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What should a kernel do?

• What kind of system calls should it support? 

• What abstractions should it provide? 

• Depends on the application and on 
programmer taste 
• No single best answer 
• There exists lots of ideas, opinions and debates 
– We’ll see some in later papers this course 
• This lecture is more about ideas and less about 

specific mechanisms
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Traditional approach

• Big abstractions, and 

• Monolithic kernel implementation
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Unix, Linux, xv6, VMS



Traditional treatment of CPU

• Kernel gives each process its own virtual 
CPU—not shared 

• Implications 
• Interrupts must save/restore all registers for 

transparency 
• Timer interrupts force transparent context switches 

• Maybe good: 
• Simple model. Many irritating details abstracted 

away 

• Maybe bad: 
• Much is hidden (for example, scheduling). May be 

slow
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Clever VM tricks played by traditional kernels

• Lazy page table fill—fast startup for big 
allocations 

• Copy-on-write fork (like Lab 4 but hidden in 
the kernel) 

• Demand paging: 
• Process bigger than available memory? 
• Page-out (writes) pages to disk, marks PTEs invalid 
• If process tries to use one of those pages, MMU 

causes page fault 
– kernel finds phys mem, pages-in from disk, marks 

PTE valid 
– Then returns to process—transparent 

• Shared physical memory for executables and 
libraries
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Philosophy of traditional kernels: abstraction

• Portable interfaces 
• Files, not disk controller registers 
• Address spaces, not MMU access 

• Simple interfaces, hidden complexity 
• All I/O via FDs and read/write, not specialized for 

each device 
• Address spaces with transparent disk paging 

• Abstractions help the kernel manage 
resources 
• Process abstraction lets kernel be in charge of 

scheduling 
• File/directory abstraction lets kernel be in charge of 

disk layout
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Philosophy of traditional kernels: abstraction

• Abstractions help the kernel enforce security 
• File permissions 
• Processes with private address spaces 

• Lots of indirection (Fundamental Theorem of 
Software Engineering!) 
• E.g., FDs, virtual addresses, filenames, PIDs 
• Helps kernel virtualize, hide, revoke, schedule, etc. 
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Traditional kernels are monolithic

• Kernel is one big program, like xv6 

• Easy for subsystems to cooperate: no 
irritating boundaries 
• For example, integrated paging and file system 

cache 

• All code runs with high privileges—no internal 
security restrictions
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What’s wrong with traditional kernels?

• Big→complex, buggy, and unreliable (in 
principle—not so much in practice) 

• Abstractions may be over-general (and thus 
slow) 
• Maybe I don’t need all my registers saved on every 

context switch 

• Abstractions are sometimes not quite right 
• Maybe I want to wait for a process that’s not my 

child 

• Abstractions can hinder app-level 
optimizations 
• Database may be better at laying out B-tree files on 

disk than kernel FS
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Microkernels–an alternate approach

• Big idea: move most OS functionality to user-
space service processes 

• Kernel can be small: mostly IPC 

• The hope: 
•Kernel can be fast and reliable 
•Services are easier to replace and customize 

• Examples: Mach 3.0, L4 

• JOS is a mix of microkernel and exokernel
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Microkernel wins

• You really can make IPC fast 

• Separate services force kernel developers to 
think about modularity 

• Good IPC is great for new user-level 
services (e.g., X server)
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Microkernel losses

• Kernel can’t be tiny—needs to know about 
memory and processes 

• You may need lots of IPC—slow in 
aggregate 

• It’s hard to split the kernel into lots of service 
processes 
• And, it makes cross-service optimization harder 
• So, server processes tend to be huge, not a big win
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Microkernels have seen some success

• IPC/service idea widely used—e.g., OSX 
•But not much for traditional kernel services 
•Most for (lots of) new services, designed to 

be client/server 
• Some embedded OSes have strong 

microkernel flavor
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Exokernel paper (1995)

• OS community paid lots of attention 

• Full of interesting ideas 

• Describes an early research prototype 

• Later SOSP (Symposium on Operating 
System Principles conference) 1997 paper 
realizes more of the vision
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Principal goal of an exokernel: give applications control

http://pages.cs.wisc.edu/~remzi/Classes/736/Fall2007/Papers/exo-sosp97.pdf


Exokernel overview

• Philosophy: eliminate all abstractions 
• Expose HW—let application do with it what it wants 

• An exokernel would not provide address 
space, pipes, file system, TCP 
• Instead, let apps use MMU, phys mem, NIC 

(Network Interface Controller), timer interrupts 
• Not portable, but lots of application control 

• Per-app libOS implements abstractions 
• Perhaps POSIX address spaces, fork, file system, TCP, etc. 
• Each app can have its own custom libOS and its 

own abstractions 

• Why? 
• Kernel may be faster due to streamlining, simplicity 
• Apps may be faster—can customize libOS  15



Exokernel diagram
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Exokernel challenges

• What resources to expose to libOSes 
• What kernel API needed to implement copy-on-write 

fork at user level? 

• Can libOSes share? securely? 
• E.g., compiler reading editor’s files 
• Can we have sharing+security without big kernel 

abstractions? 

