
CS 134
Operating Systems

April 19, 2019

Virtualization

This work is a derivative of Virtualization by MIT Open Courseware used under
 Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/lecture-notes-and-readings/MIT6_828F12_lec22_notes.pdf

What is a virtual machine?

• Simulation of a computer

• Running as an application on a host
computer

• Goals
• Accurate
• Isolated
• Fast

 2

Why use a virtual machine?

• To run multiple simultaneous operating
systems (e.g, Windows and Linux)

• To manage big machines (allocate cores and
memory at OS granularity)

• Kernel development (like QEMU and JOS)

• Better fault isolation (defense in depth)

• To package applications with a specific
kernel version and environment

• To improve resource utilization

 3

 4

How accurate do we have to be?

• Must handle weird quirks in existing OSes
• Even bug-for-bug compatability

• Must maintain isolation against malicioius
software
• Guest can not break out of VM

• Must be impossible for guest to distinguish
VM from real machine
• Some VMs compromise, modifying the guest kernel

to reduce accuracy requirement

 5

VMs are an old idea

• 1960s: IBM used VMs to share big machines

• 1970s: IBM specialized CPUs for
virtualization

• 1990s: VMware repopularized VMs for x86
HW

• 2000s: AMD & Intel specialized CPUs for
virtualization

 6

AMD-V, Intel VT-x

Process architecture

 7

Hardware

OS

vi gdb chrome

VM architecture

 8

Hardware

OS (VMM)

vi gdb chrome

Virtual HW Virtual HW

Guest OS Guest OS

The abstraction provided by the VMM is the HW layer

VMM aka Hypervisor

Process vs HW

 9

Process HW

Non-privileged registers and
instructions

All registers and instructions

Virtual memory Virtual memory and MMU

Signals Traps & interrupts

File system and sockets I/O devices and DMA

Can a CPU be virtualized?

• Requirements to be “classicaly virtualizable”
defined by Popek and Goldberg in 1974: 

1.Fidelity: Software on the VMM executes identically
to its execution on hardware (barring timing effects) 

2.Performance: An overwhelming majority of guest
instructions are executed by the hardware without
the intervention of the VMM 

3.Safety: The VMM manages all hardware resources

 10

Why not simulation?

• VMM interprets each instruction (e.g., Bochs)

• Maintain machine state for each register

• Emulate I/O ports and memory

• Violates performance requirement

 11

Idea: execute guest instructions on real 
CPU whenever possible

• Works fine for most instructions

• E.g., add %eax, %ebx

• But privileged instructions could be harmful

• Would violate safety requirement

 12

Idea: run guest kernels at CPL 3

• Ordinary instructions work fine

• Privileged instructions should trap to VMM
(general protection fault)

• VMM can apply privileged operations on
“virtual” state, not to real hardware

• This is called trap-and-emulate

 13

Trap-and-emulate example

• CLI/STI—enables and disables interrupts

• EFLAGS IF bit tracks current status

• VMM maintains virtual copy of EFLAGS
register

• VMM controls hardware EFLAGS
• Probably leave interrupts enabled even if guest

disables them

• VMM looks at virtual EFLAGS to determine
whether or not to interrupt guest

• VMM must make sure that guest sees only
virtual EFLAGS

 14

What about virtual memory?

• Want to maintain illusion that each VM has
dedicated physical memory

• Guest wants to start at PA 0 and use all of
RAM

• VMM needs to support many guests; they
can’t all use the same physical addresses

• Idea:
• Claim RAM is smaller than real RAM
• Keep paging enabled
• Maintain a “shadow” copy of guest page table
• Shadow maps VAs to different PAs than guest

requests
• Real %CR3 register points to shadow page table
• Virtual %CR3 register points to guest page table 15

Virtualization memory diagram

 16

Host
virtual
address

Host page table

Guest  
virtual
address

Guest  
physical  
address

Guest page table VMM map
Host 
physical  
address

Host 
physical  
address

Guest  
virtual
address

Shadow page table

Host 
physical  
address

Example

• Guest wants guest-physical page @
0x10000000

• VMM map redirects guest-physical
0x10000000 to host-physical 0x20000000

• VMM traps if guest changes %CR3 or writes
to guest page table

• Transfers each guest PTE to shadow page
table

• Uses VMM map to translate guest-physical
addresses in shadow page table to host-
physical addresses

 17

Why can’t the VMM modify the guest page table in
place?

 18

Trap-and-emulate not possible on x86

• Two problems:
1. Some instructions behave differently in CPL 3

instead of trapping 

2. Some register leak state that reveals if the CPU is
running in CPL 3

 19

Violates fidelity requirement

x86 isn’t classically virtualizable

• Problems in different behavior CPL 3 vs. CPL
0:

• mov %cs, %eax
– %cs contains the CPL in its two lower bits

• popfl/pushfl
– Privileged bits, including EFLAGS.IF, are masked

out

• iret
– No ring change, so doesn’t restore SS/ESP

 20

Two possible solutions

• Binary translation
• Rewrite offending instructions to behave correctly

• Hardware virtualization
• Extend x86 to make it classically virtualizable

 21

Naive binary translation

• Replace all instructions that can cause
violations with INT 3, which traps 

• INT 3 is one byte, so can fit inside any x86
instruction without changing size/layout 

• But, unrealistic
• We don’t know, at load time, the difference between

code and data or where instruction boundaries lie
• VMware’s solution is much more sophisticated

 22

VMware’s binary translator

• Kernel translated dynamically (like a JIT
compiler)
• Idea: scan only as executed, since execution

reveals instruction boundaries
• When VMM first loads guest kernel, translate from

entrypoint to first jump
• Most instructions translate identically

• Need to translate instructions in chunks
• Called a basic block
• Either 12 instructions or a control flow instruction,

whichever happens first

• Only guest kernel code is translated
• Only if in CPL 0

 23

Guest kernel shares address space with VMM

• Uses segmentation to protect VMM memory

• VMM loaded at high virtual addresses,
translated guest kernel at low addresses

• Program segment limits to “truncate” address
space, preventing all segments from
accessing VMM except %GS
• What if guest VM uses %GS selector?
• %GS provides fast access to data shared between

guest kernel and VMM

• Assumption: translated code can’t violate
isolation
• Can never directly access %GS, %CR3, GDT, etc.

