CS 134
Operating Systems

April 8, 2019

Operating System Organization

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/lecture-notes-and-readings/MIT6_828F12_lec13_notes.pdf

What should a kernel do?

¢ \WVhat kind of system calls should it support?
e \Vhat abstractions should it provide?

e Depends on the application and on
programmer taste

e No single best answer
e There exists lots of ideas, opinions and debates
- We’'ll see some in later papers this course

e This lecture iIs more about ideas and less about
specific mechanisms

Traditional approach

e Big abstractions, and

e Monolithic kernel implementation

Unix, Linux, xv6,YMS

Traditional treatment of CPU

Kernel gives each process its own virtual
CPU—not shared

Implications

e Interrupts must save/restore all reqgisters for
transparency

e Timer interrupts force transparent context switches
Maybe good:

e Simple model. Many irritating details abstracted
away

Maybe bad:

 Much is hidden (for example, scheduling). May be
slow

Clever VM tricks played by traditional kernels

e |Lazy page table fill—fast startup for big
allocations

e Copy-on-write fork (like Lab 4 but hidden in
the kernel)

e Demand paging:
e Process bigger than available memory?

e Page-out (writes) pages to disk, marks PTEs invalid

e |f process tries to use one of those pages, MMU
causes page fault

- kernel finds phys mem, pages-in from disk, marks
PTE valid

- Then returns to process—transparent

e Shared physical memory for executables and
libraries

Philosophy of traditional kernels: abstraction

e Portable interfaces

e Files, not disk controller registers
e Address spaces, not MMU access

e Simple interfaces, hidden complexity

e All I/O via FDs and read/write, not specialized for
each device

e Address spaces with transparent disk paging

e Abstractions help the kernel manage
resources
e Process abstraction lets kernel be in charge of
scheduling

e File/directory abstraction lets kernel be in charge of
disk layout

Philosophy of traditional kernels: abstraction

e Abstractions help the kernel enforce security

e File permissions
e Processes with private address spaces

e | ots of indirection (Fundamental Theorem of
Software Engineering!)

e E.g., FDs, virtual addresses, filenames, PIDs
e Helps kernel virtualize, hide, revoke, schedule, eftc.

Traditional kernels are monolithic

e Kernel is one big program, like xv6

e Easy for subsystems to cooperate: no
irritating boundaries

e For example, integrated paging and file system
cache

e All code runs with high privileges—no internal
security restrictions

What's wrong with traditional kernels?

Big—complex, buggy, and unreliable (in
principle—not so much in practice)

Abstractions may be over-general (and thus
slow)

e Maybe | don’t need all my registers saved on every
context switch

Abstractions are sometimes not quite right

e Maybe | want to wait for a process that's not my
child

Abstractions can hinder app-level
optimizations

e Database may be better at laying out B-tree files on
disk than kernel FS

Microkernels—an alternate approach

Big idea: move most OS functionality to user-
space service processes

Kernel can be small: mostly IPC
The hope:

e Kernel can be fast and reliable
e Services are easier to replace and customize
Examples: Mach 3.0, L4

JOS is a mix of microkernel and exokernel

Microkernel wins

You really can make |IPC fast

Separate services force kernel developers to
think about modularity

Good IPC is great for new user-level
services (e.g., X server)

Microkernel losses

e Kernel can't be tiny—needs to know about
memory and processes

e You may need lots of IPC—slow iIn
aggregate

e |t's hard to split the kernel into lots of service
processes

 And, it makes cross-service optimization harder
e S0, server processes tend to be huge, not a big win

Microkernels have seen some success

e |PC/service idea widely used—e.g., OSX

e But not much for traditional kernel services

e Most for (lots of) new services, designhed to
be client/server

e Some embedded OSes have strong
microkernel flavor

Exokernel paper (1995)

OS community paid lots of attention
Full of interesting ideas
Describes an early research prototype

Later SOSP (Symposium on Operating
System Principles conference) 1997 paper
realizes more of the vision

Principal goal of an exokernel: give applications control

http://pages.cs.wisc.edu/~remzi/Classes/736/Fall2007/Papers/exo-sosp97.pdf

Exokernel overview

Philosophy: eliminate all abstractions

e Expose HW—Ilet application do with it what it wants

An exokernel would not provide address

space, pipes, file system, TCP

e |nstead, let apps use MMU, phys mem, NIC
(Network Interface Controller), timer interrupts

e Not portable, but lots of application control

Per-app libOS implements abstractions

e Perhaps POSIX address spaces, fork, file system, TCP, etc.

e Each app can have its own custom libOS and its
own abstractions

Why"?
e Kernel may be faster due to streamlining, simplicity
e Apps may be faster—can customize libOS

Exokernel diagram

Applications Barnes—Hut

Exokernel Secure bindings

Hardware | Frame buffer| TLB Network

16

Exokernel challenges

e \Vhat resources to expose to libOSes

e \What kernel APl needed to implement copy-on-write
fork at user level?

e Can libOSes share? securely?
e E.9., compiler reading editor’s files

e Can we have sharing+security without big kernel
abstractions?

e Will enough apps benefit from custom
ibOSes

Exokernel memory interface

e \What are the resources?