• Will enough apps benefit from custom 
libOSes
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Exokernel memory interface

• What are the resources? 
• Kernel exposes physical pages and VA→PA MMU 

mappings 

• What’s the app→kernel API? 
• pa = AllocPage() 
• TLBwr(va, pa, perms) 
• Grant(env, pa, perms) 
• DeallocPage(pa) 

• and, these kernel→app upcalls: 
• PageFault(va, info) 
• PleaseReleaseMemory(amount)
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Exokernel memory interface

• What does exokernel need to do? 
• Track what env owns what phys pages 
• Ensure only creates mappings to phys pages it 

owns 
• Decide which app to ask to give up a phys page 

when memory runs out 
– That app gets to decide which phys page(s) get 

given up
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Typical use of VM calls

• Application wants memory for a 100MB 
sparse array, lazily allocated 
• Similar to mmap homework 

• PageFault(va)  
  if va in range:  
    if va in table:  
      TLBWr(va, table(va), RW)  
    else:  
       pa = AllocPage()  
       table[va] = pa  
       TLBWr(va, pa, RW)  
     jump to faulting PC
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Nice use of exokernel-style memory

• Databases like to keep a cache of disk 
pages in memory 

• Problem on traditional OS: 
• Assume an OS with demand paging to/from disk 
• If DB caches some data and OS needs a phys 

page, it may page-out a DB page holding cached 
disk block 

• Waste of time: if DB knew, it’d not write the page 
(could always read it back from DB file later) 

• Exokernel needs a page for another app 
• Sends DB PleaseReleaseMemory() upcall 
• DB picks a clean page, p, calls DeallocPage() 
• Or, DB picks dirty page, saves to DB file, and then 

calls DeallocPage()
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Exokernel CPU interface

• Not transparent process switching. Instead: 
• Kernel upcall to app when it gives CPU to app 
• Kernel upcall to app when it wants the CPU back 
– Upcalls to fixed app locations: not transparent) 

• If app is running and kernel timer interrupts at end 
of slice: 
• CPU interrupts from app into kernel (timer) 
• Kernel jumps back into app at “please yield” upcall 
• App saves registers 
• App calls Yield() 

• When kernel resumes the app: 
• Kernel jumps into app at “resume” upcall 
• App restores saved registers 

• Exorkernel doesn’t save/restore user registers 
(except PC)—fast syscall/trap/contextswitch
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Nice use of exokernel-style CPU

• Suppose timeslice occurs in the middle of: 
• acquire(lock); 

… 
release(lock); 

• You don’t want the app to hold the lock despite not 
running 

– Then, maybe other apps can’t make forward 
progress 

• So, the “please yield” upcall can complete the 
critical section before yielding
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Fast IPC

• IPC on traditional kernel: 
• Pipes (or sockets) 
• Message/communication abstraction 
• Slow: 
– write+read + read+write—8 crossings 
– Two blocking calls (reads) 

• IPC on Aegis kernel: 
• Yield() can take a process argument 
– Kernel up-calls into target 
– Almost a direct jump to an instruction in target 
– Only at approved locations 
• Kernel leaves registers alone (args + return value) 
• Target uses Yield to return 
• Fast: only 4 crossings  24



Summary of low-level performance ideas

• Mostly about fast system calls, traps, and 
upcalls 
• System call speed can be very important 
• Slowness encourages complex system calls, 

discourages frequent calls 

• Trap path doesn’t save most registers 

• Fast upcalls to user space (no need for 
kernel to restore registers) 

• Protected call for IPC (just jump to known 
address; no pipe or send/recv) 

• Map some kernel structures into user space 
(e.g., page table)
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Bigger ideas—mostly about abstractions

• Custom abstractions are a win for 
performance 
• apps need low-level operations for this to work 

• Much of kernel can be implemented at user-
level 
• While preserving sharing and security 
• Very surprising 

• Protection does not require kernel to 
implement big abstractions 
• E.g., can protect process pages without kernel 

managing address spaces 

• Address space abstraction can be 
decomposed 
• Into phys page allocation and va→pa mappings  26



Lasting influence from exokernels

• Unix gives much more low-level control than 
it did in 1995 
• Very important for some applications 

• People think a lot about kernel extensibility 
now 
• Kernel modules 

• Library operating systems are often used 
• For example: unikernels
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Questions

• Any work on making portable exokernel 
interfaces? 

• If any application can schedule processes or 
mess with VM, how does exokernel ensure 
isolation and security? 

• Unclear how multiplexing and packet filters 
work 

• By allowing apps to manage VM, etc, can’t 
that cause potentially high workloads on the 
kernel, slowing down OS performance? 

• Unclear about dynamic packet filters? Need 
to be from trusted source?
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Questions (cont.)

• Exokernel gives applications more authority 
and responsibility. Are there disadvantages 
and loopholes where malicious apps can do 
harm to the kernel? 

• What is the difference between bind-time and 
access-time authorization? 

• What is a microkernel? 

• What is an end-to-end argument? 

• What is an example of a high-cost general 
purpose memory primitives that are 
expensive compared to a GC implemented in 
an exokernel-like fashion? 

• What about resource revocation and abort?
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Questions (cont.)

• Are there cases where an exokernel would 
not be preferred? 

• What things are there a user program can do 
on top of a monolithic kernel that isn’t 
possible on top of an exokernel+libOS? 

• “One possible abort protocol is to simply kill 
any libOS+app that fails to respond quickly to 
revocation requests”. However, they decided 
not do to that because “programmers have a 
great difficulty reasoning about hard real-time 
bounds”.  Why is this different from other 
misbehaviors where killing the process 
seems the right thing?
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