 24

Why put guest and VMM in same address space?

• Shared state becomes inexpensive to
access
• e.g., cli → “vcpu.flags.IF = 0”

• Translated code is safe, can’t violate
isolation (after translation)

 25

Binary translation example

 26

int isPrime(int a) {
 for (int i = 2; i < a; i++) {
 if ((a % i) == 0) return 0;
 }
 return 1;
} prime: mov %ecx, %edi # %ecx = %edi (a)

 mov %esi, 2 # %esi = 2
 cmp %esi, %ecx # is i ≥ a?
 jge prime # if yes, jump
nexti: mov %eax, %ecx # set %eax = a
 cdq # sign-extend
 idiv %esi # a % i
 test %edx, %edx # is remainder zero?
 jz notPrime # jump if yes
 inc %esi # i++
 cmp %esi, %ecx # is i >= a?
 jl nexti # jump if no
prime: mov %eax, $1 # return value in %eax
 ret
notPrime:
 xor %eax, %eax # %eax = 0
 ret

Binary translation example (cont.)

 27

prime: mov %ecx, %edi # %ecx = %edi (a)
 mov %esi, 2 # %esi = 2
 cmp %esi, %ecx # is i ≥ a?
 jge prime # if yes, jump

All control flow requires indirection

prime: mov %ecx, %edi # IDENT
 jge [takenAddr] # JCC
 jmp [fallthroughAddr] #JCC

Translator

 translation unit (TU)

Compiled code fragment (CCF)

Executes this jump:
 Runs translator on code at fallthroughAddr
 Normally replaces address with address of CCF
 In this case since it’s the next CCF generarted,
 elides the jump  
 (and just falls through to next CCF)

Non-IDENT instructions

• Privileged instructions

• PC-relative addressing
• Since code layout changes

• Direct control flow (direct JMP, CALL)
• Since code layout changes
• Binds target address at translation time

• Indirect control flow (RET, indirect JMP,
indirect CALL)
• Must bind target address at runtime (using a hash

table lookup)

 28

Hardware virtualization

• CPU maintains guest copy of privileged state
in a special region called the Virtual Machine
Control Block (VMCB)

• CPU operates in two modes:
• VMX guest mode: runs guest kernel
– Switch from host mode to guest mode new

instruction: vmrun
• VMX host: runs VMM
– Switch from guest mode to host mode (I/O, for

example)
• Hardware saves and restores privileged register

state to and from the VMCB as it switches modes
• Each mode has its own separate privilege rings

• Net effect: hardware can run most privileged guest instructions
directly without emulation 29

Virtualization memory diagram

• Hardware effectively manages two page
tables

• Normal page table controlled by guest kernel

• Extended page table (EPT) controlled by
VMM

• EPT didn’t exist at the time of the VMware
paper

•

 30

Guest  
virtual
address

Guest  
physical  
address

Guest page table Extended page table
Host 
physical  
address

What’s better: HW or SW virtualization?

• Software virtualization advantages
• Trap emulation: most traps can be replaced with

callouts
• Emulation speed: BT can generate purpose-built

emulation code with predecoded instruction
• Callout avoidance: dometimes BT can even inline

callouts

• Hardware virtualization advantages
• Code density: translated code requires more

instructions
• Precise exceptions: BT must perform extra work to

recover guest state
• System calls: don’t require VMM intervention

 31

What’s better: HW or SW virtualization?

 32

What’s better? Shadow page table or EPT?

• EPT is faster when page table contents
change frequently
• Fewer traps to VMM
Shadow page table is faster when page table is stable

Less TLB-miss overhead
One page table to walk through instead of two

 33

Conclusion

• Virtualization transformed cloud computing

• VMware made virtualization possible
(through BT) on an architecture that couldn’t
be virtualized (x86)

• Prompted Intel and AMD to change
hardware: sometimes faster (though
sometimes slower) than BT

 34

What’s changed since the paper was written?

• HW virtualization became much faster
• Fewer traps, better microcode, more dedicated logic
• Almost all CPU architectures support HW

virtualization
• EPT widely available

• VMMs became commoditized
• BT technology was hard to build
• VMMs based on HW virtualization are much easier

to implement (Xen, KVM, HyperV, etc.)

• I/O devices aren’t just emulated, they can be
exposed directly
• IOMMU provides paging protection for DMA

 35

Questions

• How do shadow structures stay updated with
primary structures?

• How are instructions that cause an exception
forwarded to the VMM to handle?

• Where is the information about the registers
in a virtual CPU stored: registers or memory?

• Does binary translation work for more
complex virtualization (e.g., a language like
Java on a JVM)?

• What is the difference between true and
hidden page faults?

• Authors mention similarities to RISC/CISC
debate. How is this similar?

 36

Questions

• Any difference in security between hardware-
supported or software-only virtualization?

 37

