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What is a virtual machine?

• Simulation of a computer 

• Running as an application on a host 
computer 

• Goals 
• Accurate 
• Isolated 
• Fast
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Why use a virtual machine?

• To run multiple simultaneous operating 
systems (e.g, Windows and Linux) 

• To manage big machines (allocate cores and 
memory at OS granularity) 

• Kernel development (like QEMU and JOS) 

• Better fault isolation (defense in depth) 

• To package applications with a specific 
kernel version and environment 

• To improve resource utilization
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How accurate do we have to be?

• Must handle weird quirks in existing OSes 
• Even bug-for-bug compatability 

• Must maintain isolation against malicioius 
software 
• Guest can not break out of VM 

• Must be impossible for guest to distinguish 
VM from real machine 
• Some VMs compromise, modifying the guest kernel 

to reduce accuracy requirement
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VMs are an old idea

• 1960s: IBM used VMs to share big machines 

• 1970s: IBM specialized CPUs for 
virtualization 

• 1990s: VMware repopularized VMs for x86 
HW 

• 2000s: AMD & Intel specialized CPUs for 
virtualization
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Process architecture

 7

Hardware

OS

vi gdb chrome



VM architecture

 8

Hardware

OS (VMM)

vi gdb chrome

Virtual HW Virtual HW

Guest OS Guest OS

The abstraction provided by the VMM is the HW layer

VMM aka Hypervisor



Process vs HW
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Can a CPU be virtualized?

• Requirements to be “classicaly virtualizable” 
defined by Popek and Goldberg in 1974: 

1.Fidelity: Software on the VMM executes identically 
to its execution on hardware (barring timing effects) 

2.Performance: An overwhelming majority of guest 
instructions are executed by the hardware without 
the intervention of the VMM 

3.Safety: The VMM manages all hardware resources
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Why not simulation?

• VMM interprets each instruction (e.g., Bochs) 

• Maintain machine state for each register 

• Emulate I/O ports and memory 

• Violates performance requirement
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Idea: execute guest instructions on real 
CPU whenever possible

• Works fine for most instructions 

• E.g., add %eax, %ebx 

• But privileged instructions could be harmful 

• Would violate safety requirement
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Idea: run guest kernels at CPL 3

• Ordinary instructions work fine 

• Privileged instructions should trap to VMM 
(general protection fault) 

• VMM can apply privileged operations on 
“virtual” state, not to real hardware 

• This is called trap-and-emulate
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Trap-and-emulate example

• CLI/STI—enables and disables interrupts 

• EFLAGS IF bit tracks current status 

• VMM maintains virtual copy of EFLAGS 
register 

• VMM controls hardware EFLAGS 
• Probably leave interrupts enabled even if guest 

disables them 

• VMM looks at virtual EFLAGS to determine 
whether or not to interrupt guest  

• VMM must make sure that guest sees only 
virtual EFLAGS
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What about virtual memory?

• Want to maintain illusion that each VM has 
dedicated physical memory 

• Guest wants to start at PA 0 and use all of 
RAM 

• VMM needs to support many guests; they 
can’t all use the same physical addresses 

• Idea: 
• Claim RAM is smaller than real RAM 
• Keep paging enabled 
• Maintain a “shadow” copy of guest page table 
• Shadow maps VAs to different PAs than guest 

requests 
• Real %CR3 register points to shadow page table 
• Virtual %CR3 register points to guest page table  15



Virtualization memory diagram
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Example

• Guest wants guest-physical page @ 
0x10000000 

• VMM map redirects guest-physical 
0x10000000 to host-physical 0x20000000 

• VMM traps if guest changes %CR3 or writes 
to guest page table 

• Transfers each guest PTE to shadow page 
table 

• Uses VMM map to translate guest-physical 
addresses in shadow page table to host-
physical addresses
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Why can’t the VMM modify the guest page table in 
place?
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Trap-and-emulate not possible on x86

• Two problems: 
1. Some instructions behave differently in CPL 3 

instead of trapping 

2. Some register leak state that reveals if the CPU is 
running in CPL 3
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Violates fidelity requirement



x86 isn’t classically virtualizable

• Problems in different behavior CPL 3 vs. CPL 
0: 

• mov %cs, %eax
– %cs contains the CPL in its two lower bits 

• popfl/pushfl
– Privileged bits, including EFLAGS.IF, are masked 

out 

• iret
– No ring change, so doesn’t restore SS/ESP
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Two possible solutions

• Binary translation 
• Rewrite offending instructions to behave correctly 

• Hardware virtualization 
• Extend x86 to make it classically virtualizable
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Naive binary translation

• Replace all instructions that can cause 
violations with INT 3, which traps 

• INT 3 is one byte, so can fit inside any x86 
instruction without changing size/layout 

• But, unrealistic 
• We don’t know, at load time, the difference between 

code and data or where instruction boundaries lie 
• VMware’s solution is much more sophisticated
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VMware’s binary translator

• Kernel translated dynamically (like a JIT 
compiler) 
• Idea: scan only as executed, since execution 

reveals instruction boundaries 
• When VMM first loads guest kernel, translate from 

entrypoint to first jump 
• Most instructions translate identically 

• Need to translate instructions in chunks 
• Called a basic block 
• Either 12 instructions or a control flow instruction, 

whichever happens first 

• Only guest kernel code is translated 
• Only if in CPL 0
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Guest kernel shares address space with VMM

• Uses segmentation to protect VMM memory 

• VMM loaded at high virtual addresses, 
translated guest kernel at low addresses 

• Program segment limits to “truncate” address 
space, preventing all segments from 
accessing VMM except %GS 
• What if guest VM uses %GS selector? 
• %GS provides fast access to data shared between 

guest kernel and VMM 

• Assumption: translated code can’t violate 
isolation 
• Can never directly access %GS, %CR3, GDT, etc.

