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Outline

• Last lecture: basics of virtualization 
• VMM is an OS that maintains a machine-like 

interface instead of a process interface 
• Many reasons to use virtualization 
• Originally, virtualization wasn’t thought possible on 

x86 
• VMware introduced binary translation 

• This lecture: recent developments 
• More detailed discussion of HW support for 

virtualization 
• Safe user-level access to privileged CPU features

 2



Intel VT-x

• Makes x86 hardware “classically 
virtualizable” (as defined by Popek and 
Goldberg) 

• Goal: Direct execution of most privileged 
instructions 

• Introduces two CPU modes: 
• VMX root mode: for running VMM 
• VMX non-root mode: for running VMs (guest) 
• Each mode has its own rings (CPL0-CPL3) 

• In-memory structure called VM Control 
Structure (VMCS) stores privileged register 
state and control flags
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Intel VT-x
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VM enter and VM exit

• Transitions between VMX root mode and 
VMX non-root mode 

• VM Exit 
• vmcall instruction 
• EPT page faults 
• Some trap-and-emulate (configured in VMCS) 
• Interrupts 

• VM Enter 
• vmlaunch instruction: Enter VMX non-root mode 

for a new VMCS 
• vmresume instruction: Enter for the last VMCS 

• Typical vmexit/vmenter is ~200 cycles on 
modern HW
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Intel Extended Page Tables (EPT)

• Goal: Direct execution of guest page-table 
interactions 
• Reads and writes to page table in memory 
– mov %eax, %cr3
– invlpg, etc. 

• Idea: maintain two layers of paging 
translation 
• Normal page-table: Guest-virtual to guest-physical 
• EPT: guest-physical to host-physical
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SR-IOV + IOMMU

• Goal: Allow direct execution of I/O device 
access 

• Challenge #1: how to partition a single 
device into multiple instances 
• SR-IOV allows a PCI device to expose multiple, 

separate memory-mapped I/O regions 

• Challenge #2: How to prevent DMA from 
overwriting memory belonging to VMM or 
another guest 
• IOMMU: Provides paging translation across PCIe 

bus
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Big picture

• Direct execution reduces overhead 
• Avoids VM exits, trap-and-emulate, binary 

translation 

• Enabled by three microarchitectural 
changes: 
• Intel VT-x: direct execution of most privileged 

instructions (e.g, IDT, GDT, CPL, EFLAG, etc.) 
• Intel EPT: direct execution of page table 

manipulation 
• IOMMU + SRIOV: direct execution of I/O 

interactions (e.g., network)
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Operating systems today
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What if you could give process 
 access to raw hardware? 
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Dune

• Key idea: Use VT-x, EPT, etc, to support 
Linux processes instead of virtual machines 

• Dune is a loadable Linux kernel module, 
makes it possible for an ordinary process to 
switch to “Dune mode” 

• Dune mode processes can run alongside 
ordinary processes. Within a process, some 
threads can be Dune mode even if others 
aren’t
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A Dune process

• Is still a Linux process 
• Has memory 
• Can make system calls 
• Is fully isolated 
• … 

• But isolated with VT-X non-root mode 
• Rather than with CPL=3 and page table protections 

• Memory protection via EPT 
• Dune configures EPT so processes can only access 

the same physical pages it would normally have 
access to.
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Why isolate a process with VT-x?

• Process can access all of Linux environment 
while also executing most privileged 
instructions 

• User code now runs at CPL 0 

• Process manages its own page table: %CR3 

• Fast exceptions (e.g., page faults) via 
shadow IDT 
• Kernel crossings eliminated 
• Some interrupts configured to dispatch to non-root 

mode 
• Others configured to cause vmexit 

• Can run sandboxed code at CPL 3 
• So process can act like a kernel!
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How to perform a Linux system call  
from a Dune process?

• int $80 just traps inside process at handler 
specified in shadow IDT 

• vmcall instruction forces a VM exit 
• Dune module vectors exit into kernel system call 

table 

• Challenge: compatibility 
• Existing code and libraries don’t use vmcall 

• Solution: 
• Shadow IDT handler forwards the system calls it 

catches using vmcall
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How to perform a Linux system call  
from a Dune process?
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Microbenchmarks: overheads

• Two sources of overhead: 
• VM exits and VM enters 
• EPT translations
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Microbenchmarks: speedups

• Large opportunities for optimization 
• Faster system-call interposition and traps 
• More efficient user-level virtual memory 

manipulation
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Example: sandboxed execution

• Suppose your browser wants to run a plugin 
• Could be buggy or malicious 

• Need a way to execute plugin but limit: 
• System calls 
• Memory access 

• Using Dune: 
• Browser is a Dune thread: 
– Run at CPL0  
• Create a Dune thread for plugin: 
– PTE_U mappings only for allowed access 
– Run at CPL3 
– Can run system calls but they trap to browser 

- Browser filters or emulates system calls
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Linux Kernel

What if you could give process 
 access to raw hardware? 
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Sandbox: SPEC2000 performance

• Only notable end-to-end effect is EPT 
overhead 
• Can be eliminated through the use of large pages
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More thoughts on use cases

• Dune provides similar benefits to Exokernel 
• Raw access to paging hardware for Appel&Li paper 
• Speed improvements alone may make some ideas 

more feasible (e.g., GC) 

• Each Dune thread can have a different page 
table! 
• E.g., sthreads: a mechanism for least privilege
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Summary

• VT-x, EPT, and SR-IOV/IOMMU enable 
direct execution of (most) guest instructions 

• Dune implements processes with VT-x and 
EPT rather than ordinary ring protection 

• Dune processes can use both Linux system 
calls and privileged HW 
• Enables fast access to page table and page faults 
• Enables processes to build kernel-like functionality 
– E.g., sandboxing untrusted plugins in CPL3 
– Hard to do this at all in Linux, let alone efficiently
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Question

• How can a Dune process be in ring 0, but non-
VMX root? 

• Why would a child process not want to be in 
Dune mode? 

• Why would we have some threads be in Dune 
mode, and others not? 

• Is Dune emulating the privileged calls to, e.g., 
the TLB, or is it really changing the values in the 
hardware? 

• What is ioctl (used by a process to enter Dune 
mode)? 

• If Dune module is like VMM and Dune process 
like guest OS, how can Dune module “override” 
the normal host VMM
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