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This work is a derivative of Scalable locking

https://pdos.csail.mit.edu/6.828/2018/lec/l-scalable-lock.md


Problem: locks can ruin performance
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Locking overhead dominates



Problem: locks can ruin performance

• The locks themselves prevent us from 
harnessing multi-core to improve 
performance 
• Ahmdal’s law: if serial time is s%, then speedup with 

N processors is limited to  

• This “non-scalable lock” phenomena is 
important. Why it happens is interesting and 
worth understanding 

• The solutions are clever exercises in parallel 
programming 

• The locking bottleneck is caused by 
interaction with multicore caching
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Abstract version of locking primitive
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Only an abstraction

• RAM is much slower than processor; need to 
cache RAM 

• Cache consistency: order of reads and 
writes between memory locations 

• Cache coherence: data movement caused 
by reads and writes of a single memory 
location  5



Less-abstract version
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How does cache coherence work?

• Many different possibilities: here’s one 
• Divide cache into fixed-size chunks: cache lines 
• Each cache-line is 64 bytes and is in one of 3 

states: 
– Modified 
– Shared 
– Invalid 
• Cores exchange messages as they read and write: 
– invalidate(addr): delete from your cache 
– find(addr): does any core have a copy? 
– all messages are broadcast to all cores
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MSI state transitions

• Invalid: 
• On CPU read: 
– find
– Read from main memory 
– set to Shared 
• On CPU write: 
– invalidate, then set to Modified 
• On find: 
– do nothing 
• On invalidate: 
– do nothing
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MSI state transitions

• Shared: 
• On CPU read: 
– do nothing 
• On CPU write: 
– invalidate, then set to Modified 
• On find: 
– do nothing 
• On invalidate: 
– set to Invalid
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MSI state transitions

• Modified: 
• On CPU read: 
– do nothing 
• On CPU write: 
– do nothing 
• On find: 
– write cached value to main memory 
– set to Shared 
• On invalidate: 
– set to Invalid
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Compatibility of states between cores

• Invariants for a given cache line: 
• At most one core can be in M state 
• Either one M or many S, never both
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What access patterns work well?

• Multiple reads from different cores 
• All in Shared state, cached in each core 
• Reads (after the first one) don’t require any 

communication 

• One core repeatedly writing 
• Modified state gives that core exclusive access 
• Reads and writes (after the first one) don’t require 

any communication
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Still a simplification

• Real CPUs use more complex state 
machines 
• MESI, MOESI 
• Does this for few bus messages and reduces 

broadcasting 

• Real CPUs have complex interconnects 
• Buses are broadcast domains; don’t scale 
• On-chip network for communication within die: 
• Off-chip network for communication between dies 
– E.g., Intel QPI (Quick-path interconnect) 

• Real CPUs have cache directories 
• Keeps track of which CPUs have copies of data 

(and the state)
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Why locks if we have cache coherence?

• Cache coherence ensures cores read fresh 
data 

• Still have problem with: 
• Read-modify-write cycles 
• Partially-updated data structures 

• Locks solve these
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Locks are built from atomic instructions

• XCHG (x86) used in JOS and xv6 

• Many other atomic operations: 
• Test-and-set 
• Add 
• Compare-and-swap 

• How does hardware implement atomic 
instruction? 
• Get the cache line in Modified state 
• Defer coherence messages (e.g, find) 
• Do the read and write 
• Resume handling messages
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Locking performance criteria

• Assume N cores are waiting for a lock 

• How long does it take to handoff from one to 
another? 

• Bottleneck is usually the interconnect 
• So, measure the messages 

• What can we hope for? 
• If N cores are waiting, get through them all in O(N) 

time 
• Each handoff takes O(1) time, does not increase 

with N
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Test & set spinlocks (JOS/xv6)
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struct lock { int locked; }; 

acquire(l) {
  while(1) {
    if(!xchg(&l->locked, 1))
      break; 
  } 
} 

Release(l) {
  l->locked = 0;
}



Test & set spinlocks (JOS/xv6)

• Spinning cores repeatedly 
execute xchg 

• Problem? 
• Yes 
– OK for cores to waste their own time 
– Bad if waiting cores slow down lock holder 
• Time for critical section and release 
– Holder must wait in line to access the bus 
– So, holder’s handoff takes O(N) time 

