
CS 134
Operating Systems

April 24, 2019

Virtualization II

Based on Virtualization

https://pdos.csail.mit.edu/6.828/2018/lec/l-vmm.md

Outline

• Last lecture: basics of virtualization
• VMM is an OS that maintains a machine-like

interface instead of a process interface
• Many reasons to use virtualization
• Originally, virtualization wasn’t thought possible on

x86
• VMware introduced binary translation 

• This lecture: recent developments
• More detailed discussion of HW support for

virtualization
• Safe user-level access to privileged CPU features

 2

Intel VT-x

• Makes x86 hardware “classically
virtualizable” (as defined by Popek and
Goldberg)

• Goal: Direct execution of most privileged
instructions

• Introduces two CPU modes:
• VMX root mode: for running VMM
• VMX non-root mode: for running VMs (guest)
• Each mode has its own rings (CPL0-CPL3)

• In-memory structure called VM Control
Structure (VMCS) stores privileged register
state and control flags

 3

Intel VT-x

 4

Non-Root Mode

CPL 3 User program
CPL 2
CPL 1
CPL 0 Guest OS

Root Mode

#vmexit#vmlaunch
#vmresume

VMCS

VM enter and VM exit

• Transitions between VMX root mode and
VMX non-root mode

• VM Exit
• vmcall instruction
• EPT page faults
• Some trap-and-emulate (configured in VMCS)
• Interrupts

• VM Enter
• vmlaunch instruction: Enter VMX non-root mode

for a new VMCS
• vmresume instruction: Enter for the last VMCS

• Typical vmexit/vmenter is ~200 cycles on
modern HW

 5

Intel Extended Page Tables (EPT)

• Goal: Direct execution of guest page-table
interactions
• Reads and writes to page table in memory
– mov %eax, %cr3
– invlpg, etc.

• Idea: maintain two layers of paging
translation
• Normal page-table: Guest-virtual to guest-physical
• EPT: guest-physical to host-physical

 6

Guest  
virtual
address

Guest  
physical  
address

Guest page table Extended page table
Host 
physical  
address

SR-IOV + IOMMU

• Goal: Allow direct execution of I/O device
access

• Challenge #1: how to partition a single
device into multiple instances
• SR-IOV allows a PCI device to expose multiple,

separate memory-mapped I/O regions

• Challenge #2: How to prevent DMA from
overwriting memory belonging to VMM or
another guest
• IOMMU: Provides paging translation across PCIe

bus

 7

Single-root I/O Virtualization

IOMMU

 8

CPU 1 CPU 2 CPU 3 CPU 4

RAM

{bus

MMU

PCIe device

IOMMU

Big picture

• Direct execution reduces overhead
• Avoids VM exits, trap-and-emulate, binary

translation

• Enabled by three microarchitectural
changes:
• Intel VT-x: direct execution of most privileged

instructions (e.g, IDT, GDT, CPL, EFLAG, etc.)
• Intel EPT: direct execution of page table

manipulation
• IOMMU + SRIOV: direct execution of I/O

interactions (e.g., network)

 9

Operating systems today

 10

Hardware

OS

App App App

What if you could give process 
 access to raw hardware?

 11

Hardware

OS

App App App

Access to existing 
Linux abstractions

Access to full HW
capabilities

Dune

• Key idea: Use VT-x, EPT, etc, to support
Linux processes instead of virtual machines

• Dune is a loadable Linux kernel module,
makes it possible for an ordinary process to
switch to “Dune mode”

• Dune mode processes can run alongside
ordinary processes. Within a process, some
threads can be Dune mode even if others
aren’t

 12

A Dune process

• Is still a Linux process
• Has memory
• Can make system calls
• Is fully isolated
• …

• But isolated with VT-X non-root mode
• Rather than with CPL=3 and page table protections

• Memory protection via EPT
• Dune configures EPT so processes can only access

the same physical pages it would normally have
access to.

 13

Why isolate a process with VT-x?

• Process can access all of Linux environment
while also executing most privileged
instructions

• User code now runs at CPL 0

• Process manages its own page table: %CR3

• Fast exceptions (e.g., page faults) via
shadow IDT
• Kernel crossings eliminated
• Some interrupts configured to dispatch to non-root

mode
• Others configured to cause vmexit

• Can run sandboxed code at CPL 3
• So process can act like a kernel!

 14

How to perform a Linux system call  
from a Dune process?

• int $80 just traps inside process at handler
specified in shadow IDT

• vmcall instruction forces a VM exit
• Dune module vectors exit into kernel system call

table

• Challenge: compatibility
• Existing code and libraries don’t use vmcall

• Solution:
• Shadow IDT handler forwards the system calls it

catches using vmcall

 15

How to perform a Linux system call  
from a Dune process?

 16

CPU

VMX Root mode

Kernel

VMX Non-root mode

Dune  
Process

Syscall  
handler

Syscall  
handler

int $80

vmcall

Microbenchmarks: overheads

• Two sources of overhead:
• VM exits and VM enters
• EPT translations

 17

Microbenchmarks: speedups

• Large opportunities for optimization
• Faster system-call interposition and traps
• More efficient user-level virtual memory

manipulation

 18

Page fault trap/prot1/unprot protn/trap/unprot

Example: sandboxed execution

• Suppose your browser wants to run a plugin
• Could be buggy or malicious

• Need a way to execute plugin but limit:
• System calls
• Memory access

• Using Dune:
• Browser is a Dune thread:
– Run at CPL0
• Create a Dune thread for plugin:
– PTE_U mappings only for allowed access
– Run at CPL3
– Can run system calls but they trap to browser

- Browser filters or emulates system calls
 19

Linux Kernel

What if you could give process 
 access to raw hardware?

 20

Hardware

Browser (Dune CPL 0) vi

Plugin  
(CPL 3)

Plugin  
(CPL 3)

Sandbox: SPEC2000 performance

• Only notable end-to-end effect is EPT
overhead
• Can be eliminated through the use of large pages

 21

More thoughts on use cases

• Dune provides similar benefits to Exokernel
• Raw access to paging hardware for Appel&Li paper
• Speed improvements alone may make some ideas

more feasible (e.g., GC)

• Each Dune thread can have a different page
table!
• E.g., sthreads: a mechanism for least privilege

 22

Summary

• VT-x, EPT, and SR-IOV/IOMMU enable
direct execution of (most) guest instructions

• Dune implements processes with VT-x and
EPT rather than ordinary ring protection

• Dune processes can use both Linux system
calls and privileged HW
• Enables fast access to page table and page faults
• Enables processes to build kernel-like functionality
– E.g., sandboxing untrusted plugins in CPL3
– Hard to do this at all in Linux, let alone efficiently

 23

Question

• How can a Dune process be in ring 0, but non-
VMX root?

• Why would a child process not want to be in
Dune mode?

• Why would we have some threads be in Dune
mode, and others not?

• Is Dune emulating the privileged calls to, e.g.,
the TLB, or is it really changing the values in the
hardware?

• What is ioctl (used by a process to enter Dune
mode)?

• If Dune module is like VMM and Dune process
like guest OS, how can Dune module “override”
the normal host VMM

 24

