
CS 134
Operating Systems

April 15, 2019

Scalable Locking

This work is a derivative of Scalable locking

https://pdos.csail.mit.edu/6.828/2018/lec/l-scalable-lock.md

Problem: locks can ruin performance

 2

Locking overhead dominates

Problem: locks can ruin performance

• The locks themselves prevent us from
harnessing multi-core to improve
performance
• Ahmdal’s law: if serial time is s%, then speedup with

N processors is limited to

• This “non-scalable lock” phenomena is
important. Why it happens is interesting and
worth understanding

• The solutions are clever exercises in parallel
programming

• The locking bottleneck is caused by
interaction with multicore caching

 3

1
s %

Abstract version of locking primitive

 4

CPU 0 CPU 0 CPU 0 CPU 0

RAM

{bus
Lock (e.g, xchg)

Only an abstraction

• RAM is much slower than processor; need to
cache RAM

• Cache consistency: order of reads and
writes between memory locations

• Cache coherence: data movement caused
by reads and writes of a single memory
location 5

Less-abstract version

 6

CPU 0 CPU 0 CPU 0 CPU 0

RAM

{bus
Lock (e.g, xchg)

Cache Cache Cache Cache

How does cache coherence work?

• Many different possibilities: here’s one
• Divide cache into fixed-size chunks: cache lines
• Each cache-line is 64 bytes and is in one of 3

states:
– Modified
– Shared
– Invalid
• Cores exchange messages as they read and write:
– invalidate(addr): delete from your cache
– find(addr): does any core have a copy?
– all messages are broadcast to all cores

 7

MSI state transitions

• Invalid:
• On CPU read:
– find
– Read from main memory
– set to Shared
• On CPU write:
– invalidate, then set to Modified
• On find:
– do nothing
• On invalidate:
– do nothing

 8

MSI state transitions

• Shared:
• On CPU read:
– do nothing
• On CPU write:
– invalidate, then set to Modified
• On find:
– do nothing
• On invalidate:
– set to Invalid

 9

MSI state transitions

• Modified:
• On CPU read:
– do nothing
• On CPU write:
– do nothing
• On find:
– write cached value to main memory
– set to Shared
• On invalidate:
– set to Invalid

 10

Compatibility of states between cores

• Invariants for a given cache line:
• At most one core can be in M state
• Either one M or many S, never both

 11

M S I
M N N Y

S N Y Y

I Y Y Y

What access patterns work well?

• Multiple reads from different cores
• All in Shared state, cached in each core
• Reads (after the first one) don’t require any

communication 

• One core repeatedly writing
• Modified state gives that core exclusive access
• Reads and writes (after the first one) don’t require

any communication

 12

Still a simplification

• Real CPUs use more complex state
machines
• MESI, MOESI
• Does this for few bus messages and reduces

broadcasting

• Real CPUs have complex interconnects
• Buses are broadcast domains; don’t scale
• On-chip network for communication within die:
• Off-chip network for communication between dies
– E.g., Intel QPI (Quick-path interconnect)

• Real CPUs have cache directories
• Keeps track of which CPUs have copies of data

(and the state)

 13

Why locks if we have cache coherence?

• Cache coherence ensures cores read fresh
data

• Still have problem with:
• Read-modify-write cycles
• Partially-updated data structures

• Locks solve these

 14

Locks are built from atomic instructions

• XCHG (x86) used in JOS and xv6

• Many other atomic operations:
• Test-and-set
• Add
• Compare-and-swap

• How does hardware implement atomic
instruction?
• Get the cache line in Modified state
• Defer coherence messages (e.g, find)
• Do the read and write
• Resume handling messages

 15

Locking performance criteria

• Assume N cores are waiting for a lock

• How long does it take to handoff from one to
another?

