
CS 134
Operating Systems

April 8, 2019

Operating System Organization

This work is a derivative of OS Organization by MIT Open Courseware used under
 Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/lecture-notes-and-readings/MIT6_828F12_lec13_notes.pdf

What should a kernel do?

• What kind of system calls should it support?

• What abstractions should it provide?

• Depends on the application and on
programmer taste
• No single best answer
• There exists lots of ideas, opinions and debates
– We’ll see some in later papers this course
• This lecture is more about ideas and less about

specific mechanisms

 2

Traditional approach

• Big abstractions, and

• Monolithic kernel implementation

 3

Unix, Linux, xv6, VMS

Traditional treatment of CPU

• Kernel gives each process its own virtual
CPU—not shared

• Implications
• Interrupts must save/restore all registers for

transparency
• Timer interrupts force transparent context switches

• Maybe good:
• Simple model. Many irritating details abstracted

away

• Maybe bad:
• Much is hidden (for example, scheduling). May be

slow

 4

Clever VM tricks played by traditional kernels

• Lazy page table fill—fast startup for big
allocations

• Copy-on-write fork (like Lab 4 but hidden in
the kernel)

• Demand paging:
• Process bigger than available memory?
• Page-out (writes) pages to disk, marks PTEs invalid
• If process tries to use one of those pages, MMU

causes page fault
– kernel finds phys mem, pages-in from disk, marks

PTE valid
– Then returns to process—transparent

• Shared physical memory for executables and
libraries

 5

Philosophy of traditional kernels: abstraction

• Portable interfaces
• Files, not disk controller registers
• Address spaces, not MMU access

• Simple interfaces, hidden complexity
• All I/O via FDs and read/write, not specialized for

each device
• Address spaces with transparent disk paging

• Abstractions help the kernel manage
resources
• Process abstraction lets kernel be in charge of

scheduling
• File/directory abstraction lets kernel be in charge of

disk layout

 6

Philosophy of traditional kernels: abstraction

• Abstractions help the kernel enforce security
• File permissions
• Processes with private address spaces

• Lots of indirection (Fundamental Theorem of
Software Engineering!)
• E.g., FDs, virtual addresses, filenames, PIDs
• Helps kernel virtualize, hide, revoke, schedule, etc.

 7

Traditional kernels are monolithic

• Kernel is one big program, like xv6

• Easy for subsystems to cooperate: no
irritating boundaries
• For example, integrated paging and file system

cache

• All code runs with high privileges—no internal
security restrictions

 8

What’s wrong with traditional kernels?

• Big→complex, buggy, and unreliable (in
principle—not so much in practice)

• Abstractions may be over-general (and thus
slow)
• Maybe I don’t need all my registers saved on every

context switch

• Abstractions are sometimes not quite right
• Maybe I want to wait for a process that’s not my

child

• Abstractions can hinder app-level
optimizations
• Database may be better at laying out B-tree files on

disk than kernel FS

 9

Microkernels–an alternate approach

• Big idea: move most OS functionality to user-
space service processes

• Kernel can be small: mostly IPC

• The hope:
•Kernel can be fast and reliable
•Services are easier to replace and customize

• Examples: Mach 3.0, L4

• JOS is a mix of microkernel and exokernel

 10

Microkernel wins

• You really can make IPC fast

• Separate services force kernel developers to
think about modularity

• Good IPC is great for new user-level
services (e.g., X server)

 11

Microkernel losses

• Kernel can’t be tiny—needs to know about
memory and processes

• You may need lots of IPC—slow in
aggregate

• It’s hard to split the kernel into lots of service
processes
• And, it makes cross-service optimization harder
• So, server processes tend to be huge, not a big win

 12

Microkernels have seen some success

• IPC/service idea widely used—e.g., OSX
•But not much for traditional kernel services
•Most for (lots of) new services, designed to

be client/server
• Some embedded OSes have strong

microkernel flavor

 13

Exokernel paper (1995)

• OS community paid lots of attention

• Full of interesting ideas

• Describes an early research prototype

• Later SOSP (Symposium on Operating
System Principles conference) 1997 paper
realizes more of the vision

 14

Principal goal of an exokernel: give applications control

http://pages.cs.wisc.edu/~remzi/Classes/736/Fall2007/Papers/exo-sosp97.pdf

Exokernel overview

• Philosophy: eliminate all abstractions
• Expose HW—let application do with it what it wants

• An exokernel would not provide address
space, pipes, file system, TCP
• Instead, let apps use MMU, phys mem, NIC

(Network Interface Controller), timer interrupts
• Not portable, but lots of application control

• Per-app libOS implements abstractions
• Perhaps POSIX address spaces, fork, file system, TCP, etc.
• Each app can have its own custom libOS and its

own abstractions

• Why?
• Kernel may be faster due to streamlining, simplicity
• Apps may be faster—can customize libOS 15

Exokernel diagram

 16

Exokernel challenges

• What resources to expose to libOSes
• What kernel API needed to implement copy-on-write

fork at user level?

• Can libOSes share? securely?
• E.g., compiler reading editor’s files
• Can we have sharing+security without big kernel

abstractions?

