmap
e Add block # to inode addrs array

We want atomicity
e Both or neither
So, we cannot do the FS writes one at a time

Why logging?

e Atomic system w.r.t. crashes

e [ast recovery (independent of disk size). No
more hours-long £sck

Review of xv6 logging

e Each system call is a transaction

e System call updates cached blocks, in
memory

e At end of system call:

e \Write modified blocks to log on disk

e write blocks #s and “done” to log on disk—the
commit point

e |nstall modified blocks to FS on disk

- |If we crash midway-through, recovery can replay
all writes from log

- rule: don’t start FS writes until all writes are
committed to log

e Erase “done” from log

Homework: echo hi > a

e commit () hacked to ignore one of the

writes, crash after commit+install and
recovery disabled

e \Why does cat a (after crash) produce:
“panic: ilock: no type”
e broken commit() updated dirent but not inode
e SO, dirent is on disk and contains the inode #
e But, the inode is marked free (type=0)

o After recovery, why does cat a produce
empty file”?
e Recovery wrote inode in the right place
e But, create and write are separate system calls
- echo never called write (): crashed during create

What's wrong with xv6’s logging? It's slow

Immediate commit: after every syscall

Immediate write to FS after every commit
e Must do this in order to reuse on-disk log

All new syscalls (that use the FS) block
during any commit ()

e S0, not much concurrent execution

Every block is written twice to disk: log, FS
e Not so bad for meta-data blocks

e Painful for big files

e These writes are synchronous: xv6 waits

e Creating an empty file takes 6 synchronous disk
writes=60ms

e Only 10-20 disk update system calls per second

Linux’'s ext3 design

Case study of the details required to add
logging to a filesystem

Stephen Tweedie 2000 talk transcript "EXT3,
Journaling Filesystem™: http://
olstrans.sourceforge.net/release/OLS2000-

ext3/0LS2000-ext3.html

ext3 adds a log to ext2, a previous log-less
FS

Has many modes:

e Start with “"Journaled data”
- Log contains both metadata and file content blocks

ext3 structures

e In memory:

e \Write-back block cache

e Per-transaction info

- set of block #s to be logged

- set of outstanding handles—one per syscall

e On disk:

e FS
e Circular log

What's in the ext3 log?

=

Log superblock: log offset and starting seq #
of earliest valid transaction

e this is not the FS superblock; it's a block at start of
log file
Descriptor blocks: magic, seq, block #s

Data blocks (as described by descriptor)
Commit blocks: magic, seq

superblock:
offset & seq#

. | Descriptor 4 | ... | Data blocks ... | Commit 4 Descriptor 5 | ...

How does ext3 get good performance?

e Batching
e Commits every few seconds, not after every system
call
e S0, each transaction includes many system calls

e \Why does batching improve performance?
1. Amortize fixed transaction cost (descriptor and dat
blocks) over many transactions

2 . Write absorption

- Many syscalls in the batch may modify the same
block (inode, bitmap, dirent), thus one disk write for
many syscall updates

3 . Better concurrency—Iless waiting for previous
syscall to finish commit

Note: system calls return before they
are safely on disk

e This affects application-level crash recovery
situation

e [For example, mail server that receives

message, saves it to disk, then responds
“OK”

ext3 allows concurrent transactions and syscalls

e There may be multiple transactions:

e Some fully committed in the on-disk log
e Some doing the log writes as part of the commit
e One open transaction that's accepting new syscalls

ext3 sys call code

sys open() {

® Start() h = start()

get(h, block #)
® Te”S Iogg”']g System tO make modify the block in the cache

. : . stop(h)
writes atomic (until stop()) |2

e | ogging system must know the set of outstanding
system calls

- Can’t commit until they're all complete
e start () can block the sys call if needed
* get()
e tells logging system we'll modify cached block
- added to list of blocks to be logged

e pins block in memory until transaction commits
e stop()

e transaction can commit iff all included syscalls
have called stop ()

Committing a transaction to disk

1.Block new syscalls
2.\Wait for in-progress syscalls to stop()
3.0pen a new transaction, unblock new syscalls

4. \Write descriptor to log on disk w/ list of block
#s

5.Write each block from cache to log on disk
6.\Walit for all log writes to finish

/.Write the commit record

8.Wait for the commit write to finish

9.Now cached blocks allowed to go to homes on
disk (but not forced)

Can syscall B read uncommitted
results of syscall A”?