• O(N) time per handoff means all N cores 
take O(N2) time

 18

struct lock { int locked; }; 

acquire(l){
  while(1){
    if(!xchg(&l->locked, 1))
      break; 
  } 
} 

Release(l){
  l->locked = 0;
}



Ticket locks (Linux, in the past)

• Goal: read-only spinning vs. repeated atomic 
instructions 

• Goal: fairness→waiter order preserved 

• Key idea: assign numbers, wakeup one 
waiter at a time
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Ticket locks (Linux, in the past)
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struct lock {
  int current_ticket; 
  int next_ticket; 
} 

acquire(l) { 
  int t = atomic_fetch_and_inc(&l->next_ticket); 
  while (t != l->current_ticket){
  }
} 

void release(l) { 
  l->current_ticket++;
} 



Ticket locks (Linux, in the past)

• Atomic increment 
• O(1) find message 
– Just once: not repeated 

• Then, read-only spin 
• no cost until next release 

• What about release? 
• Invalidate message sent to all cores 
• Then, O(N) find messages, as they re-read 

• Still O(N) handoff work 

• But, fairness and less bus traffic while 
spinning
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struct lock {
  int current_ticket; 
  int next_ticket; 
} 

acquire(l) { 
  int t = atomic_fetch_and_inc(&l->next_ticket); 
  while (t != l->current_ticket){
  }
} 

void release(l) { 
  l->current_ticket++;
} 



Non-scalable locks

• Non-scalable because cost of handoff scales 
with number of waiters 

• Test-and-set 
• Ticket
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Problem: locks can ruin performance
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Reasons for collapse

• Critical section takes 7% of request time 

• You’d expect collapse at 14 cores 

• Odd that the collapse happens so 
soon 

• However, once cores waiting for 
unlock is substantial, critical section + 
handoff time takes longer 

• Slower handoff time makes number of 
waiters grow
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Small example

• Uncontended: ~40 cycles 

• If a different core used the lock last: ~100 
cycles 

• With dozens of cores waiting: thousands of 
cycles
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acquire(&l);
x++;
release(&l);



How can we make locks scale?

• Goal: O(1) message release time 

• Can we wake just one core at a time? 

• Idea: have each core spin on a different 
cache line
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MCS (Mellor-Crummey, Scott) locks

• Each CPU has a qnode structure in its local 
memory: 

• A lock is a qnode pointer to the tail of the list 

• While waiting, spin on the local locked flag
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struct qnode {
  struct qnode *next;
  bool locked;
};



MCS locks
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Implementation of MCS locks
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acquire(lock *L, qnode *I) { 
  I->next = NULL; 
  qnode *predecessor = I; 
  XCHG(*L, predecessor);
  if (predecessor != NULL) {
    I->locked = true; 
    predecessor->next = I; 
    while (I->locked) ; 
  } 
}

release(lock *L, qnode *I) { 
  if (!I->next) {
    if (compare-and-swap(*L, I, NULL))
      return;
  }
  while (!L->next) {
  }
  l->next->locked = false;
}



Locking strategy comparison
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But, not a panacea
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Conclusion

• Scalability is limited by the length of the 
critical section 

• Scalable locks can only avoid collapse 

• Preferable to use algorithms that avoid 
contention altogether 

• Example in next lecture
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Questions

• How hard it is to modify existing code to use 
scalable locks? 

• Have kernel developers actually changed the 
locks they use in response to the paper? 

• Does JOS/xv6 use locks only within a CPU, 
or do they share locks between multiple 
CPUs? 

• How do we define the critical section which 
determines the time taken to transfer lock 
ownership? 

• What defines a non-scalable lock? 

• What causes the sudden dropoff in 
performance for ticket locks?
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Questions

• How does proportional backoff work with 
ticket locks? 

• Paper talks about scalable/non-scalable 
locks. Are there other types? 

• How does K42 algorithm work (no API 
changes)? 

• Are the test programs pathological or do they 
represent typical processes on a 48-core 
machine? 

• How do MCS locks guarantee a constant 
number of cache misses each time a core 
tries to acquire a lock? 

•
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