• Will enough apps benefit from custom
libOSes

 17

Exokernel memory interface

• What are the resources?
• Kernel exposes physical pages and VA→PA MMU

mappings

• What’s the app→kernel API?
• pa = AllocPage()
• TLBwr(va, pa, perms)
• Grant(env, pa, perms)
• DeallocPage(pa)

• and, these kernel→app upcalls:
• PageFault(va, info)
• PleaseReleaseMemory(amount)

 18

Exokernel memory interface

• What does exokernel need to do?
• Track what env owns what phys pages
• Ensure only creates mappings to phys pages it

owns
• Decide which app to ask to give up a phys page

when memory runs out
– That app gets to decide which phys page(s) get

given up

 19

Typical use of VM calls

• Application wants memory for a 100MB
sparse array, lazily allocated
• Similar to mmap homework

• PageFault(va)  
 if va in range:  
 if va in table:  
 TLBWr(va, table(va), RW)  
 else:  
 pa = AllocPage()  
 table[va] = pa  
 TLBWr(va, pa, RW)  
 jump to faulting PC

 20

Nice use of exokernel-style memory

• Databases like to keep a cache of disk
pages in memory

• Problem on traditional OS:
• Assume an OS with demand paging to/from disk
• If DB caches some data and OS needs a phys

page, it may page-out a DB page holding cached
disk block

• Waste of time: if DB knew, it’d not write the page
(could always read it back from DB file later)

• Exokernel needs a page for another app
• Sends DB PleaseReleaseMemory() upcall
• DB picks a clean page, p, calls DeallocPage()
• Or, DB picks dirty page, saves to DB file, and then

calls DeallocPage()
 21

Exokernel CPU interface

• Not transparent process switching. Instead:
• Kernel upcall to app when it gives CPU to app
• Kernel upcall to app when it wants the CPU back
– Upcalls to fixed app locations: not transparent)

• If app is running and kernel timer interrupts at end
of slice:
• CPU interrupts from app into kernel (timer)
• Kernel jumps back into app at “please yield” upcall
• App saves registers
• App calls Yield()

• When kernel resumes the app:
• Kernel jumps into app at “resume” upcall
• App restores saved registers

• Exorkernel doesn’t save/restore user registers
(except PC)—fast syscall/trap/contextswitch

 22

Nice use of exokernel-style CPU

• Suppose timeslice occurs in the middle of:
• acquire(lock); 

… 
release(lock);

• You don’t want the app to hold the lock despite not
running

– Then, maybe other apps can’t make forward
progress

• So, the “please yield” upcall can complete the
critical section before yielding

 23

Fast IPC

• IPC on traditional kernel:
• Pipes (or sockets)
• Message/communication abstraction
• Slow:
– write+read + read+write—8 crossings
– Two blocking calls (reads)

• IPC on Aegis kernel:
• Yield() can take a process argument
– Kernel up-calls into target
– Almost a direct jump to an instruction in target
– Only at approved locations
• Kernel leaves registers alone (args + return value)
• Target uses Yield to return
• Fast: only 4 crossings 24

Summary of low-level performance ideas

• Mostly about fast system calls, traps, and
upcalls
• System call speed can be very important
• Slowness encourages complex system calls,

discourages frequent calls

• Trap path doesn’t save most registers

• Fast upcalls to user space (no need for
kernel to restore registers)

• Protected call for IPC (just jump to known
address; no pipe or send/recv)

• Map some kernel structures into user space
(e.g., page table)

 25

Bigger ideas—mostly about abstractions

• Custom abstractions are a win for
performance
• apps need low-level operations for this to work

• Much of kernel can be implemented at user-
level
• While preserving sharing and security
• Very surprising

• Protection does not require kernel to
implement big abstractions
• E.g., can protect process pages without kernel

managing address spaces

• Address space abstraction can be
decomposed
• Into phys page allocation and va→pa mappings 26

Lasting influence from exokernels

• Unix gives much more low-level control than
it did in 1995
• Very important for some applications

• People think a lot about kernel extensibility
now
• Kernel modules

• Library operating systems are often used
• For example: unikernels

 27

Questions

• Any work on making portable exokernel
interfaces?

• If any application can schedule processes or
mess with VM, how does exokernel ensure
isolation and security?

• Unclear how multiplexing and packet filters
work

• By allowing apps to manage VM, etc, can’t
that cause potentially high workloads on the
kernel, slowing down OS performance?

• Unclear about dynamic packet filters? Need
to be from trusted source?

 28

Questions (cont.)

• Exokernel gives applications more authority
and responsibility. Are there disadvantages
and loopholes where malicious apps can do
harm to the kernel?

• What is the difference between bind-time and
access-time authorization?

• What is a microkernel?

• What is an end-to-end argument?

• What is an example of a high-cost general
purpose memory primitives that are
expensive compared to a GC implemented in
an exokernel-like fashion?

• What about resource revocation and abort?
 29

Questions (cont.)

• Are there cases where an exokernel would
not be preferred?

• What things are there a user program can do
on top of a monolithic kernel that isn’t
possible on top of an exokernel+libOS?

• “One possible abort protocol is to simply kill
any libOS+app that fails to respond quickly to
revocation requests”. However, they decided
not do to that because “programmers have a
great difficulty reasoning about hard real-time
bounds”. Why is this different from other
misbehaviors where killing the process
seems the right thing?

 30