A: rm X
B: echo > y—re-using x's freed i-node

Could B commit first, so that crash would
reveal anomaly?

Case 1: both in same transaction—ok, both
or neither

Case 2: Ain T1, B in T2—ok, ext3 commits
transactions in order

Can syscall B read uncommitted
results of syscall A?

e Case3:BInT1,AIn T2
e inT1:|--B-|
einT2: |—A-|
e Could B see A's free of y's i-node?
- after all, A writes the same cache that B reads

- bad: crash after T1 could leave both x and y using
the i-node

e n0: ext3 waits for all syscalls in prev xaction to finish
- before letting any in next start

- thus B (in T1) completes before ext3 lets A (in T2)
start

- so0 B won't see any of A's writes

- T1: |-syscalls-|
- T2: |-syscalls-|
- T3: |-syscalls-|

Can syscall B read uncommitted
results of syscall A”?

e [he commit order must be consistent with
the order in which the system calls read/
wrote state.

e Perhaps ext3 sacrifices a bit of performance
here to gain correctness

Is it safe for a syscall in T2 to write a
block that was also written in T17?

o ext3 allows T2 to start before T1 finishes
committing—can take a while

e T1: |-syscalls-
o T2:
e The danger:

-commitWrites-|
-syscalls-|-commitWrites-|

e a T1 syscall writes block 17
e T1 closes, starts writing cached blocks to log
e T2 starts, a T2 syscall also writes block 17

e Could T1 write T2's modified block 17 to the T1
transaction in the log?

e Bad: not atomic, since then a crash would leave
some but not all off T2's writes committed

Is it safe for a syscall in T2 to write a
block that was also written in T17?

Ext3 gives T1 a private copy of the block
cache as it existed when T1 closed

T1 commits from this snapshot of the cache
It's efficient using copy-on-write

The copies allow syscalls in T2 to proceed
while T1 is committing

The point:

e Correctness requires a post-crash+recover state as
If syscalls had executed atomically and sequentially

ext3 uses various tricks to allow some
concurrency

When can ext3 re-use transaction T1's log space”?

e Logiscircular

e Once:

e all transactions prior to T1 have been freed in the
log, and

- T1's cached blocks have all been written to FS on
disk
- free == advance log superblock's start pointer/seq#

What if not enough free space in log for a syscall?

e Suppose we start adding syscall's blocks to
T2

e Half way through, realize T2 won't fit on disk
e \We cannot commit T2, since syscall not done

e \Ve cannot back out of this syscall, either

e there's no way to undo a syscall
e other syscalls in T2 may have read its modifications

What if not enough free space in log for a syscall?

e Solution: reservations

e syscall pre-declares how many block of log space it
might need

e ext3's start () blocks the syscall until enough free
space

e may need to commit open transaction, then free
older transaction

e OK since reservations mean all started sys calls can
complete + commit

Performance?

rm * In a directory with 100 files

e Xv6: over 10 seconds—six synchronous disk writes
per sys call

e ext3: about 20 ms total

rm * repeatedly writes the same same
direntry and inode blocks

o until commit, just updating the cached blocks, no
disk writes

Then one commit of a few metadata blocks

How long to do a commit?

e log a handful of blocks (inodes, dirents)
e wait for disk to say writes are on disk

e then write the commit record

e two rotations, or about 20ms total

What if a crash?

e Crash may interrupt writing last transaction
to log on disk

e So disk may have a bunch of complete
transactions, then maybe one partial

e May also have written some of block cache
to disk

e but only for fully committed transactions, not partial
last one

How does recovery work?

