CS 134
Operating Systems

April 15, 2019

Scalable Locking

This work is a derivative of Scalable locking

https://pdos.csail.mit.edu/6.828/2018/lec/l-scalable-lock.md

mmaps/ms

Problem: locks can ruin performance

500

400

300

200

100

Locking overhead dominates

12 18 24 30

Cores

(b) Collapse for MEMPOP.

43

Problem: locks can ruin performance

The locks themselves prevent us from
harnessing multi-core to improve
performance

e Ahmdal’s law: if serial time is s%, then speedup with
N processors is limited to #,/

This "non-scalable lock™ phenomena is
important. Why it happens is interesting and
worth understanding

The solutions are clever exercises in parallel
programming

The locking bottleneck is caused by
interaction with multicore caching

Abstract version of locking primitive

CPUO CPUO CPUO CPUO

bus

Lock (e.g, xchg)

Only an abstraction

CPUO CPUO CPUO CPUO

bus
Lock (e.g, xchg)

e RAM is much slower than processor; need to
cache RAM

e Cache consistency: order of reads and
writes between memory locations

e (Cache coherence: data movement caused
by reads and writes of a single memory
location

L ess-abstract version

bus

Lock (e.g, xchg)

How does cache coherence work?

e Many different possibilities: here’'s one

e Divide cache into fixed-size chunks: cache lines

e Each cache-line is 64 bytes and is in one of 3
states:

- Modified
- Shared
- Invalid

e Cores exchange messages as they read and write:
- invalidate (addr): delete from your cache
- find (addr): does any core have a copy?

- all messages are broadcast to all cores

MSI state transitions

e |nvalid:

e On CPU read:
- £find
- Read from main memory

- set to Shared
e On CPU write:

- invalidate, then set to Modified
e On find:

- do nothing

e On invalidate:

- do nothing

MSI state transitions

e Shared:

e On CPU read:
- do nothing
e On CPU write:

- invalidate, then set to Modified
e On find:

- do nothing

e On invalidate:

- set to Invalid

MSI state transitions

o Modified:

e On CPU read:

- do nothing

e On CPU write:

- do nothing

e On find:

- write cached value to main memory
- set to Shared

e On invalidate:

- set to Invalid

Compatibility of states between cores

e |nvariants for a given cache line:

e At most one core can be in M state
e Either one M or many S, never both

What access patterns work well?

e Multiple reads from different cores

e All in Shared state, cached in each core

e Reads (after the first one) don’t require any
communication

e One core repeatedly writing

 Modified state gives that core exclusive access

e Reads and writes (after the first one) don’t require
any communication

Still a simplification

e Real CPUs use more complex state
machines

e MESI, MOESI

e Does this for few bus messages and reduces
broadcasting

e Real CPUs have complex interconnects

e Buses are broadcast domains; don't scale

e On-chip network for communication within die:

e Off-chip network for communication between dies
- E.g., Intel QPI (Quick-path interconnect)

e Real CPUs have cache directories

e Keeps track of which CPUs have copies of data
(and the state)

Why locks if we have cache coherence?

e (Cache coherence ensures cores read fresh
data
o Still have problem with:

e Read-modify-write cycles
e Partially-updated data structures

e |Locks solve these

Locks are built from atomic instructions

e XCHG (x86) used in JOS and xv6

e Many other atomic operations:

e Test-and-set

e Add

e Compare-and-swap

e How does hardware implement atomic

instruction?

e Get the cache line in Modified state

e Defer coherence messages (e.g, £ind)

e Do the read and write

e Resume handling messages

Locking performance criteria

Assume N cores are waiting for a lock

How long does it take to handoff from one to
another?

Bottleneck is usually the interconnect
e S0, measure the messages

What can we hope for?

e [f N cores are waiting, get through them all in O(N)
time

e Each handoff takes O(1) time, does not increase
with N

Test & set spinlocks (JOS/xv6)

struct lock { int locked; };

acquire(l) {
while(1l) {
1f(!xchg(&l->1locked, 1))
break;
}
}

Release(1l) {
l1->locked = 0;

}

Test & set spinlocks (JOS/xv6)

e Spinning cores repeatedly
execute xchg

e Problem?
e Yes

- OK for cores to waste their own time

struct lock { int locked; };

while(1){
if(!xchg(&l->locked, 1))
break;
}
}

Release(1l){
l1->locked = 0;
}

- Bad if waiting cores slow down lock holder

e Time for critical section and release

- Holder must wait in line to access the bus

- S0, holder’s handoff takes O(N) time

e O(N) time per handoff means all N cores

take O(N2) time

Ticket locks (Linux, in the past)