• Bottleneck is usually the interconnect
• So, measure the messages

• What can we hope for?
• If N cores are waiting, get through them all in O(N)

time
• Each handoff takes O(1) time, does not increase

with N

 16

Test & set spinlocks (JOS/xv6)

 17

struct lock { int locked; };

acquire(l) {
 while(1) {
 if(!xchg(&l->locked, 1))
 break;
 }
}

Release(l) {
 l->locked = 0;
}

Test & set spinlocks (JOS/xv6)

• Spinning cores repeatedly 
execute xchg

• Problem?
• Yes
– OK for cores to waste their own time
– Bad if waiting cores slow down lock holder
• Time for critical section and release
– Holder must wait in line to access the bus
– So, holder’s handoff takes O(N) time

• O(N) time per handoff means all N cores
take O(N2) time

 18

struct lock { int locked; };

acquire(l){
 while(1){
 if(!xchg(&l->locked, 1))
 break;
 }
}

Release(l){
 l->locked = 0;
}

Ticket locks (Linux, in the past)

• Goal: read-only spinning vs. repeated atomic
instructions

• Goal: fairness→waiter order preserved

• Key idea: assign numbers, wakeup one
waiter at a time

 19

Ticket locks (Linux, in the past)

 20

struct lock {
 int current_ticket;
 int next_ticket;
}

acquire(l) {
 int t = atomic_fetch_and_inc(&l->next_ticket);
 while (t != l->current_ticket){
 }
}

void release(l) {
 l->current_ticket++;
}

Ticket locks (Linux, in the past)

• Atomic increment
• O(1) find message
– Just once: not repeated

• Then, read-only spin
• no cost until next release

• What about release?
• Invalidate message sent to all cores
• Then, O(N) find messages, as they re-read

• Still O(N) handoff work

• But, fairness and less bus traffic while
spinning

 21

struct lock {
 int current_ticket;
 int next_ticket;
}

acquire(l) {
 int t = atomic_fetch_and_inc(&l->next_ticket);
 while (t != l->current_ticket){
 }
}

void release(l) {
 l->current_ticket++;
}

Non-scalable locks

• Non-scalable because cost of handoff scales
with number of waiters

• Test-and-set
• Ticket

 22

Problem: locks can ruin performance

 23

Reasons for collapse

• Critical section takes 7% of request time

• You’d expect collapse at 14 cores

• Odd that the collapse happens so 
soon

• However, once cores waiting for 
unlock is substantial, critical section +
handoff time takes longer

• Slower handoff time makes number of
waiters grow

 24

Small example

• Uncontended: ~40 cycles

• If a different core used the lock last: ~100
cycles

• With dozens of cores waiting: thousands of
cycles

 25

acquire(&l);
x++;
release(&l);

How can we make locks scale?

• Goal: O(1) message release time

• Can we wake just one core at a time?

• Idea: have each core spin on a different
cache line

 26

MCS (Mellor-Crummey, Scott) locks

• Each CPU has a qnode structure in its local
memory:

• A lock is a qnode pointer to the tail of the list

• While waiting, spin on the local locked flag

 27

struct qnode {
 struct qnode *next;
 bool locked;
};

MCS locks

 28

Owner Waiter Waiter Waiter NULL

Lock

Implementation of MCS locks

 29

acquire(lock *L, qnode *I) {
 I->next = NULL;
 qnode *predecessor = I;
 XCHG(*L, predecessor);
 if (predecessor != NULL) {
 I->locked = true;
 predecessor->next = I;
 while (I->locked) ;
 }
}

release(lock *L, qnode *I) {
 if (!I->next) {
 if (compare-and-swap(*L, I, NULL))
 return;
 }
 while (!L->next) {
 }
 l->next->locked = false;
}

Locking strategy comparison

 30

But, not a panacea

 31

Conclusion

• Scalability is limited by the length of the
critical section

• Scalable locks can only avoid collapse

• Preferable to use algorithms that avoid
contention altogether

• Example in next lecture

 32

Questions

• How hard it is to modify existing code to use
scalable locks?

• Have kernel developers actually changed the
locks they use in response to the paper?

• Does JOS/xv6 use locks only within a CPU,
or do they share locks between multiple
CPUs?

• How do we define the critical section which
determines the time taken to transfer lock
ownership?

• What defines a non-scalable lock?

• What causes the sudden dropoff in
performance for ticket locks?

 33

Questions

• How does proportional backoff work with
ticket locks?

• Paper talks about scalable/non-scalable
locks. Are there other types?

• How does K42 algorithm work (no API
changes)?

• Are the test programs pathological or do they
represent typical processes on a 48-core
machine?

• How do MCS locks guarantee a constant
number of cache misses each time a core
tries to acquire a lock?

•
 34

