
CS 134
Operating Systems

April 10, 2019

Biscuit

This work is a derivative of Biscuit

https://pdos.csail.mit.edu/6.828/2018/lec/l-biscuit.txt

Motivation

• Commodity kernels are written in C

• For good reason: C gives programmer total
control

 2

But, C is hard to use correctly

• Memory management left to the programmer

• Serious problems left for kernel developers
• Concurrent data structures challenging (RCU, next

week)
• Memory safety bugs
– Use-after-free (difficult to debug)
– Buffer overflows (security vulnerabilities)
– https://source.codeaurora.org/quic/la//kernel/

msm-3.14/commit/?
id=72f67b29a9c5e6e8d3c34751600c749c5f5e13e
1

– CVE-2017-0619
– https://source.codeaurora.org/quic/la//kernel/

msm-3.10/commit/?
id=9656e2c2b3523af20502bf1e933e35a397f5e82f 3

HLL automatically eliminates memory safety bugs

• HLLs have a garbage collector (GC)

• GC automates memory deallocation

• Convenient for programmer
• and provides memory safety

• But, GC has costs:
• CPU cycles at runtime
• Delays execution
• Extra memory

• HLL is a tradeoff: safety (and ease-of-use)
vs. performance

 4

HLL automatically eliminates memory safety bugs

• Determining performance cost is important to
understand the tradeoff

• No in-depth performance evaluation of HLL
kernels has been done before
• Despite researchers building many HLL kernels

• Want: better understanding of HLL kernel
perf

• Goal: Compare performance of HLL kernel
against fast kernel
• Against Linux

 5

Biscuit

• Started in 2014
• 30K LOC in Go

• Architecture similar to Linux (for fair
comparison)

• POSIX system calls
• Can run complex apps (like Redis and NGINX)

 6

Some differences: Biscuit vs. Linux

• Kernel threads are light-weight goroutines
• Context switch in kernel doesn’t save/restore page

table
• Cannot dereference user pointers
– Manual translation

• Go isn’t designed to handle interrupts
• Runtime doesn’t enable/disable interrupts during

critical sections
– Calling critical sections (e.g., allocation) during

interrupt handler could deadlock
• Interrupt handler can’t do much
• Instead, they wakeup a handling goroutine and

return

• Biggest difference: handling OOM
 7

Out of memory (OOM)

• Problem Biscuit, Windows, Linux, FreeBSD
all face

• Many kernel operations allocate memory
• open(2) allocates a file object
• socket(2) allocates a socket object

• User program decides when to release the
resource/free the mem

• →User program controls how much heap
memory the kernel uses

• But, machine has limited memory

 8

Problem: what if user code cause kernel 
to allocate all memory?

• Why would this happen?
• Buggy program
• Database server is intentionally using most memory
– Unlucky spike in allocations

• Result: almost no operation can succeed
until memory is freed
• Hard or impossible for user program to handle

sensibly
– e..g, printf(3) fails
– exit(2) fails!

• No user program can make progress

 9

How to recover? Need to free memory

• Linux’s approach
• Blocking in allocator is tempting
– Then, caller doesn’t have to handle failure
• But, this can deadlock
– E.g., Good program takes lock on directory in FS

- Memory hog is waiting for the lock
- Kernel can’t kill hog
- Hog waits for good program
- Good program waits for hog to exit (freeing mem)
- Deadlock

– Avoid deadlock by failing alloc of good program
• Kernel must handle failure of nearly all allocations
– Hard and filled with bugs
– Unwritten “rule”: Too small to fail

 10

Biscuit’s approach

• Can’t use Linux approach

• Before executing op, wait until enough mem
• No waiting in the middle of an op
• No locks held
• Thus, no deadlock

• How to calculate max mem
• Static analysis of Go is easy
– Tool: MAXLIVE

- High level: fancy escape analysis
- Not exact, but conservative
-

 11

Tool: MAXLIVE

• High level: fancy escape analysis

• Not exact, but conservative

• Inspects call graph

• Finds all allocations at each syscall

• Two kinds of objects:
• 1) May be written to global
• 2) Only ever referenced by stack pointer

• Type 1 objects always live

• Type 2 objects freed on some stack frame
destruction

• Max mem = sum of type 1 + max of type 2 at each
call graph leaf

• Result: no deadlock, almost no handling allocation
failures 12

Experience

• 90 uses of unsafe (casting pointers, etc.)