1.Find the start of the log—the first non-freed
descriptor

e log "superblock” contains offset and seqg# of first
transaction (advanced when log space is freed)

2.Find the end of the log

e scan until bad magic or not the expected seq #
e go back to last commit record

e crash during commit — no commit record, recovery
ignores

3.Replay all blocks through last complete
transaction, in log order

What if block after last valid Iog7block
looks like a log descriptor

e Perhaps a descriptor block left over from
previous use of log?

e seq # will be too low

e Perhaps some file data happens to look like
a descriptor?

e | ogged data block cannot contain the magic
number!

e ext3 forbids magic number in logged data blocks:
- Replace magic number with 0
- Set flag for that block in descriptor

“*Ordered data” mode

e Logging file content is slow, every data block
written twice

e Can we entirely omit file content from the
log”?

e |f we did, when would we write file content to
the FS?

e Can we write file content blocks at any time at all?

- No: if metadata committed first, crash may leave

file pointing to unwritten blocks with someone
else's data

e exit3 "ordered data" mode:

e Don't write file content to the log

e \Write content blocks to disk before committing inode
with new size and block #

“*Ordered data” mode

If no crash, there's no problem—readers will
see the written data

If crash before commit:

e Block has new data

e Perhaps not visible, since i-node size and block list
not updated

No metadata inconsistencies
e inode and free bitmap writes are still atomic

Most people use ext3 ordered mode

Correctness challenges with ordered mode

1.rmdir, re-use block for write () to some file

e Crash before rmdir or write committed
o After recovery, as if rmdir never happened,
- But directory block has been overwritten!
e Fix: don’t re-use freed block until freeing syscall committed
2.mkdir, commit, rmdir, commit, reuse block
in file, ordered file write, commit,

e Crash+recover, replay mkdir and rmdir
e File is left w/ directory content e.g. . and ..
- Since file content write is not replayed

e Fix: put "revoke" records into log, prevent log replay
of a given block (rmdir will add revoke for direntry block)

e Note: both problems due to changing the
type of a block (content vs meta-data)

Summary of rules

The classic write-ahead logging rule:

e Don't write meta-data block to on-disk FS until
committed in on-disk log

Wait for all syscalls in T1 to finish before
starting T2

Don't overwrite a block in buffer cache before
it is in the log

Don't free log space until all blocks have
been written to FS

Ordered mode:

e \Write data block to FS before commit

e Don't reuse free block until freeing syscall is
committed

e Don't replav revoked svscalls

Another corner case: open fd and unlink

e Open afile, then unlink it

e unlink commits

e file Is open, so unlink removes dir entry but doesn't
free blocks

e (Crash
e Nothing interesting in log to replay

e inode and blocks not on free list, also not reachably
by any name

e Will never be freed! oops

e Solution: add inode to linked list starting from
FS superblock

e Commit that along with remove of dir ent
e Recovery looks at that list, completes deletions

Checksums

e Recall: transaction’s log blocks must be on
disk before writing commit block

e ext3 walts for disk to say "done" before starting
commit block write

e Risk: disks usually have write caches and re-
order writes, for performance

e Sometimes hard to turn off (the disk lies)

e People often leave re-ordering enabled for speed,
out of ignorance

e Bad news If disk writes commit block before
the rest of the transaction

Checksums

e Solution: commit block contains checksum of
all data blocks

e On recovery:. compute checksum of data blocks

- If matches checksum in commit block: install
transaction

- If no match: don't install transaction

e ext4 has log checksumming

Does ext3 fix the xv6 log performance problems?

e Synchronous write to on-disk log—yes, but
5-second window

e Tiny update — whole block write—maybe (if
syscalls permit write absorbtion)

e Synchronous writes to home locations after
commit—yes

o ext3/extd4 very successful!

