
CS 134
Operating Systems

April 3, 2019

VM Primitives for User Programs, 1991

This work is a derivative of VM Primitives by MIT Open Courseware used under
 Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license

https://pdos.csail.mit.edu/6.828/2018/lec/l-vm-again.txt

Overview

• Previously: discusses virtual memory tricks
to optimize the kernel

• mmap() homework assignment

• This lecture is about VM for user programs:
• Concurrent garbage collection
• Concurrent checkpointing
• Generational garbage collection
• Persistent stores
• Data-compression paging
• Heap overflow detection

 2

What primitives do we need?

• Trap: handle page-fault in usermode

• Prot1: decrease the accessibility of a page

• ProtN: decrease the accessibility of N
pages

• Unprot: increase the accessibility of a page

• Dirty: returns a list of dirtied pages (since
previous call)

• Map2: map the same physical page at two
different virtual addresses, at different levels
of protection, in the same address space

 3

What about Unix?

• Processes manage virtual memory through
higher-level abstractions

• An address space consists of a non-
overlapping list of Virtual Memory Areas
(VMAs) and a page table

• Each VMA is a contiguous range of virtual
addresses that share the same permissions
and is backed by the same object (e.g., a file
or anonymous memory)

• VMAs help the kernel decide how to handle
page faults

 4

Unix: mmap()

• Maps memory into the address space
• Many flags and options

• Example: mapping a file

• Example: mapping anonymous memory

 5

mmap(NULL, len, PROT_READ | PROT_WRITE,  
 MAP_PRIVATE, fd, offset)

mmap(NULL, len, PROT_READ | PROT_WRITE,  
 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0)

Unix: mprotect()

• Changes the permission of a mapping
• PROT_NONE
• PROT_READ
• PROT_WRITE
• PROT_EXEC

• Example: make mapping read-only

• Example: make mapping trap on any access:

 6

mprotect(addr, len, PROT_READ)

mprotect(addr, len, PROT_NONE)

Unix: munmap()

• Removes a mapping

• Example:

 7

munmap(addr, len)

Unix: sigaction()

• Configures a signal handler

• Example: get signals for memory access
violations:

 8

act.sa_sigation = handle_sigsegv;
act.sa_flags = SA_SIGINFO;
sigemptyset(&act.sa_mask);
sigaction(SIGSEGV, &act, NULL);

Modern implementations are very complex

• e.g., additional Linux VM system calls:
• madvise()

• mincore()

• mremap()

• msync()

• mlock()

• mbind()

• shmat()

• sbrk()

 9

Can we support the Appel and Li 
primitives in Unix?

• Trap: sigaction() and SIGSEGV

• Prot1: mprotect()

• ProtN: mprotect()

• Unprot: mprotect()

• Dirty: No! But workaround exists

• Map2: not directly. On modern Unix, there
are ways, but not straightforward

• All these operations are more expensive
than simple page table updates like in JOS

 10

Homework 12: mmap

 11

Use case 1: concurrent GC

• Baker’s algorithm
• A copying (moving) garbage collector
• Divide heap into two regions: from-space and to-

space
• At the start of collection, all objects are in from-

space
• Copy reachable objects (starting with roots:

registers and stack) to the to-space
• A pointer is forwarded by making it point to the 

to-space copy of a from-space object

 12

Baker’s algorithm

 13

From-space

To-space

Root

unscanned

Baker’s algorithm

 14

From-space

To-space

Root

unscanned

Baker’s algorithm

 15

From-space

To-space

Root

unscanned

unscanned

Baker’s algorithm

 16

From-space

To-space

Root

unscanned

Baker’s algorithm

 17

From-space

To-space

Root

unscanned

Baker’s algorithm

 18

From-space

To-space

Root

No more  
unscanned objects

Baker’s algorithm

 19

From-space

To-space

Root

Concurrency is difficult

• Extra overhead for each pointer dereference
• Does the pointed-to-object reside in from-space? If

so, object must be copied to to-space
• Requires test and branch for every dereference

• Difficult to run GC and program at the same
time
• Race condition between collector tracing heap and

program threads
• Could get two copies of the same object

 20

Baker’s algorithm with VM

 21

From-space

To-space

Root

Scanned: R/W

Unscanned:  
fault on access

Solution: use virtual memory

• No mutator instruction overhead
• Instead, take a page fault whenever program

accesses an object in the unscanned region
• If a fault happens:
– Foreach object, o, on that page:

- “Visit” o’s references (copy to to-space)
- o is now scanned.

– UNPROT the page

• Fully concurrent
• A background GC thread can UNPROT pages after

scanning
• Only synchronization needed is for which thread is

scanning which page

 22

Baker’s algorithm with VM primitives

• Need:
• ProtM: Map entire to-space to fault on access
• Trap: Set page fault handler which will scan the

faulting page
• Unprot: Unprotect after a page has been scanned
• Map2: Provides read/writable addressing for

unscanned pages (for scanning a page and for
copying objects into unscanned pages)

 23

Use case 2: generational GC

• Observation: most objects die young

• Idea: maintain separate regions for young
and old objects

• Plan: Garbage collect young objects
independently and more frequently

• Performance impact: avoids overhead of
tracing old generation

 24

Generational garbage collection

 25

Young generation

Old generation

Promotion

Challenge: how to find live objects 
in young generation?

• Easy part:
• Start with roots:
– Registers
– Stack
– Global pointers

• Harder part: what if an old generation object
points to a young generation object?
• We can’t trace all the objects in the old generation

(that’s what we’re trying to avoid!)

 26

Generational garbage collection

 27

Young generation

Old generation

Solution: use VM

 28

Young generation

Old generation

dirty dirtyDirty Dirty

Details on generational GC with VM

• After GC, mark old generation pages as
clean

• At GC time, scan Dirty old generation
pages
• Look for new pointed-to young-generation objects.

• If Dirty isn’t available, simulate by making
page not writable
• On page fault, make page writable and mark that it

has been dirtied

 29

Should we use virtual memory?

• Most of the use cases could have been
handled by adding additional instructions
instead

• Are virtual memory hacks worth it?
• Pros:
– Avoids complex compiler changes
– CPU provides specialized and optimized logic just

for VM operations
• Cons:
– Requires the right OS support. OS overhead can

squander any benefits
– Paging hardware may not map well to problem

domain (e.g., pages too large)
 30

Summary

• Virtual memory primitives are useful for
applications as well as OS

• But, most kernels can’t expose the raw
hardware performance of paging (too much
abstraction)

• Tradeoff between adding extra instructions
and using virtual memory. Often, both are
possible solutions

 31

