
CS 134
Operating Systems

April 17, 2019

Read-Copy-Update

This work is a derivative of Scalable locking

https://pdos.csail.mit.edu/6.828/2018/lec/l-scalable-lock.md

Outline

• Motivation

• What is RCU?

• How used in Linux?

• Summary

• Questions

 2

Motivation

• Remember back to HW 6: threads: put and
get in a hash table.

• Hash table with a lock for each bucket

• Used the lock for writing to the linked list

• No lock for reading from the linked list

 3

Adding to a linked list with concurrent readers

 4

head

key=2
val=3

head

key=2
val=3

head

key=2
val=3

Time

malloc
key=?
val=?

init
key=8
val=4

head

key=2
val=3

assign
ptr

key=8
val=4

Readers can read at any time
They’ll see a list with either:
 • one item in it, or
 • two items in it

Deleting from a linked list with concurrent readers

 5

Time

update
ptr

head

key=2
val=3

key=8
val=4

Readers can read at any time.
During:
 • phase 1, they see 2 items
 • phase 2:
 • new readers see 1 item
 • old readers may see 2 items
 • phase 3: they see 1 item (old readers are gone)
 • phase 4: they see 1 item

head

key=2
val=3

key=8
val=4

wait 4
rdrs

head

key=2
val=3

key=8
val=4 free

head

key=2
val=3

phase 1 phase 2 phase 3 phase 4

Modifying an item in linked list 
 with concurrent readers

 6

Time

malloc

head

key=2
val=3

key=8
val=4

During a phase, readers see:
 • phase 1, 2, and 3: they see val=4
 • phase 4:
 • new readers see val=7
 • old readers may see val=4
 • phase 5: they see val=7 (old readers are gone)
 • phase 6: they see val=7

phase 1 phase 2 phase 3 phase 4

head

key=2
val=3

key=8
val=4

key=?
val=?

init

head

key=2
val=3

key=8
val=4

key=8
val=7

assign
ptr

head

key=2
val=3

key=8
val=4

key=8
val=7

wait 4
rdrs

head

key=2
val=3

key=8
val=4

key=8
val=7

head

key=2
val=3

key=8
val=7

free

phase 6

phase 5

What is RCU?

• A philosophy for updating data structures:
• Readers
• Updaters who make Copies, maintaining both old

and new data structures until old is no longer
needed

• An API:
• For readers:
– rcu_read_lock()
– rcu_read_unlock()
– rcu_dereference()
• For updaters:
– synchronize_rcu()
– rcu_assign_pointer()

 7

How does RCU work for readers?

• Requirements:
• rcu_read_lock/rcu_read_unlock specify a

read-side critical section
• Reader not allowed to block during a read-side

critical section
• Reader has access to RCU-protected data structure

only during its critical section
• rcu_dereference used to dereference a pointer.

Pointed-to-object exists throughout the critical
section

 8

rcu_read_lock();
p = rcu_dereference(pointer_to_data_structure);
do_something_with(p);
rcu_read_unlock();

How does RCU work for updaters?

• Overview
• Make changes not seen by readers at will
• Use rcu_assign_pointer to atomically change a

pointer (readers can now see)
• Call synchronize_rcu to wait for all existing

readers to leave their critical section
– New readers may go enter critical section; no wait
• Clean up. At this point, any objects only referenced

from old pointer value aren’t accessible by readers

 9

p = (Node *) malloc(sizeof(Node));
old = head;
p->val = 3; p->key = 8; p->next = old->next;
rcu_assign_pointer(head, p)
synchronize_cpus(); // grace period for existing readers
free(old)

Goals of RCU

• Allow concurrent reads
• Concurrent with other readers
• Concurrent with updaters, too
• Low computation and space overhead
• Deterministic completion times for reads

 10

Nothing is faster than nothing

• Let’s say we’re using a non-preemptive
kernel (like JOS, old Linux (2.4))

 11

#define rcu_read_lock()

#define rcu_read_unlock()

#define rcu_dereference(p) ({ \
 typeof(p) ______p1 = (*(volatile typeof(p)*) &p);\
 read_barrier_depends(); // defined by arch \
 ______p1; // “returns” this value
 })

But how does synchronize_rcu work?

• Reader not allowed to block during a read-
side critical section

• Reader has access to RCU-protected data
structure only during its critical section

• So, if a reader yields, then it must not be in
the critical section

• Simple idea: if every other CPU has called
scheduler since synchronize_cpu was
issued, then, all old readers must be done

 12

But how does synchronize_rcu work?

• Have each CPU keep a count of how many
times scheduler has been called

• Have synchronize_rcu read those counts
when it starts, it returns when each count
becomes larger
• Many tricks to make this quicker, and to amortize

multiple read-side critical sections

 13

What if you have a preemptive kernel

• Postpone preemption while in read-side
critical section

• In Linux, if kernel thread preempt_count is
non-zero, thread can’t be preempted (used
for spin-locks and RCU)

 14

#define rcu_read_lock() current_thread_info()->preempt_count++

#define rcu_read_unlock() current_thread_info()->preempt_count--

What if you have multiple writers?

• You’ll still need a write lock to prevent
multiple simultaneous writers

 15

Limitations of RCU

• Data structures requiring an update that can’t
be captured in a single atomic pointer update
• E.g., doubly-linked lists
• Although Linux still allows, but doesn’t allow RCU-

readers to traverse backwards

• Special mechanisms necessary if stale data
isn’t OK

• Best if ratio of readers to writers is very high

 16

Use of RCU in Linux

• Introduced to Linux in 2002 (by Paul
McKenney)
• He references this work in his 2004 Ph.D. thesis, all

about RCU

• Now has >10K uses in the kernel
• Especially in file system and networking
• Must synchronize millions of kernel objects

(direntries, for example)

 17

Summary

• Understand intuition of RCU

• Understand how to insert/delete/modify a list
node in RCU

• Pros/cons of RCU

 18

Questions

• If a single integer overhead for a read/write
lock is sometimes unacceptable, does that
means RCUs have no storage overhead?
• Yes

• Confused about examples of type-safe
memory

• “Without proper care, a reader accessing a
data item an updater concurrently initialized
and inserted could observe that item’s pre-
initialized state”. Why can’t it prevent this by
giving the updater a lock while it’s updating?

 19

head=NULL
…
p->a = 6  
head = p
thread 1

if (head)
 head->a not necessarily 6!
thread 2

Questions

• Why on Linux, synchronize_cpu uses context
switches rather than scheduling a thread on
each CPU?
• “The Linux RCU implementation essentially batches

reader-to-writer communication by waiting for
context switches. When possible, writers can use an
asynchronous version of synchronize_rcu, call_rcu,
that will asynchronously invokes a specified callback
after all CPUs have passed through at least one
context switch.”

• Deterministic completion time for read
operations? When could it be non-
deterministic?
• Waiting on a spin-lock, for example

 20

