CS 134
Operating Systems

April 1, 2019

ZFS

ZFS

e Developed in early 2000’s at Sun (now
Oracle)

Traditional FS: One/disk

FS

Larger FS: One/ many disk

Volume Volume Volume
2 GB Concat 2 GB Stripe 1 GB Mirror

C DAL

C DA D C A
Lower| [Upper Odd Right
1GB | |1 GB 1 GB 1 GB

Pool approach

Volume Volume Volume

Storage Pool

BB B
_H
I

Advantages of pooling

e Dynamic filesystem size
e All storage in the pool is shared

e Easily add new drives to the pool (dynamic
pool size)

Data integrity

e Checksumming
e Copy-on-write
e T[ransactional

Checksumming

e \Which of the following errors are caught if we

store a checksum in each block? e
Bit rot
data
Phantom writes
checksum

Misdirected reads and writes
Memory errors (cosmic ray)
Driver bugs

Accidental overwrite

Checksumming

e \Which of the following errors are caught if we
store a checksum along with a pointer to the

block?

Bit rot

Phantom writes

Misdirected reads and writes
Memory errors (cosmic ray)
Driver bugs

Accidental overwrite

address

address

checksum

checksum

address

address

checksum

checksum

/

data

\

data

AN

Fundamental Theorem of Software Engineering

o All problems in computer science can be
solved by another level of indirection

Block diagram

System Call

Vnode

—
Interface

System Call

VOP_MUMBLE()

File System

VOP_MUMBLE()

ZFS POSIX Layer (ZPL)

< dataset, object, offset >

Block
Device ——»
Interface

Data Management Unit (DMU)

< logical device, offset >

Volume Manager

< data virtual address >

Block
Device —»

Storage Pool Allocator (SPA)

< physical device, offset >

Interface

Device Driver

< physical device, offset >

Traditional

Device Driver

ZFS

Figure from The Zettabyte File System, Bonwick et al.

Vnode
Interface

Object
Transaction
Interface

Data
Virtual
Addressing

Block
Device
Interface

1

Data virtual address

Storage pool provides malloc/free for disk
space

Can allocate (variable-size) disk blocks and
receive back data virtual addresses (128 bit!)

Can deallocate data virtual addresses

Translation from data virtual address to
device and offset handled by Storage Pool
Allocator

Copy-on-write

Copy-On-Write Transaction Groups (TXG’s)

1. Initial block tree

2. COW some blocks

3. COW indirect blocks

4. Rewrite uberblock (atomic)

Constant-time snapshots

e At end of transaction group, don't free
COWed blocks!

—_—
Snapshot root <4— |jye root

/ N

/O Life Cycle: Writes

e Translated to object transactions by the ZFS
Posix Layer:

“Make these 5 changes to these 2 objects”

e J[ransactions bundled in Data Management
Unit into transaction groups that flush when
full (>% of system memory) or at regular
intervals (30 sec.)

e Blocks making up a transaction group are
scheduled and then issued to physical media
iIn the Storage Pool Allocator

/O Life Cycle: Reads

e Heavy use of caching and prefetching

e If requested blocks are not cached, issues a
prioritized /O that has higher priority than
pending writes

e Adaptive Replacement Cache tracks recently
(and frequently) used blocks in main memory

Speed

e Copy-on-write design means random writes
can be made sequential

e Dynamic striping across all underlying
devices eliminates hot spots

o Intelligent resilvering? copies only live data

'Resilver: when an antique mirror gets tarnished or damaged, you make it shiny again by re-silvering it.
17