Goal: read-only spinning vs. repeated atomic
instructions

Goal: fairness—waiter order preserved

Key idea: assign numbers, wakeup one
waiter at a time

Ticket locks (Linux, in the past)

struct lock {
int current ticket;
int next ticket;

}

acquire(l) {
int t = atomic fetch and inc(&l->next ticket);
while (t != l->current ticket){
}

}

volid release(l) {
l1->current ticket++;

}

20

Ticket locks (Linux, in the past)

Atomic increment

e O(1) find message

- Just once: not repeated
Then, read-only spin

e no cost until next release
What about release?

struct lock {
int current ticket;
int next ticket;

}

acquire(1l) {
int t = atomic fetch and inc(&l->next ticket);
while (t != l->current ticket){
}

}

void release(l) {
l->current ticket++;

}

e [nvalidate message sent to all cores
e Then, O(N) find messages, as they re-read

Still O(N) handoff work

But, fairness and less bus traffic while

spinning

21

Non-scalable locks

e Non-scalable because cost of handoff scales
with number of waiters

e Test-and-set
e Ticket

mmaps/ms

500

400

300

200

100

Problem: locks can ruin performance

12 18 24 30

Cores

(b) Collapse for MEMPOP.

36

42

48

Reasons for collapse

Critical section takes 7% of request time

You'd expect collapse at 14 cores [_-

Odd that the collapse happens so; | |
SOo0nNn //L\

However, once cores waiting for ...
unlock Is substantial, critical section +
handoff time takes longer

Slower handoff time makes number of
waiters grow

Small example

acquire(&l);
X++;
release(&l);

Uncontended: ~40 cycles

If a different core used the lock last: ~100
cycles

With dozens of cores waiting: thousands of
cycles

How can we make locks scale?

Goal: O(1) message release time
Can we wake just one core at a time?

|ldea: have each core spin on a different
cache line

MCS (Mellor-Crummey, Scott) locks

e Each CPU has a gnode structure in its local
memory:

struct gnode {
struct gnode *next;
bool locked;

}i

e Alock is a gnode pointer to the tail of the list
¢ \While waiting, spin on the local 1ocked flag

MCS locks

’ “ o

Implementation of MCS locks

acquire(lock *L, gnode *I) {

I->next = NULL;
gnode *predecessor = I;
XCHG(*L, predecessor);

1f (predecessor != NULL) {
I->locked = true;
predecessor->next = I;
while (I->locked) ;
’ release(lock *L, gnode *I) {
1f (!I->next) {
1f (compare-and-swap(*L,
return;
}
while (!L->next) {
}

l1->next->locked = false;

L,

NULL))

Throughput (acquires/ms)

Locking strategy comparison

N
\ ~ o ~
= 2 ~ NP S O~ * 2=C=2=0
~ - S = 2 . - i 52 .-
" O—0-6 o - A O—C v O-g 2 o <
= == S
p— R = ~) =
. -2 o A
-0 A A
B A A A - i - 3 . 0\

1000 |-

A A : a A - - A A A - . - A : 4
o AV A Pl v BR._,A . A= VUTYV~. D
i“-'.'.‘ g = A "-“’ ., A A A_A
v = = gl

i " —s— Ticket lock —— Proportional lock
" —a— MCS lock —s— K42 lock

s00 L = | —e— CLH lock _

0 2 6 12 18 24 30 36 42 48

Cores

30

Throughput (finds/sec)

12

But, not a panacea

—sa— Ticket lock
—a— MCS lock

12 18 24 30 36 42 48

Cores

(¢) Performance for PFIND.

31

Conclusion

Scalabillity is limited by the length of the
critical section

Scalable locks can only avoid collapse

Preferable to use algorithms that avoid
contention altogether

Example in next lecture

Questions

How hard it is to modify existing code to use
scalable locks?

Have kernel developers actually changed the
locks they use in response to the paper?

Does JOS/xv6 use locks only within a CPU,
or do they share locks between multiple
CPUs?

How do we define the critical section which
determines the time taken to transfer lock
ownership?

What defines a non-scalable lock?

What causes the sudden dropoff in
performance for ticket locks?

Questions

How does proportional backoff work with
ticket locks?

Paper talks about scalable/non-scalable
locks. Are there other types”?

How does K42 algorithm work (no API
changes)?

Are the test programs pathological or do they
represent typical processes on a 48-core
machine?

How do MCS locks guarantee a constant
number of cache misses each time a core
tries to acquire a lock?