• Hacked the runtime in a couple of ways:
• Schedule interrupt goroutines
• Count allocations

• Go was helpful
• Slices vs. pointer + size
• Defer vs. goto
• Closures
• Maps
• GC vs. manual memory management
– Significantly simplifies concurrent data structures
– Entries heap allocated
– When to free an entry?
– When are all other threads done with an entry? 13

f := createFile("/tmp/defer.txt")
defer closeFile(f)
writeFile(f)

Experience

• Implemented many other optimizations to
compete with Linux:
• Map kernel text with large pages
• Per-CPU NIC TX queues
• Directory cache with lock-free lookup (RCU)
• Go didn’t prevent their implementation

 14

Performance

• Three demanding applications
• NGINX: webserver
• Redis: key-value store
• Cmailbench: fork/exec/VM benchmark

• Exercise 10GB NIC, TCP stack, VM, FS

• No idle CPU cycles

• At least 80% of CPU time spent in kernel

 15

Results

• Linux comparison
• Is Biscuit performance in the same league?
• Disabled expensive Linux features
– Speeds Linux up
– Makes comparison fair
• Biscuit within 9% of Linux on our test apps

 16

Results: GC

• GC < 3%
• Cost of GC determined by two factors:
1.Number of objects

- GC must mark/read pointers in each object
2.Amount of free heap in memory

- GC each time free memory exhausted
• Apps use up to 5GB memory
– And cause kernel to allocate rapidly
– But # of kernel objects is small

- Kernel heap contains small metadata objects
- Separate allocator for pages

–User memory, file content, socket buffers, page-
table pages

- Reduces # kernel objects. Increases heap free mem
 17

Results

• Isolate performance differences due to 
high-level language from diff OS features
• Modified Linux/Biscuit to get two nearly identical

code paths
– Pipe ping-pong
– Page fault
• CPU-time profiles show both OSes doing the same

thing
• Ping-pong 15% faster
– Go version has safety checks/write barriers
• Page fault 5% faster
– Kernel entry/exit and copying dominate other work

 18

Results

• GC pauses
• During GC, each allocation must do complete GC

work
• Pauses come from GC work

• Max single pause of 115 µs
• Pauses can accumulate in a system call
• Max accumulated during tests: 574 µs

• Pause times were reduced by tuning GC

 19

Conclusion

• High-level language worked pretty well

• Performance is pretty good

• But, C is faster

 20

Questions

• What about other languages, like Python?
• Other HLLs would likely have much different

performance results
• Multithreading in Python is harder than in Go

• How does Biscuit access physical addresses
without pointer arithmetic?
• Uses “unsafe” pointer conversion

• Why is nearly-identical Go code slower than
C?
• The Go compiler inserts more instructions
• Safety-checks (e.g., array access)
• Write barriers 21

Questions

• Does a reliance on different Go packages
pose a larger challenge when attempting to
scale?
• Seems more like a fixed overhead cost

• Does a HLL like Go increase the frequency
or number of runtime errors that can occur
• Yes. Fail fast, fail often. Better to fail than silently

allow corruption or exploitation

• Doesn’t waiting (for heap space) in system
calls bottleneck performance?
• The alternative is possibly worse (OOM killer)

 22

Questions

• What features make Go statically analyzable
and not C?
• Go is a simple language to parse. Most importantly,
go package includes: scanner, parser that’ll
generate an Abstract Syntax Tree (AST).

• Would less access to hardware cause some
bugs to be harder to debug?
• Unclear that Go has less access to hardware.

• How does Go ensure type-safety
• Other than unsafe package, no way to mess

around with types and crash (no direct access to
raw pointers).

• How does Linux deal with heap exhaustion?
• OOM killer kills process with high memory, low CPU

 23

Questions

• Given safety, and easier development with
Go, why are C kernels popular?
• Worse is better: “Unix and C are the ultimate

computer viruses”

• Why do they need a shim layer and how
does it work?
• Go runtime assumes it’s running on an OS and

makes system calls to: allocate memory and control
go threads. Shim layer provides those features as
kernel code.

• Does it matter to user or library author what
language the kernel is written in?
• No

 24

Questions

• Why haven’t there been any new low-level
languages to replace C?
• C fits its niche well

• How viable would it be to write an OS in
Haskell?
• Existence proof: House, Kinetic, hos

• For JOS, haven’t had to dynamically allocate
mem and later free it. How much of a
problem is allocation/freeing in other OSes?
• xv6: has a little allocation. Linux has much.

 25

http://programatica.cs.pdx.edu/House/
https://intoverflow.wordpress.com/kinetic/
https://github.com/tathougies/hos