e Kernel exposes physical pages and VA—PA MMU
mappings
e \WVhat's the app—kernel API?
e pa = AllocPage()
e TLBwr(va, pa, perms)

e Grant(env, pa, perms)
e DeallocPage(pa)

e and, these kernel—app upcalls:
e PageFault(va, info)
e PleaseReleaseMemory(amount)

Exokernel memory interface

e \Vhat does exokernel need to do?

e Track what env owns what phys pages

e Ensure only creates mappings to phys pages it
owns

e Decide which app to ask to give up a phys page
when memory runs out

- That app gets to decide which phys page(s) get
given up

Typical use of VM calls

e Application wants memory for a 100MB
sparse array, lazily allocated

e Similar to mmap homework

e PageFault(va)
1f va 1n range:
1f va in table:
TLBWr (va, table(va), RW)
else:
pra = AllocPage()
table[va] = pa
TLBWr (va, pa, RW)
jump to faulting PC

Nice use of exokernel-style memory

e Databases like to keep a cache of disk
pages in memory

e Problem on traditional OS:

e Assume an OS with demand paging to/from disk

e |f DB caches some data and OS needs a phys
page, it may page-out a DB page holding cached
disk block

e \Waste of time: if DB knew, it'd not write the page
(could always read it back from DB file later)

e EXxokernel needs a page for another app

e Sends DB PleaseReleaseMemory() upcall
e DB picks a clean page, p, calls DeallocPage()

e Or, DB picks dirty page, saves to DB file, and then
calls DeallocPage()

Exokernel CPU interface

Not transparent process switching. Instead:

e Kernel upcall to app when it gives CPU to app
e Kernel upcall to app when it wants the CPU back
- Upcalls to fixed app locations: not transparent)

If app is running and kernel timer interrupts at end
of slice:

e CPU interrupts from app into kernel (timer)

e Kernel jumps back into app at “please yield” upcall
e App saves registers

e App calls Yield()

When kernel resumes the app:

e Kernel jumps into app at “resume” upcall
e App restores saved registers

Exorkernel doesn’t save/restore user registers
(except PC)—fast syscall/trap/contextswitch

22

Nice use of exokernel-style CPU

e Suppose timeslice occurs in the middle of:
e acquire(lock);

release(lock);

e You don’t want the app to hold the lock despite not
running

- Then, maybe other apps can’'t make forward
progress

e S0, the “please yield” upcall can complete the
critical section before yielding

Fast IPC

e |PC on traditional kernel:

e Pipes (or sockets)
 Message/communication abstraction

e Slow:

- write+read + read+write—8 crossings
- Two blocking calls (reads)

e |PC on Aegis kernel:

 Yield() can take a process argument

- Kernel up-calls into target

- Almost a direct jump to an instruction in target

- Only at approved locations

e Kernel leaves registers alone (args + return value)
e Target uses Yield to return

e Fast: only 4 crossings

Summary of low-level performance ideas

Mostly about fast system calls, traps, and
upcalls

e System call speed can be very important

e Slowness encourages complex system calls,
discourages frequent calls

Trap path doesn't save most registers

Fast upcalls to user space (no need for
kernel to restore reqisters)

Protected call for IPC (just jump to known
address; no pipe or send/recv)

Map some kernel structures into user space
(e.g., page table)

Bigger ideas—mostly about abstractions

Custom abstractions are a win for
performance

e apps need low-level operations for this to work
Much of kernel can be implemented at user-
level

e \While preserving sharing and security

e \ery surprising
Protection does not require kernel to
implement big abstractions

e £.g., can protect process pages without kernel
managing address spaces

Address space abstraction can be
decomposed

e [nto phys page allocation and va—pa mappings

Lasting influence from exokernels

e Unix gives much more low-level control than
it did in 1995

e Very important for some applications

e People think a lot about kernel extensibility
now

e Kernel modules
e Library operating systems are often used
e For example: unikernels

Questions

Any work on making portable exokernel
interfaces?

If any application can schedule processes or
mess with VM, how does exokernel ensure
isolation and security?

Unclear how multiplexing and packet filters
work

By allowing apps to manage VM, etc, can't
that cause potentially high workloads on the
kernel, slowing down OS performance?

Unclear about dynamic packet filters? Need
to be from trusted source?

Questions (cont.)

Exokernel gives applications more authority
and responsibility. Are there disadvantages
and loopholes where malicious apps can do
harm to the kernel?

What is the difference between bind-time and
access-time authorization?

What is a microkernel?
What is an end-to-end argument?

What is an example of a high-cost general
purpose memory primitives that are
expensive compared to a GC implemented In
an exokernel-like fashion”?

What about resource revocation and abort?

Questions (cont.)

e Are there cases where an exokernel would
not be preferred?

e \Vhat things are there a user program can do
on top of a monolithic kernel that isn't
possible on top of an exokernel+libOS?

e “One possible abort protocol is to simply Kill
any libOS+app that fails to respond quickly to
revocation requests”. However, they decided
not do to that because “programmers have a
great difficulty reasoning about hard real-time
bounds”. Why is this different from other
misbehaviors where Kkilling the process
seems the right thing?