 24



Why put guest and VMM in same address space?

• Shared state becomes inexpensive to 
access 
• e.g., cli → “vcpu.flags.IF = 0” 

• Translated code is safe, can’t violate 
isolation (after translation)
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Binary translation example
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int isPrime(int a) {
  for (int i = 2; i < a; i++) {
    if ((a % i) == 0) return 0;
  }
  return 1;
} prime: mov %ecx, %edi   # %ecx = %edi (a)

       mov %esi, 2      # %esi = 2
       cmp %esi, %ecx   # is i ≥ a?
       jge prime        # if yes, jump
nexti: mov %eax, %ecx   # set %eax = a
       cdq              # sign-extend 
       idiv %esi        # a % i 
       test %edx, %edx  # is remainder zero? 
       jz notPrime      # jump if yes 
       inc %esi         # i++ 
       cmp %esi, %ecx   # is i >= a? 
       jl nexti         # jump if no 
prime: mov %eax, $1     # return value in %eax
       ret 
notPrime:
       xor %eax, %eax   # %eax = 0 
       ret



Binary translation example (cont.)
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prime: mov %ecx, %edi   # %ecx = %edi (a)
       mov %esi, 2      # %esi = 2
       cmp %esi, %ecx   # is i ≥ a?
       jge prime        # if yes, jump

All control flow requires indirection

prime: mov %ecx, %edi        # IDENT
       jge [takenAddr]       # JCC
       jmp [fallthroughAddr] #JCC

Translator

 translation unit (TU)

Compiled code fragment (CCF)

Executes this jump:
  Runs translator on code at fallthroughAddr
  Normally replaces address with address of CCF
  In this case since it’s the next CCF generarted,
    elides the jump  
    (and just falls through to next CCF)



Non-IDENT instructions

• Privileged instructions 

• PC-relative addressing 
• Since code layout changes 

• Direct control flow (direct JMP, CALL) 
• Since code layout changes  
• Binds target address at translation time 

• Indirect control flow (RET, indirect JMP, 
indirect CALL) 
• Must bind target address at runtime (using a hash 

table lookup)
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Hardware virtualization

• CPU maintains guest copy of privileged state 
in a special region called the Virtual Machine 
Control Block (VMCB) 

• CPU operates in two modes: 
• VMX guest mode: runs guest kernel  
– Switch from host mode to guest mode new 

instruction: vmrun 
• VMX host: runs VMM 
– Switch from guest mode to host mode  (I/O, for 

example) 
• Hardware saves and restores privileged register 

state to and from the VMCB as it switches modes 
• Each mode has its own separate privilege rings 

• Net effect: hardware can run most privileged guest instructions 
directly without emulation  29



Virtualization memory diagram

• Hardware effectively manages two page 
tables 

• Normal page table controlled by guest kernel 

• Extended page table (EPT) controlled by 
VMM 

• EPT didn’t exist at the time of the VMware 
paper 

•
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What’s better: HW or SW virtualization?

• Software virtualization advantages 
• Trap emulation: most traps can be replaced with 

callouts 
• Emulation speed: BT can generate purpose-built 

emulation code with predecoded instruction 
• Callout avoidance: dometimes BT can even inline 

callouts 

• Hardware virtualization advantages 
• Code density: translated code requires more 

instructions 
• Precise exceptions: BT must perform extra work to 

recover guest state 
• System calls: don’t require VMM intervention
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What’s better: HW or SW virtualization?
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What’s better? Shadow page table or EPT?

• EPT is faster when page table contents 
change frequently  
• Fewer traps to VMM 
Shadow page table is faster when page table is stable 

Less TLB-miss overhead 
One page table to walk through instead of two
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Conclusion

• Virtualization transformed cloud computing 

• VMware made virtualization possible 
(through BT) on an architecture that couldn’t 
be virtualized (x86)  

• Prompted Intel and AMD to change 
hardware: sometimes faster (though 
sometimes slower) than BT
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What’s changed since the paper was written?

• HW virtualization became much faster 
• Fewer traps, better microcode, more dedicated logic 
• Almost all CPU architectures support HW 

virtualization 
• EPT widely available 

• VMMs became commoditized 
• BT technology was hard to build 
• VMMs based on HW virtualization are much easier 

to implement (Xen, KVM, HyperV, etc.) 

• I/O devices aren’t just emulated, they can be 
exposed directly 
• IOMMU provides paging protection for DMA
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Questions

• How do shadow structures stay updated with 
primary structures? 

• How are instructions that cause an exception 
forwarded to the VMM to handle? 

• Where is the information about the registers 
in a virtual CPU stored: registers or memory? 

• Does binary translation work for more 
complex virtualization (e.g., a language like 
Java on a JVM)? 

• What is the difference between true and 
hidden page faults? 

• Authors mention similarities to RISC/CISC 
debate. How is this similar?
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Questions

• Any difference in security between hardware-
supported or software-only virtualization?
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